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Joint Demosaicing and Fusion of Multiresolution
Compressed Acquisitions: Image Formation and

Reconstruction Methods
Daniele Picone , Member, IEEE, Mauro Dalla Mura , Senior Member, IEEE, and Laurent Condat , Senior

Member, IEEE

Abstract—Novel optical imaging devices allow for hybrid
acquisition modalities such as compressed acquisitions with
locally different spatial and spectral resolutions captured by
the same focal plane array. In this work, we propose to
model a multiresolution compressed acquisition (MRCA) in
a generic framework, which natively includes acquisitions by
conventional systems such as those based on spectral/color
filter arrays, compressed coded apertures, and multiresolution
sensing. We propose a model-based image reconstruction al-
gorithm performing a joint demosaicing and fusion (JoDeFu)
of any acquisition modeled in the MRCA framework. The
JoDeFu reconstruction algorithm solves an inverse problem with
a proximal splitting technique and is able to reconstruct an
uncompressed image datacube at the highest available spatial and
spectral resolution. An implementation of the code is available
at https://github.com/danaroth83/jodefu.

Index Terms—Color filter array, compressed acquisitions, pan-
sharpening, data fusion, demosaicing, multiresolution sensors,
nonconventional optical devices.

I. INTRODUCTION

CONVENTIONAL cameras acquire images that are im-
mediately exploitable by the end user with little or no

processing of the raw acquisition. When the acquisition relies
on a spectral or spatial scanning of the scene, these cameras
provide an image as a datacube with spatial and spectral
dimensions [1], [2]. For example, his is the case of red-
green-blue (RGB), multispectral (MS) and hyperspectral (HS)
imaging systems, where the datacube has either three, up to a
few tens, or more channels, respectively.

A different acquisition approach, following the computa-
tional imaging paradigm [3]–[6], is based on compressed
acquisitions. In some cases, this allows to perform acquisi-
tions that are instantaneous (i.e., snapshot) or with a lower
number of acquired samples with respect to a conventional
full scanning of the datacube. Compressed acquisitions [7], [8]
are not necessarily captured in the end user desired domain
and need a computational phase to retrieve a datacube that is

D. Picone and M. Dalla Mura are with Univ. Grenoble Alpes,
CNRS, Inria, Grenoble INP, GIPSA-lab, 38000 Grenoble, France (e-mail:
daniele.picone@grenoble-inp.fr, mauro.dalla-mura@grenoble-inp.fr).

D. Picone is also with Univ. Grenoble Alpes, CNRS, Grenoble INP, IPAG,
38000 Grenoble, France.

M. Dalla Mura is also with Institut Universitaire de France (IUF).
L. Condat is with King Abdullah University of Science and Technology

(KAUST), Saudi Arabia (e-mail: laurent.condat@kaust.edu.sa).
This work is partly supported by grant ANR FuMultiSPOC (ANR-20-

ASTR-0006).
Corresponding author: Daniele Picone.

intelligible to the final user. In this work, we refer to such
acquisition techniques as image formation methods, and to
the required processing algorithms that recover the desired
datacube as image reconstruction methods.

Multiple examples of image formation methods are avail-
able in the literature, but the interest of this work is mostly
focused to two classic acquisition scenarios, the multiresolu-
tion sensing and the mosaicing, which are described below:

• The multiresolution sensing, shown in Fig.1a, is an
acquisition setup which addresses the technical constraint
of single sensors which are not capable of simultaneously
achieving the desired spatial and spatial resolution. In
this scenario, different technologies for the sensors are
employed to provide complementary information of the
same scene to be fused in the processing stage. Most
commonly, the product is available as a bundle of two im-
ages: the high resolution image (HRI), with high spatial
and low spectral resolution, and the low resolution image
(LRI), with low spatial and high spectral resolution. In
the data fusion phase, known as sharpening, the target
is to produce a synthetic image with the highest available
resolutions both in the spectral and spatial domain. This
is a more generic formulation of the pansharpening prob-
lem [9], [10], where the target is to fuse a monochromatic
acquisition, known as panchromatic (PAN), and an MS.

• The mosaicing, shown in Fig. 1b, is an acquisition
technique where the captured samples are the output of
a set of image sensors distributed over a focal plane
array (FPA) and overlaid with an array of filters, known
as color filter array (CFA) or multispectral filter array
(MSFA) [11]. As an effect of filtering, each captured
image pixel is associated to a given color/channel com-
ponent and the full raw acquisition is composed by a
mosaic of such components. For example, the reader
may be familiar with CFA designs such as the Bayer
pattern [12], where the filters are arranged in periodic
2×2 RGB squares with 2 repeated green filters placed on
the opposite vertices. The associated image reconstruction
method, known as demosaicing, consists in recovering the
full spectral component of the image at each available
position in the FPA.

In some more sophisticated mosaicing-based compressed
acquisition systems, a given pixel can also capture a generic
linear combination of samples associated to different channels.
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Fig. 1: Classic formulation of the sharpening and demosaicing
problem. The red, green, blue, and yellow slices represent each
of the available channels of the image to reconstruct.

For example, this is the case of the compressive coded aper-
ture spectral imaging (CASSI) [13], for which each available
channel is firstly masked with a digital micromirror device and
shifted horizontally over the focal plane before recombination.

More recently, both the scientific community and device
manufacturers are showing interest for the design of hybrid
systems, where compressed acquisitions might have different
spatial/spectral resolutions. Specifically, for image formation
methods, a series of RGBW patterns were proposed where a
set of wideband pixels are interleaved to a more classic RGB
pattern. This is the case, i.e., of the Onyx device by Teledyne
e2v [14] and some patents deposed by Kodak [15]. A similar
effect could be obtained with the COLOR SHADES [16], a
technology which allows for a fully customizable spectral
response for each filter on the FPA. We can interpret these
acquisition as hybrid, since the wideband pixels can be seen
as a binning in the spectral domain, and consequently have a
different spectral resolution with respect to the color ones.

Modern commercial CFA patterns, such as the Quad Bayer,
are also starting to implement mechanism of spatial binning
across adjacent pixels, in order to improve the SNR of the
detected photons in conditions of low illumination [17]. More
recently, a novel technology was proposed to focus the incident
light rays over photodiodes through customly manufactured
microlenses [18]. Consequently, the resulting samples are
effectively at a lower spatial resolution with respect to non-
binned or less focused alternatives.

Espitia et al. [19] suggested to capture both the LRI and
the HRI as separate CASSI acquisitions, introducing a joint
Bayesian framework for the reconstruction of the full resolu-

tion image. Fu et al. [20] proposed instead a reconstruction
algorithm where a HS image is fused with a MS mosaiced
image obtained with a CFA acquisition system. Takeyama
and Ono [21] address the compressed pansharpening, where
the quality of a noisy HRI is restored with the help of an
associated compressed acquisition of a LRI.

