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The pipe flow of purely viscous shear-thinning fluids is studied using numerical simulations. The rheological behavior is described by the Carreau model. The flow field is decomposed as a base flow and a disturbance. The perturbation equations are then solved using a pseudospectral Petrov-Galerkin method. The time marching uses a fourth-order Adams-Bashforth scheme. In the case of an infinitesimal perturbation, a three-dimensional linear stability analysis is performed based on modal and non modal approaches. It is shown that the pipe flow of shear-thinning fluids is linearly stable and that for the range of the rheological parameters considered, streamwise independent vortices are optimally amplified. The nonlinear computations are done for finite amplitude two-dimensional disturbances, which consist of one pair of longitudinal rolls. The numerical results show that for a given wall Reynolds number, the shear-thinning reduces the energy gain of the perturbation. This is due to a reduction of the exchange energy between the base flow and the perturbation. Besides this, the viscous dissipation decreases with increasing the shear-thinning effects.

I. INTRODUCTION

Non-Newtonian fluids, such as colloidal suspensions, polymers or macro-molecules solutions are encountered in several industrial processes such as oil-well cementing, extrusion of molten polymers, paper coating, transport of mined slurries, etc. Many of these processes involve flows of non-Newtonian fluids through pipes. Knowledge of the flow structure is essential for an accurate design of pipe flow systems. In the laminar regime, the flow can be quite easily calculated. On the contrary, the transition to turbulence remains a genuine scientific challenge. "Actually, there is a demand from industrial applications to predict the Reynolds number at which transition occurs. Several phenomenological criteria for the transition to turbulence have been proposed in the literature (Brand,Peixinho and Nouar SPE paper 7135). Periodically, other criteria appear particularly in the petroleum engineering literature. However, when the rheological properties of the fluid depart significantly from the Newtonian case, the predictions provided by such phenomenological criteria diverge, and there is no way to decide which criterion is preferable (Nouar and Frigaard 2001). From experimental point of view, the transition to turbulence is well determined from the measurement of the turbulence intensity. Escudier et al. (2009) investigated the transition the pipe flow of an aqueous solution of Xanthan-gum (semi-rigid polymer) and Polyacrylamyde (flexible polymer). They found that the transition that the transition occurs at Reynolds number (defined with the bulk velocity, diameter of he pipe and the wall shear-viscosity) about 3000 for Xanthan gum and ≈ 4000 for Polyacrylamyde. For a Baryte suspension (fluid used in oil cementing process) transition was found at Reynolds about 4000.

Actually, even for for Newtonian fluids, the transition to turbulence is a difficult problem, despite the numerous works done since the Reynolds' experiment in 1883. The Hagen-Poiseuille flow is conjectured to be linearly stable for all Reynolds numbers and numerically proven ? so for Reynolds number up to 10 7 , yet it exhibits transition to turbulence at moderate flow velocities. A finite amplitude perturbation is therefore required to trigger transition to turbulence. In the last decade two different modeling approaches of transition to turbulence were proposed in the literature for Newtonian fluids. The first one is based on the algebraic transient growth exhibited by the optimal perturbations, which consist of streamwise counter-rotating vortices. These two-dimensional rolls evolve into streaks via the lift-up mechanism ? . The resulting flow contains saddle points and can be unstable with respect to three-dimensional perturbations. This instability, which is typically studied by nonlinear direct simulations, is termed as streak breakdown. It was shown that this modeling approach is pertinent in parallel shear flows such as pipe Poiseuille flow ? , plane Poiseuille flow ? and recently in magnetohydrodynamic channel flow ? . The main goal of this approach is to determine the threshold amplitude of a perturbation required to trigger transition. The second approach seeks nonlinear wave solutions of the Navier-Stokes equations, by using the Self-Sustaining Process, "SSP", initiated by Waleffe ? , and continuation methods. The "SSP" employs streamwise rolls, streaks and traveling waves as a fundamental building unit. Some unstable traveling waves solutions have been identified by Faisst and Eckhardt ? and Wedin and Kerswell ? for Newtonian pipe flow.

