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A function on an algebra is congruence preserving if, for any congruence, it maps pairs of congruent elements onto
pairs of congruent elements. We show that on the algebra of binary trees whose leaves are labeled by letters of an
alphabet containing at least three letters, a function is congruence preserving if and only if it is a polynomial function,
thus exhibiting the first example of a non commutative and non associative affine complete algebra.
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1 Introduction
A function on an algebra is congruence preserving if, for any congruence, it maps pairs of congruent
elements onto pairs of congruent elements.

A polynomial function on an algebra is a function defined by a term of the algebra using variables, con-
stants and the operations of the algebra. Obviously, every polynomial function is congruence preserving.

Algebras where all congruence preserving functions are polynomial functions are called affine complete
in the terminology introduced by Werner (1971). They are extensively studied in the book by Kaarli and
Pixley (2001).

In the commutative case, many algebras have been shown to be affine complete: Boolean algebras
(Grätzer , 1962), p-rings with unit (Iskander , 1972). For distributive lattices, Ploščica and Haviar (2008)
described congruence preserving functions, and Grätzer (1964) determined which distributive lattices are
affine complete. Affine completenes is an intrinsic property of an algebra, which fails to hold even for
very simple algebras: e.g., in A = 〈Z,+〉, the function f : Z→ Z defined by

f(x) = if x ≥ 0 then
Γ(1/2)

2× 4x × x!

∫ ∞
1

e−t/2(t2 − 1)xdt else −f(−x).

has been proved to be congruence preserving (Cégielski et al. , 2015), but it is not a polynomial function
because its power series is infinite. Hence A = 〈Z,+〉 is not affine complete.
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In the non commutative case, very little is known about affine complete algebras. We proved in Arnold
et al. (2020) that the free monoid Σ∗ is an associative non commutative affine complete algebra if Σ has at
least three letters, and we proved in Arnold et al. (2020) a partial result concerning a non commutative and
non associative algebra: every unary congruence preserving function f : T (Σ) → T (Σ) is a polynomial
function, where T (Σ) is the algebra of full binary trees with leaves labelled by letters of an alphabet Σ
having at least three letters. We here generalize this result proving that a congruence preserving function
f : T (Σ)n → T (Σ) of any arity n is a polynomial function, where T (Σ) is the algebra of arbitrary
(possibly non full) binary trees with labelled leaves. This generalization is twofold: (1) non full binary
trees are allowed in T (Σ), and (2) congruence preserving functions of arbitrary arity are allowed. This
exhibits an example of a non commutative and non associative affine complete algebra. Non commutative
and non associative algebras are of constant use in Computer Science, and congruences are also very often
used, whence the potential usefulness of our result.

We first define binary trees and their congruences, we then study conditions which will enable us to
prove that every congruence preserving function is a polynomial function, and to finally prove the affine
completeness of T (Σ).

2 The algebra of binary trees
2.1 Trees, congruences
For an algebraA with domain A, a congruence∼ onA is an equivalence relation on A which is compati-
ble with the operations ofA. We state the characterization of congruences by kernels of homomorphisms.

Lemma 2.1. Let A = 〈A , ?〉 be an algebra with a binary operation ?. An equivalence ∼ on A is a
congruence iff there exists an algebra B = 〈B , ∗〉 with a binary operation ∗ and there exists θ : A → B
a homomorphism such that ∼ coincides with the kernel congruence ker(θ) of θ, defined by x ∼θ y iff
θ(x) = θ(y).

Let Σ be an alphabet not containing {0, 1}. We shall represent the algebra of binary trees over Σ, i.e.,
trees with leaves labeled by letters of Σ, as a set of words T (Σ) on the alphabet Σ∪ {0, 1}, together with
the binary product operation ?.

Definition 2.2. The algebra B = 〈T (Σ), ?〉 of binary trees over Σ is defined as follows.

• A binary tree over Σ is a finite set of words t ⊆ {0, 1}∗Σ such that: For any ua, vb ∈ t, if ua 6= vb
then u is not a prefix of v and v is not a prefix of u. The carrier set T (Σ) is the set of all binary
trees. The empty set ∅ is a binary tree denoted by 0.