Armed with this knowledge, the main aim of this work is
to develop an unified framework for both image formation
and reconstruction which includes all the previously cited
examples. For this reason, in the context of image formation
methods, we propose the multiresolution compressed acqui-
sition (MRCA) framework, a formalization of the multireso-
lution acquisition model with compressed acquisitions, which
includes the previously described devices.

Additionally, such hybrid devices are a reasonable proof
that, in the near future, multiresolution sensors could po-
tentially be accommodated over the same focal plane. This
is a trend that we aim to intercept with this work, as this
model can formalize the design of an optical device based
on the assumption that sensors with different characteristics
can be accommodated on the same FPA and that the resulting
compressed acquisition contains partial information both from
the LRI and the HRI, whose physical implementation was pre-
sented in our previous work [22]. An example the acquisitions
of such device is shown in Fig. 2, where it is shown how the
MRCA models the acquisition of a monochromatic raw image
which includes samples from both a PAN and a MS, according
to arrangement shown in Fig. 3b.

Since we have a unified acquisition model, we also propose
the joint demosaicing and fusion (JoDeFu), a generic image
reconstruction algorithm that address both the demosaicing
and multiresolution fusion, in an extended definition from our
previous work [23]. The proposed algorithm both recovers
the missing information of the compressed acquisition and
fuses the multiresolution samples to reach the maximum
available spatial and spectral resolution. The algorithm, which
makes use of a Bayesian framework, is not exclusively a
demosaicing-style image reconstruction, as we aim to re-
construct a fused product, nor it is a simple fusion, as the
acquisition is not given by well-distinguished multimodal
sources, but rather by a lossy compressed combination of the
two.

The novel contributions of this work include:
• the definition of the MRCA, a flexible model for multires-

olution sensors sharing a common focal plane, which in-
cludes a series of well-known image formation methods,
such as the CFA [24] acquisitions and the multiresolution
sensing;

• the derivation of some properties of the direct model
operator associated to the MRCA, which enable its use
within proximal algorithms;

• the definition of the JoDeFu, an image reconstruction
framework capable of simultaneously addressing the
problem of demosaicing and the fusion of partial mul-
tiresolution acquisition;

• a comparison of the performances of the JoDeFu with
respect to classic image reconstruction methods for com-
pressed acquisitions; we also analyze the reconstructed
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TABLE I: Notation for the multidimensional arrays defined in this paper. Each variable can be expressed either in their classical
order or by its lexicographic order, by reshaping the spatial dimensions of the former into a single dimension.

Classic representation Lexicographic order representation

Variable Symbol Dimensions k-th (i, j)-th (i, j, k)-th Symbol Dimensions k-th i-th (i, k)-th
(Row × col. × band) band pixel element (Pixel × band) band pixel element

Reference U [x] Ni ×Nj ×Nk U
[x]
::k u

[x]
ij: u

[x]
ijk X NiNj ×Nk x:k xi: xik

HRI U [p] Ni ×Nj ×Np U
[p]
::k u

[p]
ij: u

[p]
ijk P NiNj ×Nk p:k pi: pik

LRI U [m] Ni
ρ

× Nj

ρ
×Nk U

[m]
::k u

[m]
ijk u

[m]
ijk M

NiNj

ρ2
×Nk m:k mi: mik

Upscaled LRI U [m̃] Ni ×Nj ×Nk U
[m̃]
::k u

[m̃]
ij: u

[m̃]
ijk M̃ NiNj ×Nk m̃:k m̃i: m̃ik

Acquisition Y Ni ×Nj × 1 - yij yij y NiNj × 1 - yi yi

Estimated product U [x̂] Ni ×Nj ×Nk U
[x̂]
::k u

[x̂]
ij: u

[x̂]
ijk X̂ NiNj ×Nk x̂:k x̂i: x̂ik

Blurring kernels U [b] Nb ×Nb ×Nk U
[b]
::k u

[b]
ij: u

[b]
ijk B N2

b ×Nk b:k bi: bik

HRI mask - - - - - H[p] NiNj ×Np h
[p]
:k h

[p]
i: h

[p]
ik

LRI mask - - - - - H[m] NiNj ×Nk h
[m]
:k h

[m]
i: h

[m]
ik

products taken with the proposed MRCA, when they
embed a different amount of MS bands, and compare
the JoDeFu with alternative reconstruction approaches
obtained by cascading a set of classical algorithms.

The paper is organized as follows: Section II introduces the
notation, Section III describes the MRCA, highlighting how
it expands on classic image formation methods; Section IV
presents the JoDeFu algorithm, and Section V provides the
related experiments.

II. NOTATION

In this paper, we denote:
• scalars with lowercase non-bold letters (e.g. u);
• vectors with lowercase bold letters (e.g. u);
• matrices with uppercase bold letters (e.g. U);
• tensors (that is, arrays with more than two dimensions)

with bold italic fonts (e.g. U ).
A detailed description of the variables used in this paper is
given in TABLE I. In this work, the images are represented
both in its classic form, as a 3-way tensor whose dimensions
are its rows, columns and channels (e.g., U [x] ∈ RNi×Nj×Nk )
or in lexicographic order, by column concatenation of the
first two dimensions into one. As both representations con-
tain the same samples, we can switch from the first to the
second form without any loss of information, and we denote
this operation with matr(·) (e.g., X = matr

(
U [x]

)
, where

X ∈ RNiNj×Nk ).
When we select a generic k-th slice of the image, this

is denoted with a subscribed index k, while the non-sliced
dimensions are denoted with a colon (e.g., U[x]

::k denotes the
k-th band of U [x]). When confusion may arise, the subscribed
indices are separated by a comma (e.g., U[x]

:,:,k is equivalent
to U

[x]
::k). Once again, a more detailed description of such

operations is shown in TABLE I.
Finally, ∥ · ∥2 and ∥ · ∥F denote the ℓ2 and Frobenius norm,

respectively.

III. PROPOSED IMAGE FORMATION MODEL

In this section, we introduce the mathematical model of
the MRCA (Section III-C) and its properties (Section III-D)
after defining the image formation models of its two main
components: the multiresolution sensing (Section III-A) and
the mosaicing (Section III-B).