Comparatively to the Newtonian case, very few studies have been devoted to the transition to turbulence in a pipe for non-Newtonian fluids. This is perhaps not surprising, given the inherent additional complexities involved. The existing literature reveals two interesting and yet unexplained effects: (i) delay in the transition to turbulence, more precisely in the onset of "puff" ? ? and (ii) an asymmetry of the mean axial velocity profiles ? ? ? ? in transitional regime, while in the laminar and turbulent regimes, the flow is axisymmetric. Here, "mean" refers to time-averaged. This asymmetry suggests the existence of a robust coherent structure characterized by two weakly modulated counter-rotating longitudinal vortices ? , i.e. with an azimuthal wavenumber n = 1. All non-Newtonian liquids investigated experimentally display two common rheological properties: shear-thinning (decrease of viscosity with increasing shear-rate) and viscoelasticity. The asymmetry seems to be a shear-thinning dependent. Indeed, non-Newtonian liquids with similar shear-thinning and different elastic behavior show the same degree of asymmetry ? . Recently, Roland et al. ? examined the effect of shear-thinning on the traveling waves found in Newtonian fluid. The authors focused only on the waves with an azimuthal wavenumber n = 3. They found that the critical Reynolds number of the saddle-node bifurcation where these waves appear increases when the shear-thinning come into play.

The present work focuses on the pipe flow of purely viscous shear-thinning fluids, i.e., fluids without elasticity and for which the viscosity is a nonlinear function of the second invariant of the strain rate tensor. Additional nonlinear couplings between flow variables, in addition to the quadratic nonlinear inertial terms, appear in the momentum equations. The laminar flows of such fluids are mainly characterized by a stratification of the viscosity between the wall and the pipe axis: the viscosity decreases from the axis to the wall. To our knowledge the linear stability of the laminar flow of shear-thinning fluid has not been performed before.

Here it will be shown, for a wide range of the rheological parameters, that the flow is linearly stable, and that the optimal perturbation is constituted of streamwise-independent counterrotating vortices. We will then study study, with direct numerical simulation, the nonlinear development of the optimal perturbation, i.e. the first step of the transition scenarios described above. More precisely, the objective is to examine the modification of the viscous dissipation induced by the viscosity perturbation and its consequence on the disturbance energy.

An outline of the paper is as follows. The governing equations of the problem and the Carreau law as a model for shear-thinning behavior are given in dimensionless form in section 2.

The characteristics of the base flow in terms of velocity and viscosity profiles are discussed.

The initial value problem for the perturbation field is stated. The presentation of the numerical method is made in section 3. The dynamical system obtained is first solved in the case of an infinitesimal perturbation (linear theory) in section 4. The validation of the numerical procedure and the convergence analysis for nonlinear computations are given in section 5.

The results for a finite perturbation are discussed in section 6. Finally, conclusions on the main findings of the present work are drawn in section 7.

II. GOVERNING EQUATIONS AND BASE FLOWS

A. Momentum equations -Dimensionless parameters

We consider the flow of an incompressible purely viscous shear-thinning fluid in a circular pipe of radius R. Here and in what follows, the quantities with hat (.) are dimensional. The governing equations in dimensionless form are

∇ • U = 0, (1) ∂U ∂t + (U • ∇) U = -∇P + ∇ • τ , ( 2 
)
where P is the pressure, including the gravity effect, and τ the deviatoric stress tensor. The above equations have been rendered dimensionless using Ŵ0 the maximal velocity of the laminar flow as velocity scale, the radius R of the pipe as length scale, R/ Ŵ0 as time scale and ρ Ŵ 2 0 as stress and pressure scale. The velocity vector U is written as U = U e r +V e θ +W e z , where U, V and W are the velocity components in the radial, azimuthal and axial directions respectively. For purely viscous fluid, i.e. fluids for which the viscosity depends only on the shear rate, the deviatoric shear stress tensor

τ = 1 Re µ γ with γ = ∇U + (∇U ) T , (3) 
the strain-rate tensor. The Reynolds number

Re = ρ Ŵ0 R μref , (4) 
where the reference viscosity μref is defined afterwards. We focus on fluids of shear-thinning type. Many models are proposed in the literature to describe the dependence of the viscosity on the shear rate. Probably the most popular is the power-law model. However, this model gives an infinite viscosity as the shear rate tends to zero. A more realistic model is the Carreau-Yasuda model ? for which the zero-shear rate viscosity μ0 is finite. Using μ0 as the reference viscosity, μref = μ0 , the Carreau-Yasuda model in dimensionless form reads

µ = µ ∞ + (1 -µ ∞ ) [1 + (λ γ) a ] (nc-1)/a , (5) 
where µ ∞ = μ∞ /μ 0 is the dimensionless shear viscosity at infinite shear rate, λ = λ R/ Ŵ0

is the dimensionless constant time of the fluid (its inverse is the dimensionless shear rate at which the onset of shear-thinning occurs), n c < 1 is the shear-thinning index, a is a constant which describes the transition from the zero shear viscosity region to the power law region.

