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In the last decades, brain modeling has been established as a fundamental

tool for understanding neural mechanisms and information processing in

individual cells and circuits at different scales of observation. Building

data-driven brain models requires the availability of experimental data

and analysis tools as well as neural simulation environments and, often,

large scale computing facilities. All these components are rarely found

in a comprehensive framework and usually require ad hoc programming.

To address this, we developed the EBRAINS Hodgkin-Huxley Neuron

Builder (HHNB), a web resource for building single cell neural models

via the extraction of activity features from electrophysiological traces, the

optimization of the model parameters via a genetic algorithm executed on

high performance computing facilities and the simulation of the optimized

model in an interactive framework. Thanks to its inherent characteristics,

the HHNB facilitates the data-driven model building workflow and its

reproducibility, hence fostering a collaborative approach to brain modeling.

KEYWORDS

data-driven brain models, online resources, EBRAINS, neuron, model optimization,
high-performance computing

Introduction

Computational neuroscience is now a well-established and powerful approach for:
(1) Understanding neural mechanisms at different spatial and temporal scales; (2)
inferring on neural dynamics that are not yet accessible via experimental measures
and (3) making predictions able to suggest new experimental protocols and paradigms
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(Dayan and Abbott, 2001; Koch and Segev, 2001; Gerstner and
Kistler, 2002; Van Ooyen, 2003). Neural models mirror the
dynamics of individual cells and neural ensembles (Izhikevich,
2003, 2004; Bazenkov et al., 2020), small- and large-scale circuits
and tissues (Samsonovich and Ascoli, 2005; Izhikevich and
Edelman, 2008; Markram et al., 2011) and help to answer, or at
least address, scientific questions concerning synaptic plasticity
(Babadi and Abbott, 2013; Cortes et al., 2013), the role of
spike timing and firing rate in neural activity (Brette, 2015),
the stimulus-response dynamics (Pospischil et al., 2011), and
individual cells and circuit functions (Migliore et al., 2018; Egger
et al., 2020).

Depending on the scientific principles underlying the
model construction, different levels of neural details can be
implemented and, to cope with the wide range of computational
neuroscientists’ needs, a number of simulation environments
are already available, such as NEURON (Hines and Carnevale,
1997), GENESIS (Bower and Beeman, 2007), Brian (Goodman
and Brette, 2008; Stimberg et al., 2019) and NEST (Gewaltig and
Diesmann, 2007; Eppler, 2008), to cite a few. Also, modelers
can rely on a growing ensemble of neural datasets, built in
the framework of large-scale brain initiatives (Insel et al., 2013;
Kandel et al., 2013; Amunts et al., 2016), to be leveraged
for the fine tuning of the model parameters. In addition,
high-performance computing facilities are already available
for running highly detailed and/or large-scale models or
model parameter search algorithms, such as the NeuroScience
Gateway,1 the Swiss National Supercomputing Center,2 the
Juelich Supercomputing Centre,3 the CINECA consortium.4

With the aim of providing the scientific community with
open access and collaborative environments, several online
platforms have been created. For example, ModelDB (McDougal
et al., 2015, 2017), which has been actively maintained over the
last three decades, have become the de facto standard for neural
model sharing and archiving. The OpenSourceBrain promises
to be a reference portal for computational neuroscientists,
since it provides an online resource for the visualization,
sharing, analysis and simulation of neural models standardized
thanks to the NeuroML (Gleeson et al., 2010) and PyNN
(Davison, 2008) model description languages. The number
of platforms created for neuroscience data sharing is also
increasing, e.g., DANDI Archive,5 Zenodo,6 Dryad,7 Figshare,8

1 www.nsgportal.org

2 cscs.ch

3 juelich.de

4 cineca.it

5 dandiarchive.org

6 zenodo.org

7 datadryad.org

8 figshare.com

Hippocampome.org,9 NeuroMorpho.Org10 and a number of
initiatives foster the development of tools for collaborative
data visualization and analysis, such as Neurodata Without
Borders (Teeters et al., 2015) and the Allen Institute for Brain
Science,11 which, in addition to a large dataset of neuroscience
images and data, provides a dedicated Software Development
Kit (SDK) for data analysis. Also the EBRAINS Knowledge
Graph (KG), built in the framework of the Human Brain
Project (HBP) (Amunts et al., 2016) and the EBRAINS research
infrastructure, aims at providing a comprehensive ensemble of
neuroscience data, models and tools. In addition, the EBRAINS
Live Papers allow direct access to digital resources associated
with scientific papers, which can be downloaded, visualized and,
more generally, exploited via public EBRAINS tools and services
( Appukuttan et al., 2022a).