• The binary product operation ? is defined by: for t, t′ ∈ T (Σ), t ? t′ = 0.t ∪ 1.t′. In particular,
0 ? 0 = 0.

When the alphabet Σ is clear, we will denote by T the set of all binary trees. Trees are generated by
{0} ∪ Σ and the operation ?.

An essential property of this algebra B is that its elements are uniquely decomposable.

Lemma 2.3 (Unicity of decomposition). If t is a tree not in {0} ∪ Σ then there exists a unique ordered
pair 〈t1, t2〉 6= 〈0,0〉 in T 2 such that t = t1 ? t2.
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Fig. 1: From left to right, t = {00b, 1a}, τ = {0c, 1d}, t1 = γa→τ (t) = {00b, 01c, 11d}, t2 = {00b, 01c, 11d},
t3 = {00a, 10b, 11c}. Trees t1, t2, t3 have the same size 6, trees t1 and t3 are similar (have the same skeleton.)

This property allows us to associate with each t ∈ T its size |t| (number of nodes)
– |0| = 0, and for all a ∈ Σ, |a| = 1,
– if t /∈ {0} ∪ Σ then t = t1 ? t2, and |t| = |t1|+ |t2|+ 1.

If |t| > 1 then there exist t1, t2 with |ti| < |t| such that t = t1 ? t2. Trees t ? t′, 0 ? t′, t ? 0 are trees
whose root has two sons, a single right son, a single left son, respectively. See Figure 1.

2.2 Homomorphisms, graftings
Lemma 2.4. Let B = 〈B , ∗〉 be an algebra with a binary operation ∗. Every mapping h : Σ → B can
be uniquely extended to a homomorphism h : T → B.

Remark 2.5. 1) Because of the universal property of Lemma 2.4, homomorphisms are (uniquely) defined
by giving their values on Σ.

2) For every endomorphism, h(0) = 0. Otherwise, as 0 = 0 ?0, h(0) = h(0) ? h(0); if h(0) = t with
|t| ≥ 1 then t = t ? t implies |t| = 2|t|+ 1, a contradiction.

Definition 2.6. For a given a ∈ Σ, let νa be the endomorphism sending Σ onto a. If for some a ∈ Σ,
νa(t) = νa(t′), trees t and t′ are said to be similar, which is denoted by t ∼s t′.

Note that the congruence∼s does not depend on the choice of the letter a ∈ Σ since νb(t) = νb(νa(t)).
From an intuitive viewpoint, t ∼s t′ means that t and t′ have the same skeleton, i.e., they are identical
except for the leaf labels. See Figure 1.

Other congruences fundamental for our proof are the kernels of the grafting endomorphisms, defined
below.

Definition 2.7 (Grafting). Let a ∈ Σ and τ ∈ T . Then the grafting γa→τ : T → T is the endomorphism
defined by its restriction on Σ

γa→τ (b) =

{
τ if b = a,

b if b 6= a.

In other words, for any a ∈ Σ and any τ ∈ T , γa→τ is the endomorphism sending the letter a on τ and
each other letter on itself.

An endomorphism h of 〈T (Σ), ?〉 is idempotent if for every t ∈ T , h(h(t)) = h(t). By Lemma 2.4,
h is idempotent iff for every a ∈ Σ, h(h(a)) = h(a). For instance if a does not occur in τ then γa→τ is
idempotent.
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Proposition 2.8. Let τ ∈ T , let t, t′ ∈ T , and let a1 6= a2 be two letters in Σ. If γai→τ (t) = γai→τ (t′)
for i = 1, 2, then t = t′.

Proof: By induction on min(|t|, |t′|).
Basis Case 0: If min(|t|, |t′|) = 0 then one of t, t′ is 0, say t = 0. If t′ 6= 0 then t′ contains at least one

occurrence of some letter b. As γai→τ (t′) = γai→τ (t) = γai→τ (0) = 0, we have γai→τ (t′) = 0, which
implies (because t′ 6= 0 was supposed) that τ = 0. Then γai→τ (t′) = 0 implies that all leaves of t′ are
equal to both a1 and a2, a contradiction. Hence t′ = 0 and t = t′.