This five parameters model offers the possibility to fit a wide variety of experimental data.

However, for many polymer solutions, good fit is obtained with a = 2, referred to as the Carreau model. One can note that the Newtonian fluid is recovered by setting any of the limits: 

n c = 1, λ = 0 or µ ∞ = 1. The dimensionless second invariant of the strain rate tensor γ is γ = 1 2 γij γij 1/2 . ( 6 
where

µ b = µ ∞ + (1 -µ ∞ ) 1 + λ 2 dW b dr 2 (nc-1)/2 . ( 8 
)
The above equations are supplemented by the no-slip condition at the wall. An iterative spectral method is used for solving the nonlinear Eq. (??). Since the center line velocity is the characteristic velocity, W b (0) = 1. Hence, a specific pressure gradient has to be applied 

C. Disturbance equations

The base flow is initially subjected to a disturbance (u, p): U = U b + u and P = P b + p.

The equations governing the time-evolution of the disturbance are obtained by subtracting the base equations from (??), (??):

∇ • u = 0, (9) ∂u ∂t = -(U b .∇) u -(u.∇) U b -(u.∇) u -∇p + ∇. [τ (U b + u) -τ (U b )] , (10) 
with the no-slip boundary conditions on the pipe wall. In equation (??), the components of the deviatotic stress tensor of the disturbed flow are: 

τ ij (U b + u) = 1 Re µ (U b + u) γij (U b + u) (11) 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 r W b (1) (4) (a) 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 r W b (1) (2) (3) (b)
n c = 0.7; (2) n c = 0.5; (3) n c = 0.3. (b) n c = 0.5 and different values of the dimensionless constant time λ: (1) λ = 1; (2) λ = 4; (3) λ = 30.
As the fluid is supposed purely viscous, it was therefore assumed that the viscosity instantaneously adjusts the shear rate of the perturbed flow U b + u. Physically, this assumes that the characteristic time of the reorganization of the internal structure is much smaller than the characteristic time of the perturbation. 

0 0.2 0.4 0.6 0.8 1 -12 -10 -8 -6 -4 -2 0 r (1/µ b )(dµ b /d γ) (1) (2) (3) (a) 0 0.2 0.4 0.6 0.8 1 -8 -6 -4 -2 0 r (1/µ b )(dµ b /d γ) (3) (2) (1) (b)

III. NUMERICAL METHODS

The pseudo-spectral Petrov-Galerkin method of Meseguer and Trefethen ? ? is used to integrate the governing equations. Fourier expansions are used in the azimuthal and axial directions, and Chebyshev-based functions are used in the radial direction. The expansion of the velocity, which is truncated at order L in z, order N in θ and order M in r, is written as :

u s (r, θ, t) = k=1,2 L l=-L N n=-N M m=0 a (k) mnl Φ (k) mnl . ( 12 
)
The trial bases

Φ (k)
mnl are of the form :

Φ (k) mnl = exp (i q z + inθ) v (k) mnl (r), (13) 
where q = 2πl/Q is the axial wave number based on the pipe length Q, n the azimuthal wavenumber and v mnl depend on time and satisfy the property a mnl = a * m-n-l , since u s is real. The star denotes the complex conjugate. By construction, the trial bases are divergence free, satisfy the no-slip condition at the wall and the regularity condition at the axis. Equation (??) combined with (??) is substituted into Eq.(??) and a projection over solenoïdal test fields ψ (k) mnl , given in Appendix ?? which include the weight 1/ √ 1 -r 2 and satisfying the boundary and the regularity conditions, is performed. The pressure term -∇p cancels in the projection. The nonlinear inertial and viscous terms are calculated using a pseudo-spectral method. To avoid aliasing error, i.e., the production of small scales, the 3/2 padding rule for de-aliasing ? is employed. Setting a the column vector containing the elements a

(k)
mnl , the dynamical system resulting from the projection procedure can be written as :

A ȧ = Ba + b (14)
where b, the column vector containing the nonlinear terms b

(k)
mnl , and the matrices A and B are defined such as :

[A ȧ] (k) mnl = ∂ t u s , ψ (k) mnl (15) [Ba] (k) mnl = -(U b • ∇)u s + (u s • ∇)U b , ψ (k) mnl (16) b (k) mnl = -(u s • ∇)u s , ψ (k) mnl + ∇ • τ (U b + u s ) -τ (U b ), ψ (k) mnl (17)
The scalar product ., . is defined by the integration over the fluid domain of the functions product:

Φ, ψ = 2π/q 0 2π 0 1 0 Φ • ψ r dr dθ dz, (18) 
where Φ belongs to the physical or trial space and ψ is a solenoidal vector belonging to the test space. The time discretization uses a fourth-order semi-implicit Adams-Bashforth scheme. The nonlinear terms (??) are calculated explicitly, while the linear terms (??) are integrated implicitly. Since the nonlinear viscous terms are integrated explicitly, the maximum allowable time step ∆t which ensures the numerical stability decreases when the number of azimuthal and radial modes increases.