Notwithstanding the availability of the above-mentioned
tools, environments, and platforms, to the best of our
knowledge, an integrated and comprehensive framework for
the realization of a complete and efficient model building
workflow that includes the model construction, the data-driven
parameter optimization and a user-friendly interface for model
visualization and running is not available to the scientific
community. In an attempt to bridge this gap, we developed
the EBRAINS Hodgkin-Huxley Neuron Builder (HHNB), a
web-based resource that guides the user through the complete
process of building a single cell NEURON model. Since the
seminal papers of Hodgkin and Huxley, 1952a,b, introducing
the set of non-linear ordinary differential equations governing
the interplay among the different ion channels expressed
on the neuronal membrane, any data-driven, biophysically
accurate, computational model of neurons and networks is
built upon these equations. This type of models have proven
to be fundamental for understanding the subtle dynamics and
predict new experimentally testable mechanisms underlying
the behaviors of individual neurons and neural cell ensembles
(Meunier and Segev, 2002; Catterall et al., 2012).

The HHNB allows the creation of such models and their
optimization against experimental data, in research works where
data-driven brain modeling is fundamental for understanding
or predicting subtle neural dynamics, such as the investigation of
the ion channel (Migliore et al., 2018), excitability (Vitale et al.,
2021) and synaptic transmission (Hunt et al., 2022) properties in
specific brain regions. It includes: (1) The extraction or upload
of the electrophysiological features against which the model
parameters are optimized; (2) the selection or creation of the
NEURON model that will undergo the optimization process; (3)
the use of HPC platforms for the optimal parameters search and
(4) the simulation of the optimized model.

9 hippocampome.org

10 neuromorpho.org

11 alleninstitute.org
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Thanks to the integration of several web resources
and software packages and to its user-friendly nature, the
HHNB provides the scientific community with unique
functionalities such as: A fully interactive online interface for
the visualization and selection of experimental traces from
which the electrophysiological features of interest are extracted
and used in the optimization process; an online editor for
the construction/selection of a biophysically detailed single
cell model and an online simulation environment where the
simulation parameters can be set and the simulated activity
downloaded; a seamless access to the HPC systems where the
model optimization processes are run. Finally, by accessing the
EBRAINS KG database, which is continuously updated with
new models and neuroscience data, and storing the optimized
models in the EBRAINS Model Catalog (Appukuttan et al.,
2022b), the HHNB provides a unique resource for building
and test biophysically detailed neural models following a
collaborative approach.

Methods

Hodgkin-Huxley Neuron Builder
frontend and backend

The EBRAINS HHNB is implemented via a Python-based
Django project12 consisting of two Django applications, the efelg,
which implements the EBRAINS NeuroFeatureExtract (NFE)
web application and provides the algorithms and interface for
the feature extraction procedures in the HHNB workflows and
the hh-neuron-builder, which implements the frontend and
backend for the model selection/upload, HPC job configuration,
optimized model fetching, running and integration with the
Model Catalog (see the Table 1). To guarantee seamless and
fast communication and data management between the two web
apps, they are hosted on the same Ubuntu 20.04 Virtual Machine
(VM), in the CINECA supercomputer center (see Table 1).
The CINECA VM consists of 60 GB RAM, 8 VirtualCPUs
(VCPU) and is accessible via Openstack.13 The frontend has
been developed in HTML, Javascript and CSS code and the
backend in Python; frontend and backend interact via the
Django routing system and users’ requests, performed via the
HHNB GUI, are handled via the HTTPS protocol and managed
by an NGINX web server coupled with a uWSGI web interface.

Requests from different users are handled asynchronously
and independently via the creation and management of user-
dedicated folder trees based on the file system and system
resources. A system user with limited access and privileges to the
VM resources performs the HHNB system operation, in order

12 https://www.djangoproject.com/

13 https://www.openstack.org/

to limit security vulnerabilities. The code is publicly available
(Gleeson et al., 2017) on GitHub, under the LGPLv3 license (see
Table 1) and the use of the application is free of charge.

Electrophys Feature Extraction Library
and Blue Brain Python E-feature
extraction library