Basis Case 1: If min(|t|, |t′|) = 1 then t or t′ is a letter, say t = b, and there is one i, say i = 1, such
that a1 6= b, thus b = γa1→τ (t) = γa1→τ (t′).

• If t′ is a letter c 6= b, then γa1→τ (c) = b. If c = a1 then b = γa1→τ (c) = τ . Since γa2→τ (c) = c =
γa2→τ (b) ∈ {τ, b} = {b}, we have that c = b, a contradiction. If c 6= a1 and γa1→τ (c) = c 6= b =
γa1→τ (c), a contradiction. Hence t′ = t = b.

• If |t′| > 1 then t′ = t′1 ? t
′
2, and γa1→τ (t′) = γa1→τ (t′1) ? γa1→τ (t′2) which can be only of size 0

or ≥ 2, contradicting γa1→τ (t′) = b. this case is excluded.

Induction: If min(|t|, |t′|) > 1 then t = t1 ? t2 and t′ = t′1 ? t
′
2 with min(|ti|, |t′i|) < min(|t|, |t′|),

for i = 1, 2. By Lemma 2.3, γaj→τ (t1) ? γaj→τ (t2) = γaj→τ (t′1) ? γaj→τ (t′2) implies γaj→τ (ti) =
γaj→τ (t′i), for j = 1, 2. By the induction hypothesis ti = t′i, hence t = t′.

Proposition 2.9. Let us fix a ∈ Σ, with |Σ| ≥ 3, t, t′ ∈ T such that t ∼s t′.
(1) If, for some τ ∈ T of size |τ | 6= 1, γa→τ (t) = γa→τ (t′), then t = t′.
(2) If, for all b 6= a, b ∈ Σ, γa→b(t) = γa→b(t

′), then t = t′.

Proof: Both (1) and (2) are proved by induction on |t| = |t′|, and in both cases, the result obviously holds
if t = t′ = 0.

Basis: If |t| = |t′| = 1.
(1) We assume that t = b 6= c = t′.

(i) If a 6∈ {b, c} then γa→τ (t) = b 6= c = γa→τ (t′), a contradiction.
(ii) Otherwise, a ∈ {b, c}, e.g., a = b = t, then γa→τ (t) = γa→τ (a) = τ and γa→τ (t′) = γa→τ (c) = c,
hence τ = c, which contradicts |τ | 6= 1.

(2) We assume that t = b 6= c = t′.
(i) The case a 6∈ {b, c} yields a contradiction as in case (1).
(ii) Otherwise, e.g., a = b, there exists d 6∈ {a, c}, and we get γa→d(t) = γa→d(a) = d and γa→d(t′) =
γa→d(c) = c, contradicting γa→d(t) = γa→d(t

′).

Induction: As in Proposition 2.8 in both cases: since t and t′ are similar, t = t1 ? t2 and t′ = t′1 ? t
′
2 with

ti similar to t′i and |ti| < |t′i|.
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2.3 Congruence preserving functions on trees
Definition 2.10. A function f : T n → T is congruence preserving (abbreviated into CP) if for all con-
gruences ∼ on T , for all t1, . . . , tn, t′1, . . . , t

′
n in T , ti ∼ t′i for all i = 1, . . . , n, implies f(t1, . . . , tn) ∼

f(t′1, . . . , t
′
n).

Remark 2.11. (1) It follows from Lemma 2.1 that CP functions are characterized by the fact that for
all homomorphisms h from 〈T , ?〉 to any algebra 〈A, ?A〉, h(ti) = h(t′i) for all i = 1, . . . , n, implies
h(f(t1, . . . , tn)) = h(f(t′1, . . . , t

′
n)).

(2) If f is CP and endomorphism h is idempotent then h(f(t1, . . . , tn)) = h(f(h(t1), . . . , h(tn))).
Indeed, let ∼h be the congruence associated with h, for i = 1, . . . , n, we have h(ti) = h(h(ti)), hence
ti ∼h h(ti), whence the result.

We will show that congruence preserving functions on the algebra 〈T (Σ), ?〉 are polynomial functions.
Let us first formally define polynomials on trees.