IV. CASE OF INFINITESIMAL THREE-DIMENSIONAL PERTURBATION: LINEAR STABILITY ANALYSIS

When the disturbance is infinitesimal, the nonlinear advective terms are neglected and the quantity τ

(U b + u) -τ (U b ) is linearized around the base flow (U b , P b ), τ ′ = τ (U b + u) -τ (U b ) = µ(U b ) γ (u) + µ ′ γ (U b ) . ( 19 
)
Using Taylor expansion at first order, the viscosity perturbation µ ′ is given by

µ ′ = ∂µ ∂ γij b γij (u) . ( 20 
) Since U b = W b (r)e z , one has τ ′ ij = µ(U b ) γij (u) if ij = rz, zr, (21) 
τ ′ ij = µ t (U b ) γij (u) if ij = rz, zr, (22) 
where the 'tangent viscosity'

µ t (U b ) = µ(U b ) + ∂µ ∂ γrz (U b ) γrz (U b ). ( 23 
)
Indeed, for one-dimensional shear flow, with velocity W b (r) in the z-direction, the tangent viscosity is defined as µ t = ∂τ rz /∂ γrz . For shear-thinning fluids µ t < µ. One can note that the fluctuation stress stress tensor τ ′ is anisotropic, due to viscosity perturbation. The initial value problem that results can be written

A ȧ = La, (24) 
with

[A ȧ] (k) mnl = ∂ t u s , ψ (k) mnl (25) 
[La]

(k) mnl = -(U b • ∇)u s + (u s • ∇)U b , ψ (k) mnl + ∇ • τ ′ , ψ (k) mnl (26) 
A. Modal approach: Long-time behavior

When the long time behavior is sought, the disturbance is assumed to behave exponentially as exp(σ t). The initial value problem (??)-(??) is transformed into a generalized eigenvalue problem, with σ as eigenvalue :

σAa = La. (27) 
The numerical results show that for the range of rheological parameters considered here, 0 < λ < 30 and 0.3 < n c < 1, the real part of σ remains negative for all the eigenmodes. It is therefore conjectured that the pipe flow of shear-thinning fluid (0, 0, W b (r)) is linearly stable.

The asymptotic behavior of the least stable mode was determined for two different kinds of perturbations n = 1, q = 0 and n = 1, q = 1. The same scaling as for Newtonian fluid is found when the Reynolds number is defined with the wall shear-viscosity µ w = µ b (r = 1) :

Re w = Re/µ w . (28) 
Hence, for the streamwise mode n = 1, q = 0, the least stable mode eigenvalue σ behaves as

Re -1 w and for n = 1, q = 1, the real part of the eigenvalues of the wall mode and the center mode behave as Re -1/3 w and Re -1/2 w .

In the following, the results will be presented in terms of Re w . It is worthy to note that the experimentalists ? ? ? use µ w in the Reynolds number definition. From practical point of view, the tangential wall shear-stress τ rz is determined from the measurement of the pressure gradient. The wall viscosity is then calculated from τ rz and the rheological law.

B. Non-modal approach: Transient growth

As the linear operator L = A -1 L is non-normal, i.e. the eigenmodes are not orthogonal under the energy norm, transient growth of the kinetic energy of the perturbation is expected, before an exponential decay. To characterize the transient growth, we define the gain G of the kinetic energy at given time t and non-zero initial condition, u(t = 0), as:

G(t, q, n, u(t = 0)) = E (t, u) E (t = 0, u) , (29) 
where E (t, u) is the instantaneous disturbance kinetic energy density, for a given mode, defined by

E (t, u) = q 4 π 2 2π q 0 2 π 0 1 0 u.u r drdθdz. ( 30 
)
The maximum amplification of the kinetic energy over all non zero initial conditions and over all times is

G max (q, n) = sup t>0 G(t, q, n) with G(t, q, n) = sup u(t=0) =0 G(t, q, n, u(t = 0)). ( 31 
)
The optimal amplification over all the azimuthal and axial wavenumbers is defined by