The feature extraction functionalities of the HHNB are
available to the users via the integration of the NFE web
application (Bologna et al., 2021) in the HHNB GUI. This tool
leverages the Electrophys Feature Extraction Library (eFEL) and
Blue Brain Python E-feature extraction (BluePyEfe) libraries
(see Table 1) that provide the core feature extraction software
package and its convenient Python wrapper, respectively. More
specifically, the eFEL accepts electrophysiological traces as input
and extracts several activity features from the time signals.
The features available for extraction belong to three different
categories, depending on their properties (i.e., spike event
features, spike shape features and voltage features) and can be
selected via the HHNB interface. While the feature extraction
code is optimized for the analysis of individual traces in
the eFEL, higher level operations like feature grouping (e.g.,
by stimulus amplitude) and averaging are not implemented.
For this reason, we integrated, in the HHNB backend, the
BluePyEfe software library that provides a wrapper around
the eFEL and allows to read different file formats, group
the electrophysiological traces by cell and stimulus amplitude,
average the feature values by cell and again by ensemble of
cells. Finally, the feature extraction output files are appropriately
formatted for the Blue Brain Python Optimization Library
(BluePyOpt) (see Table 1) optimizer and are transparently
integrated in the file package to be sent to the HPC system for
the model optimization. For more details on the integration
of the eFEL and BluePyEfe packages in the HHNB/NFE, see
(Bologna et al., 2021), where the features of both libraries have
been thoroughly discussed.

Blue Brain Python Optimization Library

The model optimization process is carried out via the
BluePyOpt, which is open source software implementing multi-
objective model parameter optimization based on a genetic
evolutionary algorithm (Van Geit et al., 2016). The latter
implements the evolution of a population of parameters through
consecutive generations. For each iteration a set of offspring
individuals is generated from selected parents (following the
principles of the genetic algorithm) belonging to the previous
generation. Each individual contains a set of passive properties
and peak ion channel consistent with the electrophysiological
trace features provided. The cost function of the process
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TABLE 1 List of software resources adopted in the paper, with references to publications (if available) and urls.

Software resources

Name References Url Usage in the HHNB

BluePyEfe N/A https://github.com/BlueBrain/BluePyEfe Feature extraction workflow (eFEL
Python wrapper)

BluePyOpt Van Geit et al., 2016 https://github.com/BlueBrain/BluePyOpt Single cell model optimization on HPC
systems

CINECA N/A https://www.cineca.it/ Hosting of the Virtual Machines where the
HHNB and the Service Account Utility are

installed

CSCS N/A https://www.cscs.ch/ HPC system where the optimizations are
run

EBRAINS Model Catalog N/A https://model-catalog.brainsimulation.eu/ Hosting of the single cell models chosen
by the users for optimization

EBRAINS
Hodgkin-Huxley Neuron
Builder

This paper https://github.com/ebrains-cls-
interactive/hbp-bsp-hh-neuron-builder

N/A

EBRAINS
NeuroFeatureExtract

Bologna et al., 2021 https:
//github.com/ebrains-cls-interactive/hbp-
bsp-hh-neuron-builder/tree/master/efelg

Feature extraction workflow (web
interface)

eFEL N/A https://github.com/BlueBrain/eFEL Feature extraction workflow (core
package)

NEURON Carnevale and Hines,
2006

https://www.neuron.yale.edu Model building

Neuroscience Gateway Sivagnanam et al., 2013 http://www.nsgportal.org HPC system where the optimizations are
run

Service Account Utility N/A https://github.com/ebrains-cls-
interactive/eb-clsi-service-account

Optimization job submission on behalf of
users with no credentials on HPC systems

is a score defined by the total error associated with each
individual and calculated as the sum of the absolute deviations
of the features observed in the simulated activity from its
experimental counterpart.

In terms of implementation, while the BluePyOpt library is
agnostic with respect to the model folder and file organization,
the models in the dataset (and the model files the users can
upload) are organized following a specific folder structure.
The mechanisms folder contains the NEURON (see Table 1).
mod files that describe the kinetics of the ion channels (these
files contain instructions formalized in the NMODL language).
The morphology folder contains the .asc file describing the cell
morphology. These files are ASCII-encoded text files handled by
the Neurolucida neuron reconstruction software. They contain
tree-structured text building blocks appropriately formatted to
represent the neural morphology in terms of compartment
coordinates in the 3D space. Neuron somas are represented
as contours named “cellbody.” The config folder contains: (1)
The features.json file (describing the feature values used in
the optimization process); (2) the protocols.json (describing
the somatic current injection stimuli protocol applied to the
experimental traces used in the feature extraction step); (3) the
parameters.json file (reporting the model ion channels inserted
in the morphology compartments, their distribution in the

relative compartments, the constant parameters—the resting
potential, the temperature, the capacitance of the membrane and
the reversal potential of Na and K—and the list of conductances
to be optimized for each compartment together with their
minimum and maximum values, range and distribution); (4)
the morph.json file, which indicates the morphology file name.
Finally, the model folder contains the analysis.py, evaluator.py,
and template.py files used for launching the optimization process
on the HPC systems and performing the model activity analysis
on the optimized model after the optimization process has
been finalized. Any of the models available in the HHNB
can be downloaded, should the user need an example of a
structured model file.

BluePyOpt has been installed on CSCS HPC and NSG
systems (see Table 1) using Spack,14 a package management
tool designed to support multiple versions and configurations
of software packages on a wide variety of platforms and
environments. The software resides in dedicated folders where
software packages are indexed and must be imported/loaded
in the submitted configuration files executed once the
job is launched.