A. Multiresolution sensing

When multiresolution acquisitions are involved, each of the
sensors is characterized by a limited spatial and spectral res-
olution. In its most general sense, the multiresolution sensing
setup is expressed as a whole set of multiple acquisitions,
which present a certain spatial and/or spectral degradation with
respect to the ideal datacube to reconstruct X. For the sake
of exposition but without loss of generalization, we limit our
analysis to the most common scenario in the literature [9],
[10], [25], in which the acquisition is composed by an HRI and
an LRI. The HRI P and the LRI M̃ are respectively obtained
as a degradation in the spectral and spatial domain, so that:

{
P = A[p]

d (X) ,

M̃ = A[m]
d (X) ,

(1)

Specifically:

• the spectral degradation operation P = A[p]
d (X) is

described by a linear combination in the form:

p:j =

Nk∑

k=1

wjkx:k , ∀j ∈ [1, ... , Np] (2)

where {wjk}j∈[1,... ,Np], k∈[1,... ,Nk] are the weight coeffi-
cients associated to the spectral responses of the sensors.
This is a widespread choice in the literature, as the sen-
sors perform an integration of the incoming radiance that
is modulated by the spectral response of the filters [1].

• the spatial degradation operation M̃ = matr(U [m̃]) =

A[m]
d (X) is a convolution by a set of filters U [b] ∈

RNb×Nb×Nk . Specifically:

U
[m̃]
::k = U

[x]
::k ∗ U

[b]
::k , ∀k ∈ [1, ... , Nk] , (3)

where ∗ denotes a spatial convolution operator. Once
again, this is a widely employed model in the literature,
derived from the assumption that the blurring effect of the
sensors can be described by a linear translation-invariant
operator, and hence uniquely defined by its modulation
transfer function (MTF) [25].

Finally, a decimation of M̃ by a scale factor ρ (i.e., taking
every ρ samples both in the vertical and horizontal direction)
produces the actual LRI M.
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B. Mosaicing

In its classic formulation [11], shown in Fig. 1b, the
CFA/MSFA-based mosaicing is uniquely defined by a mask
H ∈ RNi×Nk . Binary masks define a special case of H whose
elements can only be either zeros or ones; in other terms,
each pixel of the mask identifies a specific channel, which
is transferred on the focal plane. Binary masks can be hence
represented by a color-coded matrix and some examples are
shown in Fig. 3.

The acquisition y = A[m]
c (X) due to the mosaicing is

modeled as the cascade of the following two operations:
• Masking X⊡ = A[m]

⊡ (X): where an element-wise mul-
tiplication (denoted by ⊙) is applied independently on
each band, yielding:

x⊡
:k = x:k ⊙ h:k , ∀k ∈ [1, ... , Nk] . (4)

If the mask is binary, the variable x⊡
:k is commonly known

as sparse channel in the demosaicing literature [26],
since the element-wise multiplication sets most of its
values to zero.

• Sum over channels y = A[m]
+ (X⊡): where the final

observation is obtained by summing along the spectral
dimension, returning:

y =

Nk∑

k=1

x⊡
:k =

Nk∑

k=1

x:k ⊙ h:k . (5)

In some more advanced acquisition devices, some optical el-
ements allow to shift the captured light rays of a given channel
over the FPA. To model such effect, we introduce an additional
shifting operator A[m]

→ in between the previously presented
ones, so that the full operation of mosaicing becomes:

y = A[m]
c (X) = A[m]

+

(
A[m]

→

(
A[m]

⊡ (X)
))

. (6)

The generic element sijk of the shifted image S in the
operation matr(S) = A[m]

→ (X) is given by:

sijk = u
[x]
r(i,j,k) , (7)

where r(i, j, k) : N3 → N3 is a one-to-one vector function
which defines the transformation from a source to a target
position.

For example, in the case of the single dispersion
CASSI [13], the focal plane associated to each channel can be
rigidly translated in the horizontal direction through a diffrac-
tion prism. In the problem defined by the original authors,
this is a shift by one pixel between adjacent channels, which
we reformulated within the MRCA framework by defining a
shifted input S ∈ RNi×(Nj+Nk−1)×Nk such that:

r(i, j, k) = (i, j + k − 1, k) . (8)

C. Multiresolution compressed acquisition (MRCA)

The main target of the proposed MRCA is to allow for
multiresolution images to be stored over the same focal plane.
The proposed model y = A(X) for the acquisition system is
shown in Fig. 2, and is expressed as:

A(X) = A+

(
Ab(A[p]

c (A[p]
d (X))) , A[m]

c (A[m]
d (X))

)
. (9)

TABLE II: Description of classical image formation methods
under the proposed MRCA framework. In this table, ✗ marks
linear operators of the MRCA being substituted by an identity.

Multires. HRI mosaicing LRI mosaicing
Image formation method A[p]

d A[m]
d A[p]

⊡ A[p]
→ A[p]

+ A[m]
⊡ A[m]

→ A[m]
+ A+

MRCA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multiresolution sensing ✓ ✓ ✗ ✗ ✗ ✓1 ✗ ✗ ✗

CFA mosaicing ✓2 ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

CASSI acquisition [13] ✓2 ✗ ✗ ✗ ✓ ✓ ✓3 ✓ ✓
Lu et al. [28] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Takeyama and Ono [21] ✓ ✓ ✗ ✗ ✗ ✓4 ✗
1 where H[m] is a binary mask, with zeros at the interleaved positions of the LRI;
2 with wkl = 0 , ∀ k ∈ [1, ... , Np] , l ∈ [1, ... , Nk] to suppress HRI samples;
3 with the condition of eq. (8);
4 with any kind of linear compression is allowed for the LRI.

The operator A is given by the following cascade of
operations:

• A multiresolution sensing operator Ad, composed by
the operators A[m]

d from eq. (3) and A[p]
d from eq. (2) of

Section III-A, which generate the LRI and HRI branch,
respectively;

• A mosaicing operator Ac: where the operator A[m]
c of

eq.(6) is applied on the LRI branch and A[p]
c , identical to

A[m]
c except for acting over Np channels instead of Nk,

and applied to the HRI branch.
• A blur operator Ab, to adjust its scale ratio of the HRI

with respect to the reference and modeled as a spatial
convolution.

• A sum operator A+(y
[m], y[p]), which sums the LRI

mosaic y[m] and HRI mosaic y[m] over the same focal
plane:

A+

(
y[m],y[p]

)
= y[m] + y[p] . (10)

The reader may have noticed that the upscaled LRI M̃ is not
decimated in the MRCA pipeline; in this framework the step is
unnecessary as the mask H[m] can automatically suppress the
pixel values that would be eliminated during the decimation
process.

The MRCA can model (assuming that no blur is introduced
by Ab):

• multiresolution sensing, if both the operators Ac and A+

are substituted with an identity, as eq. (9) reduces to
eq. (1);

• mosaicing, if both operators in A
[m]
d is an identity and y[p]

is an all-zero matrix, for which eq. (9) reduces instead to
eq. (6).