G opt = sup q,n G max (q, n) (32) 
The procedure to compute the optimal initial condition is outlined in ? . For all the range of the rheological and dynamical parameters considered here, it is found that the optimal transient growth is reached for a streamwise homogeneous perturbation (q = 0), with an azimuthal wavenumber n = 1 as in the case of a Newtonian fluid. Nonetheless, from a very low axial wavenumber, the maximum amplification of the kinetic energy of the perturbation Pipe flow of shear-thinning fluids is reached for higher azimuthal modes as it is indicated by 

A. Validation

At the beginning, Zikanov's result ? corresponding to the energy amplification of twodimensional perturbation, in the case of a Newtonian fluid, is reproduced in order to validate the computational code. The initial perturbation is in the form of a pair of streamwise rolls with azimuthal wave number n = 1. The normalized energy of an arbitrary perturbation u is defined by

ǫ (u) = E (t, u) E (U b ) , (33) 
where E (U b ) = 1/6 in the case of a Newtonian fluid. by Zikanov ? and Meseguer ? . It is interesting to note that the numerical computations started with the simplified expressions of the coefficients a (k) mn proposed by Zikanov ? and used by Meseguer ? are not distinguishable from those obtained with the optimal perturbation, within plotting accuracy.

B. Convergence

-Spatial convergence: In order to test the spatial convergence of the solution, computations are performed for different truncation levels (M i , N i ). The relative variation of G with respect to the highest level of truncation (M h , N h ) is defined by

∆G(t) M i ,N i = |G M i ,N i -G M h ,N h | G M h ,N h . ( 34 
)
The truncation error is estimated by the maximum of ∆G(t) over all the time interval considered, typically 0 ≤ t ≤ 1000. For instance, for an initial disturbance consisting of one pair of longitudinal rolls, at n c = 0.5, λ = 30 and Re w = 4000, computations were done for (M, N ) = (6, 9), (12, 12) and (12, 16). Figure ??(a) displays ∆ G vs time. For truncation levels (M, N ) = (6, 9) the error truncation is of 18% obtained at t = 54 while it is of 0.07% obtained at t = 87 for (M, N ) = (12, 12). There is no significant gain in accuracy 

G n = 1 E (t = 0, u) k=1,2 M i=0 M j=0 a (k) * in0 a (k) jn0 1 0 v (k) * in0 (r).v (k) jn0 (r)rdr . ( 35 
)
The figure ??(b) shows that the spectral convergence is ensured when M ≥ 12 and N ≥ 12, with G n ∝ exp(-n). The test of spatial convergence described above is done for all the set of rheological and dynamical parameters studied.

-Temporal convergence: The sensitivity of the computational results to the magnitude of the time step is examined by comparing the solutions G(t) obtained with two time steps ∆t and ∆t/2. The convergence criterion is based on the maximum of the relative variation |G(t) ∆t -G(t) ∆t/2 |/G(t) ∆t/2 which has to be less than 0.5%. Hence, for one pair of longitudinal rolls, at n c = 0.5, λ = 30, Re w = 4000, with (M = 12, N = 12), the criterion of temporal convergence is ensured with ∆t = 10 -2 .

VI. NONLINEAR TWO-DIMENSIONAL COMPUTATIONS: RESULTS

AND DISCUSSION

The (3) n c = 0.5 and (4) n c = 0.4. 10 -5 , the contribution of the nonlinear terms can be neglected and we recover the transient growth due to the non-normality of the linear operator. For ǫ 0 > 2.5 × 10 -3 , two stages can be distinguished in the evolution of finite amplitude perturbation. In the first stage, at small t, the nonlinear curve follows the linear curve. The growth of the energy is mainly due to a 'pseudolinear' growth ? . It is found that the maximum growth time is of order ǫ -1/2 0 . The second stage is the nonlinear development of the perturbation. Because of the z-independence of the perturbation, the rolls do not have an energy source and the flow undergoes, for t → +∞, a viscous decay back to the laminar regime. Qualitatively, the evolution G(t) is similar to that of Newtonian fluid. However, it is worthy to note that for a given Re w the amplification factor decreases with increasing the shear-thinning effects as it is illustrated in Fig. ??(b). This reduction of G is more significant when the viscosity perturbation, µ ′ , is not taken into account as it is illustrated Fig. ??(a), where the amplification factor is reported as a function of time and compared with the situation where µ ′ is artificially forced to zero. The relative variation of G(t) between the two situations, where the viscosity perturbation is taken and not taken into account increases with increasing the shear thinning effects as it is shown in Fig. ??(b). These different results can be discussed in terms of the balance equation for the averaged disturbance kinetic energy equation. This analysis is deferred to a later section, after having described the time evolution of the flow structure and the modification of the viscosity profiles.