14 https://spack.io
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Service account utility

A service account is generally defined as a user account
with special privileges on a specific system, which is used by
the account owner (a physical person, legally responsible for
the account usage) to submit jobs on behalf of third parties.
The Service Account Utility we developed and integrated in the
HHNB consists of a backend application implemented through
the Django REST framework15 and running on a dedicated VM
(hosted on the CINECA supercomputer center) and available
to the developers through a set of APIs allowing to request
a job submission to the CSCS-DAINT system (see Table 1).
More specifically, to submit jobs (or perform other operations
like results fetching or job listing) on the HPC supercomputers
via the service account, users need to login to the EBRAINS
authentication system via the HHNB GUI in order for the
application to recognize them as EBRAINS account holders.
Once the login has been completed, a token is generated that
unequivocally identifies each user. This token is sent to the
Service Account Utility server together with every request and
its validity is verified before the operation is authorized. In the
backend, once a request is received, the token is extrapolated
and used for accounting operations needed to keep track of the
time of job submission, allocated quota, job status, etc., in a local
PostgreSQL database.

Usage

Overview

The HHNB is a full-stack web-application for data-driven
optimization of single cell neural models. The driving principle
of the HHNB is to provide the scientific community with
a user-friendly online tool that allows optimization of the
equation parameters of a biophysically detailed single neuron
model, implemented in the NEURON simulation environment
(Hines and Carnevale, 1997), with respect to experimental data,
in order to increase the accuracy of its electrophysiological
behavior and the plausibility of its biophysical details (see
section “Model selection”).

The HHNB consists of: (1) A frontend, which provides a
point-and-click interface through which the users can execute
the various steps of the optimization workflow (e.g., visualize
the electrophysiological traces, set the optimization parameters,
submit the jobs to the HPC systems), and (2) a backend,
where system operations and data processing are performed
(e.g., feature extraction, optimized model analysis) while hiding
the technical details of the implementation from the users.
The HHNB interacts with external platforms, where data and

15 https://www.django-rest-framework.org/

models are stored and computational resources are hosted
(i.e., the CSCS Object Storage, the EBRAINS Model Catalog
and the HPC Systems) and made available to the user in a
transparent manner (see Figure 1A and section “Methods”). The
optimization workflow consists of four main steps: (1) Feature
extraction/upload; (2) model selection/upload; (3) optimization
parameter setting and launch; (4) optimized model simulation
(see Figure 1B). In order to provide as much flexibility as
possible, the HHNB does not force the users to follow the
workflow steps in a given order. For example, users might want
to explore (and select) the models available for optimization or
visualize the HPC systems at their disposal before performing
the feature extraction procedure. Additionally, it is possible
to upload one’s own feature and/or model files so as to
leverage the HHNB functionalities to perform analysis and
optimization on one’s own scientific results (either combined
with the datasets available in the HHNB or consistently and fully
provided by the users).

The HHNB GUI has been designed to be simple and
intuitive. The main/overview page allows users to initiate a new
workflow or upload one that has been previously saved (the
“Save” button is made available once the workflow is initiated);
each workflow is uniquely identified via a workflow ID. The
main workflow page reflects the context separation between
the operations to be performed before and after the model
optimization via two panels, the “Cell Optimization” and the
“Single Cell Simulation Run” (see Figures 2A,B). The former
gives access to dedicated subpages and windows to perform the
feature extraction, model selection and optimization parameter
configuration; the latter allows to run simulations of the
optimized model. In addition to the possibility to upload one’s
own feature and model files in their relative sections, the users
can also download or delete partial results or selected data
(e.g., the extracted feature files or the model chosen to be
optimized) and start over with the relevant steps. Finally, the job
optimization submission and the simulation run are available
(e.g., via the activation of the dedicated buttons) once all the
needed operations are completed, as indicated by the red/green
indicators at the bottom of the relative panels (see Figure 2B).