Definition 2.12. Let x1, . . . , xn 6∈ Σ be called variables. A polynomial P (x1, . . . , xn) is a tree on the
alphabet Σ ∪ {x1, . . . , xn}.

With every polynomial P (x1, . . . , xn) we will associate a polynomial function P̃ : T n → T defined
by: for any ~u = 〈t1, . . . , ti, . . . , tn〉 ∈ T n,

P̃ (~u) =


P if P = 0 or P ∈ Σ
ti if P = xi
P̃1(~u) ? P̃2(~u) if P = P1 ? P2

Obviously, every polynomial function is CP. Our goal is to prove the converse, namely

Theorem 2.13. Let |Σ| ≥ 3. If g : T n → T is CP then there exists a polynomial Pg such that g = P̃g .

3 Equality of CP functions
Notation 3.1. For any f : T n → T , we denote by f |Σn

its restriction to Σn.

In this section we prove that if f and g are two CP functions, then f |Σn
= g|Σn

implies f = g, provided
that Σ contains at least three letters.

Lemma 3.2. Suppose Σ has at least three letters. If f and g are unary CP functions on T such that for
all a ∈ Σ, f(a) = g(a) then for all t ∈ T , f(t) and g(t) are similar.

Proof: We have to show that νa(f(t)) = νa(g(t)) for some a ∈ Σ and for all t. As νa is idempotent
and f is CP, by Remark 2.11 (2), νa(f(t)) = νa(f(νa(t))), and similarly for g. Hence it suffices to
prove f(νa(t)) = g(νa(t)). Let b1, b2 ∈ Σ such that a, b1, b2 are pairwise distinct. As γbi→νa(t) is
idempotent, by Remark 2.11 (2), we have γbi→νa(t)(f(bi)) = γbi→νa(t)(f(νa(t))). The same holds for g,
i.e., γbi→νa(t)(g(bi)) = γbi→νa(t)(g(νa(t))). From f(bi) = g(bi), we deduce that γbi→νa(t)(f(νa(t))) =
γbi→νa(t)(g(νa(t))). This equality holds for i = 1, 2, thus Proposition 2.8 implies that f(νa(t)) =
g(νa(t)).

The following proposition shows that a unary CP function f is completely determined by its values on Σ.

Proposition 3.3. Suppose Σ has at least three letters. If f and g are unary CP functions on T such that
for all a ∈ Σ, f(a) = g(a) then for all t ∈ T , f(t) = g(t).
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Proof: Let a be a letter that occurs in t. For any other letter b, the endomorphisms γa→b and γa→tb
are idempotent, where tb = γa→b(t). Thus by Remark 2.11 (2), γa→tb(f(a)) = γa→tb(f(tb)), and
γa→tb(g(a)) = γa→tb(g(tb)). As f(a) = g(a) we have γa→tb(f(tb)) = γa→tb(g(tb)). By Lemma 3.2,
f(tb) and g(tb) are similar, and by Proposition 2.9 (1) f(tb) = g(tb).

On the other hand, as f and g are CP and t ∼γa→b
tb, we get γa→b(f(t)) = γa→b(f(tb)) and

γa→b(g(t)) = γa→b(g(tb)), hence γa→b(f(t)) = γa→b(g(t)). As this is true for all b 6= a, we have
by Proposition 2.9 (2), f(t) = g(t).

Proposition 3.3 now can be generalized.

Notation 3.4. For any function f : T n+1 → T , any t ∈ T , and ~u = 〈t1, . . . , tn〉, we define
(1) a n-ary function f··· ,t obtained by “freezing” the (n+1)th argument to the value t, and defined by: for
all ~u ∈ T n, f··· ,t(~u) = f(~u, t),
(2) a unary function f~u,· obtained by “freezing” the n first arguments to the value ~u = 〈t1, . . . , tn〉, and
defined by: for all t ∈ T , f~u,·(t) = f(~u, t).

Proposition 3.5. Let f and g be n-ary CP functions on T such that for all a1, . . . , an ∈ Σ, f(a1, . . . , an) =
g(a1, . . . , an) then for all t1, . . . , tn ∈ T , f(t1, . . . , tn) = g(t1, . . . , tn).