B. Flow structure and viscosity profiles

In order to emphasize the nonlinear effects, the amplitude of the initial disturbance has to be sufficiently important. The results given in this section are obtained for ǫ 0 = 10 -2 . In 

C. Energy equation

It is useful to consider the Reynolds-Orr equation, to describe the time evolution of the kinetic energy of the disturbance. For this, we take the dot product of Eq. (??) with u and integrate over a cross-section. This yields Time evolution of J t /E 0 : (dotted line) purely stratified case, (continuous line) the viscosity perturbation is taken into account. (ii) As time increases, D 2 becomes negative and tends to zero.

dE dt = - 1 0 2π 0 uw dW b dr rdrdθ - 1 0 2π 0 1 2 [τ ij (U b + u) -τ ij (U b )] γij (u) rdrdθ. ( 36 

Viscous dissipation terms

(iii) D 3 is always positive. This term is the integral of the product of the "non-Newtonian Reynolds stress", µ ′ γrz (u) with the mean velocity gradient. Actually, this product denoted d 3 is almost always positive. Using first order Taylor approximation for µ ′ it can be shown straightforwardly that

d 3 = -µ ′ γrz (u) dW b /dr ≈ -γ2 rz (u) ∂µ ∂ γrz b dW b dr (40) 
is positive for shear-thinning fluids. This is confirmed by the numerical computations. In quantity Rd st as:

Rd st = t 0 [D 1 (t ′ ) + D 2 (t ′ ) + D 3 (t ′ ) -D 1st (t ′ )] dt ′ - t 0 D 1st (t ′ )dt ′ (41)
which represents the reduction of the viscous dissipation with respect to the purely stratified case, where µ ′ is artificially canceled). for shear-thinning fluid, is primarily due to reduced energy intake from the mean flow to the perturbation. Besides this, the total viscous dissipation given by t 0 (D 1 + D 2 + D 3 )dt ′ decreases as n c decreases.

VII. CONCLUSION

A pseudo-spectral Petrov-Galerkin computational code has been used to investigate the influence of the nonlinear dependence of the viscosity on the shear-rate, on the receptivity of pipe flow of shear-thinning fluid with respect to finite two dimensional disturbances.

The code has been validated for Newtonian fluid by comparison with Zikanov's ? and Meseguer's ? results. The linear stability analysis performed for a wide range of rheological parameters shows that the pipe flow of shear-thinning fluids is linearly stable. The optimal perturbation is achieved for a two-dimensional perturbation with an azimuthal wavenumber n = 1 similarly to the Newtonian case. It is then used as an initial condition for the nonlinear problem. For a sufficient initial energy ǫ 0 , the longitudinal rolls give rise to streaks and inflection points. The viscosity profile is strongly modified by the perturbation. The consequence of this modification is analyzed through the Reynolds-Orr equation. Two additional terms arising from the viscosity perturbation appear which reduce significantly the viscous dissipation, with respect to the purely stratified case (case where µ ′ = 0). Globally, the viscous dissipation decreases with increasing shear-thinning effects. The decrease of the amplification factor with increasing the shear-thinning effects is ascribed to the reduced en-

  ) B. Base flows A one dimensional shear flow, U = U b = W b (r)e z is driven by a constant pressure gradient, i.e. the pressure P b = P 0 b -G p z, with P 0 b and G p some constants. The subscript b means base flow. Then, the axial momentum equation reads 0

  to produce W b (0) = 1. Examples of the axial velocity profiles obtained at fixed λ and varying n c , or fixed n c and varying λ are given in Fig. ??. Hereafter, the infinite shear-rate viscosity is non-zero and is fixed, µ ∞ = 2 × 10 -3 . This value is based on the rheological data given by Escudier et al ? . As expected, with increasing shear-thinning effects, the wall shear rate increases, and the velocity profile flattens in the central region. Figure ?? shows the influence of the shear-thinning effects with increasing λ or decreasing n c on the viscosity profile. In order to highlight the viscosity sensitivity with respect to changes in the shear rate we define the quantity vs = (1/µ b )(dµ b /d γ). As displayed in Fig. ??, vs increases with increasing shear-thinning effects. Furthermore, the curves of Fig. ?? highlight a strong sensitivity of the viscosity to change in γ near the axis, particularly for large values of λ (Fig. ??(b)).

FIG. 1 .