Feature extraction

To optimize the model parameters and behavior against
the observed electrophysiological functioning of the neuronal
cell of interest, a feature extraction procedure that allows
the extraction of relevant characteristics of neural signals is
available in the HHNB. The feature extraction process is
enabled through the integration of a web-application, the
NFE, that allows visual inspection of electrophysiological traces
(see Figure 3A), feature extraction parameter setting, feature
selection and results download. The tool has been thoroughly
described in Bologna et al. (2021) and is hosted in the
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FIGURE 1

The Hodgkin-Huxley Neuron Builder (HHNB) architecture and workflow. (A) From top to bottom: The HHNB frontend allows to interact with
the web application in order to extract electrophysiological features from recorded or simulated data, choose a model from the EBRAINS Model
Catalog or upload the model’s components, submit the optimization job to an HPC system, fetch the optimized model and run the simulation.
The HHNB backend performs the feature extraction, the optimized model analysis and all the data management operations (e.g., files and
folders creation, data upload/download). The interaction with the external platforms is guaranteed via direct access (CSCS Object Storage and
Model Catalog) or dedicated APIs (HPC Systems). (B) The various steps involved in the HHNB workflow. Users are offered flexibility to undertake
these steps in the order of their choosing.

same VM as the HHNB, guaranteeing a seamless interaction
between the two frameworks (see the “Methods” section).
Briefly, the NFE allows to select electrophysiological traces
from a dataset of recordings hosted in the EBRAINS KG or
contributed by research collaborators and made available via
the application GUI. The provided data are labeled according
to their cellular and experimental characteristics (e.g., species,
brain area, electrical type, stimulus amplitude) and can be

explored via a visualization interface that allows one to zoom
the traces in and out and selectively choose the signals from
which the features will be extracted (the users can also upload
and appropriately label their own data). The GUI also allows the
feature extraction parameter configuration and the selection of
features of interest to be performed before the extraction process
is launched. The latter uses the eFEL and BluePyEfe Python
libraries that offer advanced functionalities for the data analysis
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FIGURE 2

(Continued)
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FIGURE 2 (Continued)

The HHNB GUI. (A) The Homepage allows users to initiate a new workflow or upload a previously saved one from their local machine. The
header presents, in the top-right section, four icons that allow to (from left to right): (1) Go to the Homepage; (2) open the HHNB Guidebook,
which offers detailed documentation for the usage of the HHNB; (3) play the web application video tutorial; (3) login to the EBRAINS
authentication system (users must be authenticated to submit jobs to the CSCS HPC system). (B) The workflow page presents two panels (from
top to bottom): (1) Cell optimization and (2) single cell simulation run. The Cell Optimization panel is divided into three sections that allow to
(from left to right): (1) Extract electrophysiological features via the NeuroFeatureExtract (NFE) web application, upload user’s own data,
download or delete current feature files; (2) choose a model from the EBRAINS Model Catalog, upload user’s own models previously
downloaded from the HHNB, download or delete current model file; (3) choose the HPC system to be used for the model optimization process
and set the job and optimization algorithm parameters. The Single Cell Simulation Run panel allows to check the status of submitted jobs and
fetch them from the HPC systems.

step and the result file formatting (see section “Methods”). The
output format is compatible with the BluePyOpt optimizer,
and the results files are transparently managed in the creation
of the folder structure to be submitted to the HPC system
for the optimization process (see section “Model selection”).
We suggest that users extract features from homogeneous
electrophysiological traces, namely from recordings acquired
from cells displaying the same neural behavior. This is because
using traces with heterogeneous spiking behaviors, for example
those recorded from cells belonging to different electrical
types (Markram et al., 2015), might lead to a biophysically
implausible model.

Model selection

A NEURON model optimization consists of the quest for
the best set of peak ion channel conductance and passive
electrical properties, consistent with the electrophysiological
characteristic of the experimentally recorded neuronal voltage
traces that the model is aiming to reproduce. HHNB users select
an entry from a list of models (see Figure 3B). These have
already been optimized in the framework of a research study
focusing on the behavior of hippocampal cells (Migliore et al.,
2018), via the BluePyOpt optimizer (see section “Methods”)
against specific hippocampal neural data.

Using one of these validated models as a starting point and
leveraging the target parameter mean and standard deviation
values obtained in the feature extraction step, users can run their
own optimization to develop a model that better reproduces the
selected data. The available models are hosted in and fetched
from the EBRAINS Model Catalog (see section “Methods”),
which contains, for each model, a detailed description, a
download link, the version history and, optionally, information
on validation tests undertaken on the model (i.e., how well the
model reproduce experimental findings). With respect to the
biophysical properties of such models, the properties, which
the models are provided with, are, mainly, the membrane
passive conductance and the equilibrium potential (defined
as gpas and epas in the NEURON modeling environment,
respectively). The peak ion channel conductance has been
optimized in the original models (independently for soma, axon,

basal and apical dendrites, namely each compartment type of the
morphology) since it shapes the electrophysiological properties
of the neuron through its variations. More specifically, the
ion channels in the models are: 1) a sodium current (Na);
2) four different types of potassium currents (KDR, KA, KM,
and KD); 3) three different types of calcium currents (CaN,
CaL, CaT), the non-specific Ih current, and two different
types of Ca-dependent K + currents (KCa and Cagk). All the
compartments containing calcium channels are provided with
a calcium extrusion mechanism, featuring a single exponential
decay of 100 ms. In general, channels are uniformly distributed
in all dendritic compartments with the exception of KA and
Ih, whose density increases with distance from the soma
in pyramidal cells. Finally, the electrophysiological features
against which the models available to the users were originally
optimized, were extracted (via the eFEL library, see section
“Methods”) from recordings of individual cells grouped by
electrical type (e-type), classified according to their firing
patterns (Markram et al., 2015), using the Petilla convention
(Ascoli et al., 2008). In the available models, the e-types
considered were: (1) cAC (continuous accommodating cells);
(2) bAC (bursting accommodating cells); (3) cNAC (continuous
non-accommodating cells).