Therefore, the MRCA framework is a general formation
method for acquisition systems that involve multiresolution
sensing and mosaicing. A more detailed description of the
operators for such special cases, which also includes the
frameworks proposed by Li et al. [27] by Takeyama and
Ono [21], is given in TABLE II.

D. Properties of the direct model operators

We investigate here the two key properties of the operator A,
the adjoint operator and the operator norm, that are necessary
to define the generic image reconstruction algorithm to be
presented in Section IV. Specifically:
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Fig. 2: Representative scheme of the image formation model for the proposed MRCA framework. The multiresolution
configuration is represented by a PAN and by a color coded 4-band MS; the white spots in the masks denote zero pixels
in all bands. The HRI shifting A[p]

→ and summing A[p]
+ operators are not depicted.

• the adjoint operator A∗ is the one that verifies the
condition:

⟨A(X), y⟩ = ⟨X, A∗(y)⟩ , (11)

for all X ∈ RNiNj×Nk and y ∈ RNiNj . Here, ⟨·, ·⟩
on the left and right side of the equation are the scalar
products of the spaces of y and X, respectively. If A
defines a matrix multiplication applied over vectorized
inputs, A∗ is equivalent of applying the Hermitian of the
same matrix;

• the operator norm ∥A ∥op is defined [29] as the smallest
scalar γ such that:

∥A(X)∥2 ≤ γ∥X∥F , ∀X ∈ RNiNj×Nk . (12)

If A defines a matrix multiplication over vectorized
inputs, its operator norm is the largest singular value of
the matrix itself [29].

These properties are dynamically constructed by combining
elementary building blocks, which are associated to the simple
operations that were defined in the previous sections, in
order to produce the image formation model under test. After
defining how to combine them, we will derive the properties
for each of these elementary blocks.

The adjoint of a composed operation A(X) = Ac(Ad(X))
is equal to applying the individual adjoint operators in reverse
order:

A∗(y) = A∗
d(A∗

c(y)) . (13)

Consequently, the only requirement to identify A∗ is to de-
rive the adjoint operator of each component of the MRCA
separately. These components can be split into the following
categories:

• Spatial convolution (Operators A[m]
d , and Ab): the ad-

joint of a convolution by a given kernel is a correlation
by the same kernel;

• Sum over channels (Operators A[m]
+ , A[p]

+ , and A+):
its adjoint is equivalent to replicating a monochromatic
image across all bands;

• Shifting (Operators A[m]
→ , and A[p]

→ ): The adjoint of
shifting a sample to a new position is a shift back to
its original one.

• Element-wise product (Operators A[p]
d , A[p]

⊡ , and A[m]
⊡ ):

The adjoint operator is itself, as this operation is self-
adjoint.

We follow a similar approach for the operator norm. Specif-
ically, we apply the Cauchy inequality to a composed operator
A(x) = Ac(Ad(X)) to identify an upper limit for ∥A ∥op:

∥A ∥op ≤ ∥Ac ∥op∥Ad ∥op . (14)

This inequality can be substituted with a strict equality as
the reconstruction algorithms we employ only require upper
bounds for the operator norm. Nonetheless, we can once
again separate the problem into evaluating the operator norms
individually:

• Spatial convolution of X by B: for each band, the
convolution by the k-th band b:k can be rewritten as a
multiplication by a circulant matrix. Its singular values
are hence defined as the sum of the coefficients b:k

weighted by the complex roots of unity [30]. A conser-
vative estimate for this operator norm (e.g., for A[m]

d ) is
then given by:

∥∥∥A[m]
d

∥∥∥
op

= max
k∈[1,... ,Nk]

√√√√
N2

b∑

i=1

b2ik ; (15)

• Sum over Nk channels: the operator norm upper bound
is
√
Nk, as a result of the triangular inequality applied

over every pixel;
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• Shifting: As shifting is assumed to be a one-to-one oper-
ation, the intensity values of each sample are unchanged,
hence the operator norm is unitary;

• Element-wise product by H: As pixels are scaled by
the intensity value of H, the operator norm is equal to
the largest value of H (i.e., it is equal to one if H is a
non-degenerate binary masks).

IV. PROPOSED IMAGE RECONSTRUCTION ALGORITHM

A. Problem statement

This section presents the proposed algorithm to produce an
estimation X̂ of the target image. Given the observation y of
the optical device, we aim to make X̂ as close as possible to
the ideal (and typically unknown) reference X which generates
it. We operate under the assumption that the observations are
affected by noise modeled as an additive independent and
identically distributed (i.i.d.) Gaussian distribution with zero
mean. While this hypothesis is common for previous Bayesian
formulations of similar problems in the literature [10], [31],
its validity is currently a point of contention in the scientific
community, but is at least reasonable under sufficient high
illumination [32].

The proposed JoDeFu reconstruction algorithm is based on
the following Bayesian formulation of the inverse problem:

X̂ = argmin
X

1

2
∥A(X)− y∥22 + f(X) , (16)

where the first term of the right side is the maximum a
posteriori estimation, also known as data fidelity term, and
f(X) : RNiNj×Nk → R+ is a regularization function, which
we can customize according to our a priori knowledge on
the result to reconstruct and is used to counteract the ill-
conditioned nature of the formulation [33]. We focus our atten-
tion on the expression of the data fidelity term in Section IV-B,
on the regularizer in Section IV-C, and on the algorithm for
solving this problem in Section IV-D.

B. Data fidelity term

The JoDeFu algorithm can be applied to the observation
of any device that can be described within the MRCA image
formation model. That is, other than the general MRCA itself,
it may also approach the problem of sharpening (if A models
a multiresolution sensing), that of demosaicing (if A models
a mosaicing), and so on. While we specialize here on the
MRCA framework, the proposed algorithm admits a solution
for any image formation model, as long as we can define the
properties of the operator A defined in Section III-D.

Special care has to be taken in the sharpening scenario
(and in general, for every setup in which A+ is an identity
operator). As the observation are two separate acquisitions,
the reconstruction problem is equivalent to:

X̂ = argmin
X

1

2

∥∥∥A[p]
d (X)−P

∥∥∥
F

+
1

2

∥∥∥A[m]
d (X)− M̃

∥∥∥
F
+ f(X) , (17)

which is very similar to the Bayesian formulation of the
sharpening problem proposed in [10], but assumes the same
weight for the data fidelity term associated to the LRI and to
the HRI.

Previous works [34] have shown that the algorithms that
were proposed to solve image reconstruction problems based
on multiresolution acquisition (e.g., pansharpening), are not
well suited for the case of reconstruction of missing acquisi-
tions (e.g., inpainting), which is also the case of the demo-
saicing as binary masks technically perform a subsampling.
This motivates the need of an ad-hoc algorithm where these
problems can be solved jointly.