 1 FIG. 1. Base velocity profiles. (a) λ = 30 and different values of the shear-thinning index (1) n c = 1 Newtonian fluid; (2) n c = 0.7; (3) n c = 0.5; (4) n c = 0.3. (b) n c = 0.5 and different values of the dimensionless constant time λ: (1) λ = 0 Newtonian fluid; (2) λ = 1; (3) λ = 30.

FIG. 3 .

 3 FIG. 3. Viscosity sensitivity. (a) λ = 30 and different values of the shear-thinning index: (1) n c = 0.7; (2) n c = 0.5; (3) n c = 0.3. (b) n c = 0.5 and different values of the dimensionless constant time λ: (1) λ = 1; (2) λ = 4 and (3) λ = 30.

  a function based on the first kind Chebyshev polynomial T 2m (r) ? . The trial bases v (k) mnl (r) are given in Appendix ??. The coefficients a (k)

  Fig. ??(a) at n c = 0.5, λ = 30 and Re w = 4000. The amplification of the kinetic energy at Re w = 4000, n = 1, l = 0, λ = 30 and different values of the shear-thinning index is displayed in Fig. ??(b). As it can be observed the shear-thinning reduces significantly the amplification of the kinetic energy as well as the corresponding time where the maximum of the amplification is reached. These results may be anticipated on the basis of those obtained in ? . Numerical results show for instance at λ = 30 that G opt nc =1 ∝ n 1.66 c × G opt nc=1 and t opt nc =1 ∝ n 0.67 c × t opt nc=1 . For given n c and λ, the dependence of G opt and t opt on Re w has been studied. It is found that G opt increases with Re w . The scaling with Re 2 w is recovered. Similarly the scaling of t opt with Re w is satisfied. The structure of the initial perturbation which ensures the optimal amplification of the kinetic energy is represented in Fig. ??. It consists of two counter-rotating streamwise vortices along the wall-normal direction. At t = 0, almost all the energy is in the azimuthal and radial components and negligible part in the streamwise component. For instance for n c = 0.5 and λ = 30, 67.87% of the energy is in the azimuthal component and 32.06% in the radial component of the velocity. These vortices allow the transfer of energy to the streamwise velocity components by the lift-up mechanism creating low and high speed streaks, displayed in Fig. ??(b). The location of the maximum of the streamwise velocity approaches the wall with increasing shear-thinning effects. V. NONLINEAR TWO-DIMENSIONAL COMPUTATIONS: VALIDATION AND CONVERGENCE.

  FIG. 4. (a) Maximum amplification of the disturbance kinetic energy as function of the axial wavenumber q for different azimuthal wavenumbers n at Re w = 4000, λ = 30 and n c = 0.5. (b) Gain of kinetic energy for the optimal perturbation at Re w = 4000, λ = 30 and different values of the shear-thinning index, n c .

FIG. 5 .

 5 FIG. 5. (a) Optimal pattern of perturbation at t = 0 in the (r, θ) section, for n c = 0.5, λ = 30 and Re w = 4000. The arrows represent the vectors ue r + ve θ . (b) Optimal streaks at t = t opt = 150 time units: Iso-values of the axial velocity component w. Continuous lines for positives values of w: 0.1 near the wall with a step of 0.2 until 0.9. Dashed lines for negative values of w: -0.1 near the wall then with a step of -0.2 until -0.9.

  FIG. 8. (a) Energy amplification factor G(t) of a two-dimensional streamwise perturbation for a Carreau fluid with n c = 0.5 at Re w = 4000 and different values of the initial energy ǫ 0 . The curve obtained from linear transient growth is not distinguishable from that corresponding to ǫ 0 = 10 -5 . (b) Shear-thinning effects on the amplification factor G: (1) n c = 1 Newtonian case; (2) n c = 0.7;

  FIG. 9. (a) Energy amplification factor G(t) of a two-dimensional streamwise perturbation for a Carreau fluid with n c = 0.5 at Re w = 4000: (1) the viscosity perturbation is taken into account, (2) the viscosity perturbation is not taken into account. (b) Relative variation between G(t) calculated when the viscosity perturbation is taken into account and that calculated without taking into account the viscosity perturbation. This later case is called 'purely stratified case' and is indicated by the subscript st.

  FIG. 12. Axial velocity profiles W b (r) + w(r, θ, t) of the perturbed flow at two azimuthal positions (horizontal θ = 0 and vertical θ = π/2). Case of Carreau fluid with n c = 0.5 at Re w = 4000. The results are generated using M = 12 radial modes, N = 12 azimuthal modes and ∆t = 0.01. (a) t = 5, (b) t = 15 and (c) t = 150.