Most importantly, while the models available from within
the HHNB for further optimization are built according to the
described paradigm and properties, the selected model is not
necessarily used “as is,” in that the users can modify it—e.g.,
change the model description in the source file, remove or
add model files—thanks to a dedicated panel accessible via the
“Manage files” button (see Figure 2B). Provided that the files
needed for the execution of the BluePyOpt optimizer are not
editable and the same folder structure of the available models
is kept, the interface can be used to create the model from
scratch, namely, without previous selection of a model from the
provided list (see Figures 4A,B).

Optimization job submission

The HHNB relies on the computational power of HPC
systems to carry out the model optimization process. In order
to exploit high-performance computing facilities related to
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FIGURE 3

Feature extraction and model choice interface. (A) The HHNB integrates, in a dedicated window, the NFE web application that allows users to
extract the electrophysiological features of interest against which the single cell neural model will be optimized. (B) The model to be optimized
can be chosen from a list of models available in the EBRAINS Model Catalog. For each model, a panel is provided where information on the
model components and metadata, and representative images of the model morphology and behavior are displayed. In order to access more
detailed information about the models, the relative EBRAINS Model Catalog pages can be opened via the top-right arrow button.
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FIGURE 4

Manage files panel. (A) The model components (i.e., files and folders) are accessible through the left menu. The folder content is visible in the
right panel after a folder is selected. Via the top-right buttons, users can upload, download, delete and update the folder content. Via the
bottom-right button, specific files (e.g., the feature extraction result files) can be edited. (B) An example of a file (i.e., features.json) in edit mode.
A dedicated button (i.e., the floppy disk icon) allows to save the modified file.

the HBP, the users need to be members of an HPC project.
In the HBP/EBRAINS framework, users complying with the
requirement of having both an EBRAINS account and an
HPC project membership on one of the partner platforms
have their HPC and HBP identities mapped together. This
allows transparent job submission (i.e., without credential
requirements) to the HPC systems from the EBRAINS
platforms, e.g., the EBRAINS JupyterLab (lab.ebrains.eu) or
from web applications that use EBRAINS authentication (as in
the case of the HHNB). In the HHNB, we provide an interface
where the CSCS-DAINT and the NeuroScienceGateway (NSG)
can be chosen as HPC systems for the optimization jobs
(see Figure 5; in the case of NSG username and password
must be provided).

While this authentication (either via token or via
credentials) and submission procedure comes with almost
no extra-effort for researchers exploiting their own HPC
allocation or able to easily get one, it is likely inoperable by
prospective users who are not accustomed to nor have the

qualification for completing a HPC project submission (e.g.,
students), do not belong to any research group, or act as
independent researchers. To overcome this problem, prone
to drastically reduce the number of the HHNB users, we
developed a service, the Service Account Utility (see Figure 6
and section “Methods”) that grants any HHNB visitor a limited
amount of resources (10,000 node-hours overall by default,
but an increase is possible upon request) for computationally
intensive job submission. Both the CSCS-DAINT and NSG
systems are available to be used via the service account utility
and more platforms are being integrated to further extend
this functionality.

The job configuration panel provides entries to set both
the algorithm and the optimization run parameters. The users
can set the maximum number of generations and the number
of offspring that the genetic algorithm, implemented in the
BluePyOpt optimizer, will adopt while converging toward a
solution (see section “Methods”). With respect to the system
configuration, the number of nodes and cores of the chosen
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FIGURE 5

Optimization job configuration. The user can choose the HPC system where the model optimization will be run. There are currently four
options available: If the users already have an account (and is part of a project) on the CSCS or NeuroScience Gateway (NSG) supercomputers,
they can use their own credentials and quota for the execution of the job. While using NSG requires the insertion of username and password,
the CSCS and EBRAINS users’ accounts are automatically mapped together so that no credential insertion is required. In case the users do not
have their own account on any of the available HPC systems, they can submit the job via the CSCS or NSG service accounts that only require a
registration on the EBRAINS platform (to generate a user token at runtime) and provide a limited quota for job submission.