To deal with such scenarios, the proposed blur filter Ab

is used to adjust the results even when the HRI is at the
same scale of the reference. Its inclusion allows to recast our
demosaicing problem from pure inpainting to an hybrid of
inpainting/magnification. The formulation implies that some
information from the suppressed pixels is contained in adjacent
pixels, but this comes at the cost of reducing the spatial
resolution of the final product.

C. Regularization

We want to setup here a proximal algorithm, as it works in
very general conditions, allowing for some nonsmooth real-
valued constraint on the cost function, and is relatively fast
with respect to other alternatives [35]. To this end, we propose
a regularization function in the form:

f(X) = λ g(L(X)) , (18)

where we denote:
• a linear operator L(·) : RNiNj×Nk → El, which de-

scribes X within a sparsity-inducing transformed normed
space El;

• a metric function g(·) : El → R+, for which it is
possible to define a proximal operator proxγg(·) scaled
by a generic positive scalar γ;

• a regularization parameter λ ∈ R+, used to weight
the contribute of the regularization with respect to the
data term in the cost function; we sometimes refer to this
term in its normalized form λ = λ/ρy , where ρy is the
dynamic range of the observation y (e.g., ρy = 255 for
8 bits images).

For the linear transformation W = L(X), the CASSI
authors proposed to use a symlet-8 discrete wavelet transform
and a discrete cosine transform (DCT) transform in the spatial
and spectral domain, respectively [13]. In this work, we
propose instead an approach based on the total variation (TV),
a regularizing transformation that acts as a discrete repre-
sentation the Rudin-Osher-Fatemi model [36]. In its modern
interpretation, the TV is often seen as a sparsity-inducing
operator working in the domain of image gradients. This
favors piecewise constant images with sparse edges, which
are typically a better representation of natural images [34].

Following the generic mathematical description of the third
author [37], the TV-based expression of W is a 4-way tensor
W ∈ RNi×Nj×Nk×Nm , whose forth dimension is made up of
the gradients of U [x]. For the classic TV in particular, where
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Nm = 2, the gradients are taken along the horizontal and
vertical spatial dimensions, and the elements wijkm of W
(assuming that the elements out of range in U [x] are zero) are
defined as follows:

wijkm =

{
u
[x]
ijk − u

[x]
i−1,j,k for m = 1

u
[x]
ijk − u

[x]
i,j−1,k for m = 2

. (19)

Similar four way tensors can be also defined for alterna-
tive TV-based operators, such as the upwind total variation
(UTV) [38], and the Shannon total variation (STV) [39].

To define the metric function g(·), we took inspiration from
the framework of the collaborative total variation (CTV) [40],
[41], where g(·) is defined as a set of norms applied sequen-
tially over different dimensions.

The most relevant that are also employed in this work, are
defined below:

• g(W) = ∥W∥p1p2p3 : this stands for the ℓp1 , ℓp2 , and ℓp3 -
norm applied, in this order, respectively to dimension of
the gradient, that of the channels, and that of the pixels.
Among those, the most widespread are the ∥W∥221,
which is used in the vector total variation [42] and whose
mathematical expression is:

∥W∥221 =

Ni∑

i=1

Nj∑

j=1

√√√√
Nk∑

k=1

Nm∑

m=1

w2
ijkm (20)

and the ∥W∥111 norm, known as the least absolute
shrinkage and selection operator (LASSO) [43] and em-
ployed for the classic inversion of the CASSI acquisi-
tions [13].

• g(W) = ∥W∥Spℓq : this stands for the Shatten p-
norm firstly applied on both the gradient and the bands’
dimensions, and then the ℓq-norm applied over the pixels;
particularly good performances can be obtained with
∥W∥S1ℓ1 , defined as:

∥W∥S1ℓ1 =

Ni∑

i=1

Nj∑

j=1

√√√√
Nr∑

m=1

ξ2m (Wij::) , (21)

where ξm(Wij::) is the m-th singular value and Nr is
the total amount of singular values of Wij::.

D. Implementation details

The proposed JoDeFu image reconstruction framework can
be summarized as follows:

X̂ = argmin
X

1

2
∥A(X)− y∥22 + λ g(L(X)) , (22)

which is the minimization of a cost function composed by
a differentiable data fidelity term and a regularization term
whose metric function g(·) is a lower semi-continuous convex
function. As long as the adjoint operators for A and L are
known, and it is possible to define a proximal operator for g(·),
a variety of algorithms are available that iteratively converge
to the desired solution X̂. Those are known as proximal
algorithms in the literature [35]. Among those, the Chambolle-
Pock solver [44] is the most widespread, but we prefer
here to employ instead the Loris-Verhoeven algorithm [45],

which simplifies the choice of the convergence parameters (as
reported in [46]).

The full procedure, described by the Algorithm 1, requires
the definition of:

• the adjoint operator A∗ and the operator norm ∥A ∥op of
A, which were described in Section III-D;

• the adjoint operator L∗ and the operator norm ∥L ∥op of
L: for orthogonal operators (such as the DCT and some
wavelets), their operator norm is unitary. For the classic
TV the generic vijk element of V ∈ RNi×Nj×Nk , of
matr(V) = L∗(W) is:

vijk = (wi,j,k,1 − wi−1,j,k,1) + (wi,j,k,1 − wi,j−1,k,2) ,
(23)

where we assume once again that the elements out of
range of W are null. Its operator norm is ∥L ∥op =√
8 [37]. For the other TV-like operators, we redirect

the reader towards the related articles [38], [39].
• the scaled proximal operator proxλg⋆(·) of the Fenchel

conjugate of g(·): a summarizing table of its expression
is provided in [41]. We just remind here that, for the
∥W∥221 norm, this is equal to:

proxλg⋆(y) =
W

max

(√
1
λ

Nk∑
k=1

Nm∑
m=1

W::km , 1

) , (24)

where max(X, 1) is an operator substituting with 1 all
elements of X that are superior to 1, and the fraction
stands for an element-wise division broadcasted over 4
dimensions.

The JoDeFu framework allows for multiple ways to con-
struct a custom cost function, which include the choice for
the regularization parameter λ, for the metric function g(·),
and the linear transformation operator L. We propose here two
possible solutions, whose specifics are shown in table III: the
JoDeFu v1, provides reasonable performances while keeping
the computation time relatively short, while the JoDeFu v2
variant produces optimal performances if there is no constraint
on time.