Proof: By induction on n. For n = 1 the result was proved in Proposition 3.3. Assume the result holds
for n. By the hypothesis, for all a1, . . . , an, a ∈ Σ, we have f(a1, . . . , an, a) = g(a1, . . . , an, a), i.e.,
f··· ,a(a1, . . . , an) = g··· ,a(a1, . . . , an). By the induction applied to f··· ,a, for all ~u ∈ T n, f··· ,a(~u) =
g··· ,a(~u), or equivalently f~u,·(a) = g~u,·(a). As f~u,·(a) = g~u,·(a), applying now Proposition 3.3 to f~u,·
and g~u,· yields f~u,·(t) = g~u,·(t) for all t, hence f(~u, t) = g(~u, t).

4 The algebra of binary trees is affine complete
To prove that any CP function is a polynomial function, as a consequence of Proposition 3.5 and of the
fact that a polynomial function is CP, it is enough to show that the restriction f |Σn

of f : T n → T to Σn

is equal to the restriction P̃ |Σn
of a n-ary polynomial function. For such restricted functions we introduce

a weakened version WCP of the CP condition, namely,

Definition 4.1. Function g : T n → T is said to be WCP iff for any idempotent mapping h : Σ → Σ,
∀~u,~v ∈ Σn, h(~u) = h(~v) =⇒ h(g(~u)) = h(g(~v)), where for ~u = 〈u1, . . . , un〉, h(~u) denotes
〈h(u1), . . . , h(un)〉.

Every CP function is clearly WCP.

Lemma 4.2. If g is WCP then for all ~u,~v ∈ Σn, g(~u) and g(~v) are similar.

Proof: As νa(~u) = νa(~v) = 〈a, . . . , a〉 for all ~u,~v ∈ Σn and g is WCP, νa(g(~u)) = νa(g(~v)).

We often use a different form of the condition WCP, which deals only with alphabetic graftings.

Proposition 4.3. A function g is WCP if and only if
(GCP) (G for graftings) for all a1, a2, . . . , an ∈ Σ, i ∈ {1, . . . , n} and bi ∈ Σ, γai→bi(g(a1, . . . , an)) =

γai→bi(g(a1, . . . , ai−1, bi, ai+1, . . . , an)).
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Proof: Since γai→bi(a1, . . . , an) = γai→bi(a1, . . . , ai−1, bi, ai+1, . . . , an), clearly WCP implies GCP.
The proof of the converse is by induction on n. It is obviously true for n = 0.

Otherwise, let h be a mapping h : Σ → Σ and let ~u,~v ∈ Σn such that h(~u) = h(~v), and let a, b ∈ Σ
such that h(a) = h(b). By (GCP), we have γa→b(g(~u, a)) = γa→b(g(~u, b)), hence h(γa→b(g(~u, a))) =
h(γa→b(g(~u, b))).

But h(γa→b(c)) =

{
h(c) if c 6= a
h(b) = h(a) if c = a

hence h ◦ γa→b = h. Therefore h(g(~u, a)) = h(g(~u, b)),

and by the induction applied to g...,b, h(g(~u, a)) = h(g(~u, b)) = h(g(~v, b)).

Let us first study unary WCP functions whose restriction to Σ takes its values in Σ.

Proposition 4.4. Assume |Σ| ≥ 3. Let f : T → T be WCP and such that f(Σ) ⊆ Σ. Then f |Σ is (1)
either a constant function (2) or the identity.

Proof: If f is not the identity there exist a, b, with a 6= b and f(a) = b. As γa→b(f(b)) = γa→b(f(a)) =
γa→b(b) = b, we get f(b) ∈ {a, b}.

For c 6∈ {a, b}, γa→c(f(c)) = γa→c(f(a)) = b implies f(c) = b. It remains to prove that f(b) = b.
From γb→c(f(b)) = γb→c(f(c)) = c, we deduce that f(b) ∈ {c, b}, hence f(b) ∈ {a, b} ∩ {c, b} = {b},
which concludes the proof.

We now will generalize Proposition 4.4 by Proposition 4.5 (replacing a unary f by a n-ary g).