HPC platform can be set as well as the maximum run time (after
which the process is interrupted). For the models presented in
Migliore et al. (2018), and available for selection in the HHNB
(see section “Model selection”), a typical optimization run had
the number of offspring set to 128 and the maximum number of
generations set to 60. For a typical optimization on the CSCS
HPC system, 6 nodes equipped with 24 CPUs per node were
used; the overall optimization time was approximately 15 h.
While this number is representative of a sample optimization,
it might change, even significantly, depending on the number of
parameters to be optimized, the number of features considered
and the optimization parameters chosen (e.g., the offspring size).
Hence, since the quota deducted from the user’s total amount
is the one effectively consumed during the job execution, and
not the one requested at submission time, users may wish to
set a larger run time for their submissions, so as not to take

the risk of having their job interrupted before the optimization
has been finalized.

Optimized model fetching and analysis

The optimization process can last from a few minutes up
to several hours, depending on an ensemble of factors (e.g.,
optimization and HPC system parameters, complexity of the
model to be optimized). In order to allow the users to easily
check the status of the optimization job and fetch the results
once the process has ended, an interactive window is available
(see Figure 7). This allows users to visualize the HPC Job ID,
the Workflow ID (the unique identifier of the HHNB workflow
from which the job was submitted), the status of the job (e.g.,
queued, running, successful) and the submission date and time.
The output of the optimization process, regardless of whether it
was successful or not, can be downloaded to the HHNB server
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FIGURE 6

The Service Account Utility. (A) Service Account workflow: once logged in to the EBRAINS authentication system, a user token is generated and
sent to the Service Account server. Here, the EBRAINS OIDC engine is queried to check the validity of the token. Information on the job to be
submitted (e.g., quota, job id, time requested) are stored in the Service Account database. The job is then submitted on behalf of the user to the
HPC system. Once the job is completed, the Service Account APIs allow to fetch the results and provide them to the user in a transparent way.
(B) Architecture of the Service Account database: Six tables are used to keep track of the submitted jobs’ details, users’ quotas and project used.
For each table property, the data type is indicated; primary and foreign keys are noted as PK and FK, respectively.

first and, successively, to the user’s local machine. Upon success,
the optimization output is written in a dedicated folder (called
checkpoints) that includes a .pkl file with the hall of fame (i.e., the
ten best individuals, namely the best performing model variants
developed during the process) of the optimization and a log
reporting the population statistics and the individual genealogy.

The NEURON optimized model is stored in a .hoc file. After
the results have been downloaded, an analysis step is triggered,
which generates the electrophysiological traces reproducing the
behavior corresponding to the best solution in the hall of fame.
The analysis also generates a plot of the objective scores for the
best parameters found and a plot displaying the evolution of
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FIGURE 7

HPC job result fetching. A dedicated window allows the users to check the status of the submitted jobs, grouped by HPC systems, and
download them for model analysis and simulation.

the scores observed in consecutive generations of the algorithm
(see section “Example workflow: Optimization of a hippocampal
pyramidal cell model”). All the optimization results and analysis
files can be downloaded by the users.

Model simulation run and registration
in the Model Catalog

The optimized model is compiled on the HHNB server
and made ready for simulation. In order to provide the
users with a fully fledged simulation environment where
the simulation parameters can be set and the ongoing
simulated activity visualized and downloaded, we embedded the
BlueNeuronAsAService (BlueNaas) simulation framework in
the HHNB GUI (see Figure 8A). This tool reads the NEURON
model (via a dedicated API that transparently enables the model
upload) and offers a user-friendly interface that allows to: (1)
Visualize the cell morphology both in a 3D interactive image
and as a dendrogram; (2) select the neuron compartment from
which the neural activity will be recorded; (3) set the stimulus
parameter (e.g., temperature, stimulus amplitude and duration,
simulation time); (4) visualize the simulated neural activity
via an interactive plot; (5) download the simulated activity in
a .csv file. Should the users be satisfied with how well the
optimized model reproduces the electrophysiological recordings
(or behaves, in general) they can save it to the EBRAINS Model
Catalog by inserting the model details in a dedicated panel
(see Figure 8B). The model files (in .zip format) are saved in
a publicly available EBRAINS Collab and the download link
(together with the model properties) is made available in the

newly created Model Catalog entry. Upon request, the registered
model can be made available in the HHNB as one of the model
entries to be chosen for the optimization (see section “Model
selection”).