V. EXPERIMENTS

In this section, the proposed image formation/reconstruction
framework is tested under different viewpoints:

• In Section V-B, we analyze the acquisition obtained
with a variety of image formation methods. For each
acquisition under test, we compare the reconstructed
products obtained both with a representative state-of-the-
art classic reconstruction algorithm and with the proposed
JoDeFu algorithm. This experiment aims to show the
effectiveness of the MRCA in modeling a wide variety
of capturing techniques, by verifying that the quality of
the reconstructed image meets the standards set up by the
previous literature when this model is employed within
the proposed reconstruction algorithm;

• in Section V-C, the image formation is fixed to the
proposed MRCA and we inspect a variety of solutions for
the image reconstruction, by comparing the results when
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Algorithm 1: JoDeFu algorithm, based on the Loris-
Verhoeven solver [45] with over-relaxation [46].

Result: Estimated product X̂
Input:

• Acquisition: y ∈ RNiNj (with the LRI samples
histogram matched to the HRI)

• Direct model operator A(·), according to eq. (9), with
A∗ and ∥A ∥op defined in Section III-D;

• Domain transformation operator L(·), e.g. a TV
according to eq. (19), an UTV, or a STV, with L∗ and
∥L ∥op defined in Section IV-D;

• Proximal operator proxλg⋆(·), e.g. from eq. (24);
• Regularization parameter: λ (default: 10−3ρy , where ρy

is the dynamic range of y);
• Over-relaxation parameter: ρo (default: 1.9);
• Maximum number of iterations: q[max] (default: 250);

Initialization:
• First convergence parameter: τ = 0.99/∥A ∥2op
• Second convergence parameter: σ = 1/(τ∥L ∥2op)
• Primal variable: X(0) = A∗(y)
• Dual variable: W(0) = L

(
X(0)

)

• Iteration: q = 0

while q < q[max] do
V(q) = A∗ (A

(
X(q)

)
− y

)

X(q+ 1
2 ) = X(q) − τ

(
V(q) + L∗

(
W(q)

))

W(q+ 1
2 ) = proxλg⋆

(
W(q) + σ L

(
X(q+ 1

2 )
))

X(q+1) = X(q) − ρoτ
(
V(q) + L∗

(
W(q+ 1

2 )
))

W(q+1) = W(q) + ρo

(
W(q+ 1

2 ) −W(q)
)

q ← q + 1

return X̂ = X(q[max])

TABLE III: Suggested setups for MRCA image reconstruction
algorithms. The first half refers to the JoDeFu algorithm, while
the rows labeled with classic v1 and v2 refer to the alternative
algorithms described in Section V-C.

JoDeFu setups
g(W) L(·) Ab(·)

JoDeFu v1 ∥W∥221 [40] TV [36] Identity
JoDeFu v2 ∥W∥S2ℓ1 [40] UTV [38] or STV [39] ρb = 1–1.5 px

Cascaded classic algorithms setups
PAN interpolation Demosaicing Sharpening

Classic v1 TPS-RBF [47] ARI [48] MTF-GLP-HPM [49]
Classic v2 TPS-RBF [47] ID [26] GSA [50]

a different amount of LRI channels are encoded in the
acquisition. This experiments aims to show the capability
of the JoDeFu in recovering the relevant information
embedded in the compressed acquisition under different
conditions.

• in Section V-D, we analyze the effect of the parameters
associated to the JoDeFu algorithm. The experiment aims
to test the robustness of the proposed reconstruction algo-
rithm with respect to deviations from an ideal parametric
setup.

To introduce the experiments, a description of the employed

TABLE IV: Characteristics of the GT of the datasets employed
in the tests of Section V. The ground sample distance (GSD)
refers to the spatial resolution of the GT.

Label Scene Sensor GSD Sizes [px]
Beijing Bird’s nest, China WV2 1.6 m 512× 512
Janeiro Bay area, Brazil WV3 1.2 m 512× 512
Washington Capitol building, U.S. WV3 1.6 m 512× 512

datasets, of the experimental setup, and of the validation
method is given in Section V-A. The experiments provided
in this section are fully reproducible with the MATLAB
implementation of the algorithm1 and additional results are
available in the supplementary materials.

A. Experimental setup

Our validation setup consists of four steps:
• Reference choice: where we select a high resolution

image as reference X ∈ RNiNj×Nk , that is referred as
ground truth (GT);

• Simulation: where the acquisition y = A(X) is evalu-
ated from the direct model A under test (e.g., with the
architecture in Fig. 2 for the MRCA);

• Testing: where the reconstruction algorithm under test
is applied to the observation, in order to achieve an
estimation X̂ of X;

• Comparison: where the estimated product X̂ and the
reference X are compared by evaluating a series of
quality indices.

Each reference dataset is composed of a HRI/LRI image
bundle acquired almost simultaneously, originally featuring
a scale ratio of 1 : 4, although the tests are performed at
reduced resolution with a scale ratio of ρ = 2. The HRI is
monochromatic (i.e. a PAN) and the LRI has up to 8 channels.

The bundles were acquired by the WorldView-2 (WV2) and
WorldView-3 (WV3) satellites, and are available for download
on the MAXAR Technologies website [51]. Their character-
istics are shown in TABLE IV. Additional experiments over
different datasets are available in the supplementary materials.

For the simulation step, when applicable, the HRI is given
as a spatial degradation of a HRI at higher resolution, instead
of spectral degradation of the GT, in order to follow the Wald’s
protocol for reduced resolution validation [52].

In the spectral degradation model A[p]
d , the weighting co-

efficients are always set as equal to w1,k = 1/Nk, for all
k ∈ [1, ... , Nk], so that the HRI is modeled as the average
of the channels of the GT. In the spatial degradation model
A[p]

c , the blurring kernels B are Gaussian functions whose
cutoff frequency matches the one of the MTF of the sensors.
The Ab(·) is implemented by a infinite impulse response
(IIR) Butterworth filter whose bilateral cutoff frequency is
1/ρb, with ρb denoting the diameter of the blurring filter and
expressed in pixels (px). All JoDeFu algorithms are run for
250 iterations. In the JoDeFu preprocessing stage, the overall
mean and standard deviation of the LRI samples are equalized
to that of HRI samples.

1https://github.com/danaroth83/jodefu

https://github.com/danaroth83/jodefu
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Bands) [55]
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(c) Uniform Binary
Tree (8 bands) [55]

Fig. 3: Masks used for the experiments of Section V-C. The
masks are obtained by mosaicing a set of HRI sensors (in gray)
to classical literature designs for LRI masks, color coded with
their characteristic channel. The dashed outline denotes the
periodicity of each mask.

For the comparison step, we employ as quality indices the
peak signal to noise ratio (PSNR), the spectral angle mapper
(SAM) [53], and the structural similarity (SSIM) [54], which
is given as average over all bands.