Proposition 4.5. Assume |Σ| ≥ 3. If g : T n → T is WCP and such that g(Σn) ⊆ Σ, then g|Σn
is (1)

either a constant function (2) or a projection πni .

Proof: The proof is by induction on n. By Proposition 4.4 it is true for n = 1. If g is of arity n+ 1 then,
by induction hypothesis, for any a ∈ Σ, the function g··· ,a of arity n is either a constant or a projection
πni . We first show that these functions are all equal to a given πni , or all equal to a same constant, or every
g··· ,a is the constant function a.

Let us assume that g··· ,a = πni . Let ~u = 〈a, . . . , a, c, a, . . . , a〉 and ~v = 〈a, . . . , a, d, a, . . . , a〉 with
a, c, d pairwise disjoint, so that for any b, γa→b(g(~u, a)) = c and γa→b(g(~v, a)) = d. It follows from the
GCP condition that γa→b(g(~u, a)) = γa→b(g(~u, b)) = c and γa→b(g(~v, a)) = γa→b(g(~v, b)) = d, which
is impossible if g··· ,b is either a constant or a projection πnj with j 6= i. Hence all g··· ,a are equal to πni ,
implying g = πn+1

i .

Assume now all the g··· ,a are constant. For every ~u,~v, a, we have g(~u, a) = g(~v, a). We choose an
arbitrary ~u ∈ Σn which will be fixed. By the induction hypothesis g~u,· is either (1) the identity, or (2)
a constant c. In case (1), for all ~v, a, g(~u, a) = g(~v, a) = a and g = πn+1

n+1 . In case (2), for all ~v, a, b,
g(~u, a) = g(~v, b) = c and g is a constant.

As CP functions are WCP, for g a CP function such that for some a1, . . . , an ∈ Σ, g(a1, . . . , an) ∈ Σ,
we have shown that there exists a polynomial Pg , which is either a constant a ∈ Σ or an xi, such that
g = P̃g . We will now extend to the case when g(a1, . . . , an) 6∈ Σ.

Proposition 4.6. Assume that |Σ| ≥ 3. Let g : T n → T be WCP. Then there exists a polynomial Pg such
that g|Σn

= P̃g|Σn
.
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Proof: Let σ(g) be the common size of all the g(~u), ~u ∈ Σn. The proof is by induction on σ(g).
Basis: If σ(g) = 0 then g|Σn

= P̃ |Σn
= 0. If σ(g) = 1 then g(a1, . . . , an) ∈ Σ and the result is

proved in Proposition 4.5.
Induction: If σ(g) > 1 there exists two functions gi : T n → T for i = 1, 2 such that for all ~u ∈ Σn,

g(~u) = g1(~u) ? g2(~u), with |σ(gi)| < |σ(g)|. It remains to show that both g1 and g2 are WCP. Let
~u,~v ∈ Σn be such that h(~u) = h(~v) for some mapping h : Σ → Σ. Extend h as an endomorphism
T → T by Lemma 2.4, then h(g(~u)) = h(g1(~u) ? g2(~u)) = h(g1(~u)) ? h(g2(~u)). Similarly, h(g(~v)) =
h(g1(~v)) ? h(g2(~v)). As g is WCP and h(~u) = h(~v), we have h(g(~u)) = h(g(~v)). Then by Lemma 2.3
(unique decomposition) we get h(gi(~u)) = h(gi(~v)) for i = 1, 2. This is true for any h, thus g1 and g2 are
WCP. By the induction hypothesis there exists Pi such P̃i|Σn

= gi|Σn
, hence g|Σn

= P̃1|Σn
? P̃2|Σn

=

P̃1 ? P2|Σn
.

Theorem 4.7. If f : T n → T is CP then there exists a polynomial P such that f = P̃ .

Proof: Since f is CP, f also is WCP. By the previous proposition, there exists P such that f |Σn
= P̃ |Σn

,

and by Proposition 3.5, f = P̃ .

5 Conclusion
We proved that, when Σ has at least three letters, the algebra of arbitrary binary trees with leaves labeled
by letters of Σ is an affine complete algebra (non commutative and non associative).
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