  FIG. 14. Shear thinning effects on the production of the disturbance energy by the interaction of the Reynolds stress with the base flow. (a) Time evolution of the production rate J/E 0 . (b)

Figure ? ?

 ? Figure ?? shows the time evolution of the additional terms D 2 and D 3 . The following observations can be made: (i) At short time, D 2 is large and positive because of the strong decrease of the viscosity as explained previously.

Fig

  Fig. ??, the distribution of d 3 is displayed in a (r, θ) section at different times. It is not surprising that, the maximal values of i 4 are attained mainly near the wall where the axial velocity gradient dW b /dr is larger.(iv) The sum of these two additional terms is positive. It increases with increasing shearthinning effects. This can be related to the increase of the viscosity sensitivity to changes

  FIG. 16. Distribution in section r, θ of the non-Newtonian Reynolds stress at three different times (a) t = 5; (b) t = 15 and (c) t = 150. The computation is done with Re w = 4000 and n c = 0.5.

  Figure ?? displays Rd st as function of time for three different values of the shear-thinning index. It is observed that Rd st increases sharply, Pipe flow of shear-thinning fluidsreaches a maximum within a short time then decreases asymptotically towards a constant value nearing zero. We note also that Rd st increases with increasing shear-thinning effects, i.e., with increasing the viscosity sensitivity. This reduction of the viscous dissipation with respect to the purely stratified case can be viewed as an energy source term for the perturbation that explains the difference between curves (1) and (2) in Fig. ??(a). The contribution of the inertial term G J is very close to that obtained for a purely stratified case, as it is shown in Fig. ??(b).

  FIG. 17. Reduction of the viscous dissipation with respect to the purely stratified case: (1) n c = 0.4;(2) n c = 0.5 and (3) n c = 0.7.

Finally

  Figure ??(b) shows that the production of disturbance kinetic energy by the interaction of the Reynolds stress with the mean field, decreases with increasing the shear thinning effects. This mechanism is at the origin of the reduction of the amplification factor G indicated in the paragraph ??(A). This result can be considered as an extension to that obtained by Govindarajan et al. ? and Nouar et al. ? when they studied the linear stability of the plane channel flow of Carreau fluid. The authors ? ? have shown that the stabilizing effect observed

ergy intake from the mean flow. A natural perspective to the present study is to analyze the influence of the shear-thinning effects on the stability of the 2D solutions obtained with respect to three-dimensional perturbations.

Equation (??) can be written as

The first term J on the right-hand side of Eq. (??) is the rate of production of disturbance energy by the interaction of the Reynolds-stress uw and the mean velocity gradient dW b /dr.

The second term D is the rate of viscous dissipation. By introducing the viscosity pertur-

), the dissipation term can be written as the sum of three terms

with

D 1 is the expression of the rate of viscous dissipation in the purely stratified case (µ ′ is artificially forced to zero). D 2 and D 3 are the modifications of the rate of viscous dissipation due to the viscosity perturbation. These two former terms vanish in the Newtonian case.

D. Analysis

Energy-exchange between the base flow and the disturbance

The production of disturbance kinetic energy by the interaction of the Reynolds stress with the base flow is examined by Fig. (??) for different values of the shear-thinning index.

We have represented J/E 0 and G J = J t /E 0 , where (.) t = t 0 (.)dt. The energy exchange between the base-flow and the disturbance holds mainly in the "pseudo-linear" growth step.

It decreases with increasing the shear-thinning effects. One has to note that G J evaluated in the purely stratified case (µ ′ forced to zero) is very close to that evaluated when the viscosity perturbation is taken into account (Fig. ??b).

Appendix A: Trial and test fields

The choice of the trial and test fields has been discussed in the papers ? ? ? . For the purpose of completeness, we list these functions here. They are defined in terms of the functions :

with T m the Chebyshev polynomial of degree m, and of the operators :

Trial fields

In the case n = 0, v

In the case n = 0, v

Test fields

The test fields are of the form

Introduction the Chebyshev weight function

The functions ṽ(k) mnl (r) are: In the case n = 0, ṽ

In the case n = 0, ṽ(1) mnl = W -inr β g m e r + D(r β+1 g m ) + r β+2 h m e θ , ṽ(2) mnl = W -ilr β+2 h m e θ + inr β+1 h m e z , (A10) except that, if l = 0, ṽ(2)

with, β = β(n) = 1 if n is odd, 0 if n is even.