B. Image formation

We consider here a selection of image formation methods
and compare the obtained quality of the estimated product,
produced both with a carefully selected classic image recon-
struction algorithm and with the JoDeFu. For completeness,
this approach is also applied to an observation obtained with
the complete declination of the MRCA method, using the mask
of Fig. 3b.

Since formation methods can be interpreted as compressed
acquisitions, the final observation generally contains less
samples than the datacube to reconstruct. Therefore, their
compression ratio ρc can be defined as the ratio between the
amount of samples of the observation y and the reconstructed
product X̂. For example, if the dynamic range of all samples
is the same, the compression ratio of the full MRCA model
is equal to:

ρc =
NiNj

NiNjNk
=

1

Nk
, (25)

as the multiresolution setup compresses the acquisition over
a single FPA matching the spatial dimensions of the recon-
structed product.

We investigate the follow image formation methods:
• Multiresolution sensing: with the same scale ratio of

the MRCA, this is compared with the MTF-matched
generalized Laplacian pyramid with high pass modula-
tion injection (MTF-GLP-HPM) algorithm [56], the best
performing one for this dataset among the classic ones
that were tested;

• Mosaicing: applying a 4-band mask with period 2 × 2,
which also reaches the same compression ratio of the
MRCA, which is compared with the intensity difference
(ID) demosaicing algorithm;

• CASSI: using the model proposed by the author employ-
ing one acquisition in their single dispersion variant and
comparing with the proposed algorithm for the recon-
struction [13].

The validation procedure is applied to the “Washington”
dataset and compared to the baseline JoDeFu, with the results
shown in TABLE V and a visual comparisons in Fig. 4.

The JoDeFu algorithm achieves results which are at least
comparable to the state-of-the-art. The benefit of the TV-
style regularizer is immediately evident for the CASSI re-
construction (Fig. 4h). For the pansharpening problem, the
final product obtained with the JoDeFu (Fig. 4f) shows subtler
improvements, as the final product achieves slightly more
accurate color quality. For the demosaicing problem, however,
there are still margins of improvement (Fig. 4g). The proposed
algorithm is not fully capable of eliminating some texture
effects; this is a known weakness of TV-based regularizer,
which are not well suited for the reconstruction of thread-like
structures [34].

C. Image reconstruction

In this section, we shift the focus on image reconstruction
methods, and compare the quality of the estimated products
achieved with different methods, starting from an observa-
tion acquired with the full version of the proposed MRCA
architecture. Our main target is to show the robustness of the
proposed algorithm to recover the desired information when
a sufficiently large amount of channels are embedded in the
observation.

The analysis is carried out by simulating the observation
starting from the “Janeiro” dataset bundle. For the LRI, we
select either 3, 4, or 8 channels, by either only choosing the
RGB in the first case, adding a near infrared response (NIR)
in the second one, or selecting all the visible (VIS) and NIR
channels in the last case. The MRCA model employs the
periodic masks shown in Fig. 3.

Other than with the JoDeFu, this specific problem can
be also approached with a custom image formation method,
composed of the following three-step procedure:

• HRI interpolation: recover the sparse channel associated
to the HRI ( p⊡

:,1 = y ⊙ h
[p]
:,1) and estimate the missing

HRI samples with a multivariate interpolation.
• Demosaicing: obtain the LRI mosaic by decimating the

observation y. Furthermore, apply any classic demosaic-
ing algorithm to estimate all the channels of the LRI;

• Sharpening: perform a fusion on the reconstructed HRI
and LRI from the previous two steps.

In our tests, we employ a thin plate spline radial basis
function (TPS-RBF) [47] for the HRI interpolation. For a
comprehensive comparison, we isolated two viable config-
urations for the demosaicing and pansharpening algorithms,
whose specifics are given in TABLE III:

• The classic v1 setup is optimized for the RGB setup
and employs the adaptative residual interpolation (ARI)
demosaicing method [48], which is only applicable to
Bayer masks.

• The classic v2 method can be applied to all cases,
and employs the Gram-Schmidt adaptive (GSA) fusion
method [50], as it provides more robust results for larger
amount of bands.
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TABLE V: Results of classic and proposed reconstruction algorithms for different methods of image formation with the 4-bands
“Washington” dataset. Best results for each image formation method are shown in bold.

Image formation ρc Image reconstruction λ SSIM PSNR SAM
Reference (GT) 1.000 - - 1 ∞ 0

Multiresolution sensing 0.500 Pansharpening [56] - 0.9772 31.14 3.751
JoDeFu v1 1× 10−3 0.9868 33.22 2.797

Mosaicing 0.250 Demosaicing [57] - 0.9613 30.38 4.361
JoDeFu v1 2× 10−3 0.9312 28.36 4.371

CASSI acquisition [13] 0.251 CASSI reconstruction [13] 3× 10−3 0.7645 24.48 9.750
JoDeFu v1 2× 10−3 0.8600 26.89 5.954

MRCA 0.250 Classic v2 (TABLE III) - 0.9156 28.13 6.246
JoDeFu v1 1× 10−3 0.9446 29.34 4.553

(a) Reference (GT) (b) Multires. sens. - Class. [49] (c) Mosaicing - Classic [26] (d) CASSI - Classic [13]

(e) MRCA - JoDeFu v1 (f) Multires. sens. - JoDeFu v1 (g) Mosaicing - JoDeFu v1 (h) CASSI - JoDeFu v1

Fig. 4: Visual comparison for different image formation methods, comparing the reconstructed product obtained with the
proposed JoDeFu algorithm and with classic solutions available in the literature. The images show a 256× 256 cropped area
of the 4-band “Washington” dataset. Zoomed areas are provided for a detailed comparison.

The analysis of TABLE VI and its associated visual com-
parison of Fig. 5 shows that the JoDeFu yields sharper results
than the classic v2, regardless of band setup. However, it does
not provide a consistent reconstruction of large homogeneous
zones, such as the swimming pool in Fig. 5c. This is probably
due to the spatial uniformity of the regularization parameter λ.
As we did not provide any mechanism to change the value of
λ locally, it choice is not necessarily optimized for differently
scaled objects on the scene.

D. Setting the parameters

We test here various possible parameters for the optimiza-
tion of the JoDeFu algorithm applied to the MRCA acquisition
obtained with the mask of Fig. 3b. For this test, we firstly
define as baseline the JoDeFu v1 with λ = 1× 10−3 (whose
specifics are given in TABLE III) and evaluate its estimated
product. Then, for each parameter under test, we estimate
the reconstruction results obtained by solely varying a single

parameter from the baseline setup. There is no guarantee on
the combined effect of varying multiple parameter, but we
empirically experienced that optimizing each parameter sepa-
rately still returns performances within a reasonable ballpark
of the overall best optimization. The tests are applied to the 4-
band “Beijing” dataset, and a summary of the measured quality
indices is given in Fig. 6, with an associated visual comparison
in Fig. 7.

A more in-depth discussion for each of the parameters under
test is given in the following list:

• Regularization Parameter λ: as a rule of thumb, λ =
10−3 is a good compromise in most scenarios and can
be used as starting test to further refine the parameters
if higher quality is required. In Fig. 7b and 7g, some
reconstructed products are shown for implausible low and
high values of λ, respectively. If λ is too low, we impose
no structure of the final image, and most texture effects
from the mosaicing are not flattened. If λ is too high, the
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TABLE VI: Results of MRCA image reconstruction employing different amount of mosaiced bands for the “Janeiro” dataset.
The image construction is obtained with the MRCA model using the masks shown in Fig. 3. Best results are marked in bold
fonts.

3 bands (RGB) 4 bands (RGB + NIR) 8 bands (All VIS/NIR)
SSIM PSNR SAM SSIM PSNR SAM SSIM PSNR SAM

Reference (GT) 1 ∞ 0 1 ∞ 0 1 ∞ 0

Classic v1 0.9634 32.30 2.502 - - - - - -

Classic v2 0.8680 28.77 5.253 0.9049 28.11 6.463 0.8917 28.50 9.166

JoDeFu v1 (λ = 2× 10−3) 0.8803 28.78 4.988 0.9159 28.38 5.218 0.9080 29.08 7.220

JoDeFu v2 with UTV 0.9050 29.57 3.901 0.9264 28.58 4.891 0.9247 29.63 6.693
JoDeFu v2 options λ = 2× 10−3, ρb = 1 λ = 1× 10−3, ρb = 1.4 λ = 1× 10−3, ρb = 1.4

(a) Reference (GT) (b) 3 bands - JoDeFu v2 (c) 4 bands - JoDeFu v2 (d) 8 bands - JoDeFu v2

(e) 3 bands - Classic v1 (f) 3 bands - Classic v2 (g) 4 bands - Classic v2 (h) 8 bands - Classic v2

Fig. 5: Visual comparison of different MRCA image reconstruction algorithms, employing a different amount of embedded
bands from the “Janeiro” dataset. In all cases, we visualize the RGB bands of 256×256 px cropped area with zoomed details.

smoothing effect applies to relevant image features;
• Metric function norm g(·): the quantitative verification

shows that the ℓ221 norm is the best compromise between
quality of the reconstructed product and computational
speed. Among the remaining choices, better performances
are only achieved with the S1ℓ1, due to the noise whiten-
ing effect that this constraint imposes across different
bands. The visual analysis shows some spectral spot-
shaped spectral distortions in Fig. 7h;

• Linear operator L(·): for this configuration we tested
the classic TV, the UTV [38] and the STV [39] with an
upscaling factor of 2 and 3, but no noticeable differences
were found;

• Diameter ρb of the blurring operator Ab(·): in our tests,
the optimal value of the blur diameter was found to be
in the range 1.3 − 1.5 px for a scale ratio ρ = 2. This
optimal value has to be chosen as a trade-off between a
more accurate recovery of the HRI samples and avoiding
out-of-focus effects in the final product.

VI. CONCLUSION

In this paper, we proposed the MRCA, a novel multires-
olution compressed acquisition system with enough flexi-
bility to model classic image formation methods, including
CFA/MSFA-based mosaicing, HRI/LRI image bundles, non-
conventional acquisition system, such as the CASSI, and vari-
ous hybrid methods. The proposed design aims to intercept the
future trends for unconventional optical devices, and allow for
an immediately available procedure to model the acquisition.

We also proposed the JoDeFu, a Bayesian solver for image
reconstruction applicable to any available variant of MRCA-
based acquisitions, and specialized on data with a strong
LRI component. The proposed algorithm jointly addresses the
problem of image fusion and reconstruction of compressed
data, exploits the CTV regularization to recover the desired
product, and can be declined into two different variants with
respect of the requirements in term of computation time. The
proposed method does not necessarily match the state-of-
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Fig. 6: Quality indices results obtained with different setups of the JoDeFu image reconstruction algorithm applied to the
4-band “Beijing” dataset. For each figure, we vary the indicated parameter with respect to the baseline JoDeFu v1 setup. Better
reconstruction performances are associated to higher values of the “SSIM” (in blue) and of the “180◦− SAM” (in orange).

(a) Reference (GT) (b) λ = 1× 10−4 (c) g(W) = ∥W∥S1ℓ1 (d) L(·): STV (upsc. ratio 2) (e) ρb = 1.4 px

(f) JoDeFu v1 (baseline) (g) λ = 1× 10−1 (h) g(W) = ∥W∥111 (i) L(·): UTV (j) ρb = 2.0 px

Fig. 7: Visual comparison of the effects of changing parameters in the baseline setup of the JoDeFu image reconstruction
applied to the MRCA acquisition of the 4-band “Beijing” dataset (256× 256 px cropped area).

the-art for every available image formation setup, but some
alternatives were analyzed for particularly simple ones, which
employ a cascade of classic techniques.

A possible extension of this work may involve supervised
learning [58], [59] to fine tune the parameters of the JoDeFu
algorithm. Additionally, improved robustness to a higher num-
ber of channels can be obtained by capturing samples directly
in a sparse domain, and the reconstructed products can achieve
higher quality with suitable mask designs based on compressed
sensing, expanding the results of our previous works [60], [61].
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pansharpening of multispectral images,” in Image and Signal Processing
for Remote Sensing XVIII, L. Bruzzone, Ed. SPIE, Nov. 2012.

[57] S. Mihoubi, O. Losson, B. Mathon, and L. Macaire, “Multispectral
demosaicing using intensity-based spectral correlation,” in 2015 Interna-
tional Conference on Image Processing Theory, Tools and Applications
(IPTA). IEEE, Nov. 2015.

[58] R. Laumont, V. De Bortoli, A. Almansa, J. Delon, A. Durmus, and
M. Pereyra, “Bayesian imaging using plug & play priors: when Langevin
meets Tweedie,” SIAM Journal on Imaging Sciences, vol. 15, no. 2, pp.
701–737, may 2022.

[59] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Signal
Processing Magazine, vol. 38, no. 2, pp. 18–44, Mar. 2021.

[60] D. Picone, L. Condat, and M. Dalla Mura, “Analysis of masks for
compressed acquisitions in variational-based pansharpening,” in Interna-
tional Workshop on Compressed Sensing applied to Radar, Multimodal
Sensing, and Imaging (CoSeRa). Citeseer, Sep. 2018.

[61] D. Picone, “Model Based Signal Processing Techniques for
Nonconventional Optical Imaging Systems,” Theses, Université
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