Example workflow: Optimization of a
hippocampal pyramidal cell model

We shall go through an entire single neuron model building
workflow, in order to demonstrate the functionalities, flexibility,
benefits, ease of use of the HHNB. While the tools and
software packages needed for optimizing a single cell NEURON
model already exist, and are freely available online (e.g., eFEL,
BluePyEfe, BluePyOpt; see sections “Feature extraction, Model
selection, Optimization job submission, Optimized model
fetching and analysis, Model simulation run and registration
in the Model Catalog”), these resources are not natively glued
together in an integrated environment and would require the
development of ad hoc code and visualization frameworks
for the completion of a whole workflow. Conversely, thanks
to the HHNB, the users will just go through point-and-
click actions, thus facilitating the exploration of different
data/model coupling, the investigation of optimal HPC resource
settings, and the reproducibility of the optimization workflows.
Table 2 reports an example data and parameter set that can
be adopted to complete a comprehensive and successful (i.e.,
leading to a model able to faithfully reproduce the experimental
data) optimization workflow: (1) selection of two experimental
recordings, a subset of traces, and the features to be extracted; (2)
choice of the model whose parameters we intended to optimize;
(3) configuration of the optimization parameters with respect to
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FIGURE 8

Model simulation. (A) The BlueNaas web application is integrated in the HHNB in order to run a model simulation, after the model has been
optimized and fetched from the HPC. The GUI allows to set the simulation and stimulation parameters, visualize the cell morphology both in 3D
and as a dendrogram, select the recording compartment, visualize the simulated activity, and download the membrane potential value
(recorded over the entire simulation) as a .csv file. (B) A dedicated panel for metadata specification is provided to the users in case they want to
register the optimized model in the EBRAINS model catalog.
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TABLE 2 List of experimental traces, stimuli, features, model and optimization settings adopted for the optimization workflow example.

Contributor Species Structure Region Type Etype Cell name Filename

Thomson’s lab, UCL Rattus-norvegicus Hippocampus ca1 Pyramidal-cell Cacpyr 95831003 95831003

95831004 95831004

Stimulus amplitudes selected.

1 nA, 0.8 nA, 0.6 nA, –0.2 nA, –0.6 nA, –0.8 nA.

Extracted features.

“inv_fifth_ISI,” “inv_first_ISI,” “inv_fourth_ISI,” “inv_last_ISI,” “inv_second_ISI,” “inv_third_ISI,” “mean_frequency,” “Spikecount,” “steady_state_voltage,” “voltage_base.”

Model to be optimized.

Rattus norvegicus > hippocampus > pyramidal cell > CA1_pyr_cACpyr_mpg141208_B_idA_20190328144006.

Optimization settings.

# Gen: 24; Offspring: 10; # Nodes 6; # Cores: 24; Runtime: 2; HPC system: CSCS-DAINT.

both the optimization genetic algorithm and the requested HPC
system resources.

The results of the optimization are shown in Figure 9. The
low standard deviation of the observed objective values (see
Figure 9A) indicates that the optimization process was able to
capture the average feature values extracted from the recorded
activity. This result is reached thanks to the genetic algorithm
implemented by the BluePyOpt optimizer, which refines the
parameter values over several generations (see Figure 9B). As a
result of an effective optimization, the simulated neural activity
can reproduce the average experimental behavior (e.g., in terms
of number of spikes, voltage base value, spike timing) (see
Figure 9C). Depending on the variability of the experimental
data, the features of interest and the model to be optimized,
a fine tuning of the optimization process settings might be
required, for example in terms of number of generations and
offspring to be set.

Discussion

In the framework of the HBP (Amunts et al., 2016) and
the EBRAINS research infrastructure,16 we have developed
an online resource for the optimization of biophysically
detailed single cell NEURON models (Hines and Carnevale,
1997) based on experimental results. The HHNB allows
users, via a user-friendly GUI, to go through an entire
model building workflow that includes: (1) The extraction
of electrophysiological features from a dataset of traces or
from recordings provided by the user; (2) the choice of
a model to be optimized or the upload of well-described
model files built by the user; (3) the optimization of
the model based on the extracted features; the interface
allows the configuration of the parameters related to the
genetic algorithm underlying the optimization as well
as the specification of the HPC system resources to be

16 https://ebrains.eu/

used for running the process; (4) the simulation of the
optimized model via a graphical interactive interface, which
offers functionalities for setting simulation and stimulus
parameters as well as visualizing and downloading the
simulated neural activity.

The HHNB adds unique features to the ecosystem of tools
and platforms for neural data analysis and simulation. Thanks
to the integration of several software packages and online
web applications in a user-friendly online environment, the
HHNB offers a plethora of functionalities that usually require
distinct workflows and/or stages of application execution,
software installation and data homogenization. The feature
extraction is run using the NFE resource (Bologna et al.,
2021), embedded in the HHNB and residing in the same
VM as the HHNB so as to allow a seamless communication
between the two web applications and faster data and result
file management. Data available in the NFE are hosted in
the EBRAINS KG or in public EBRAINS data containers.
The NFE exploits the BluePyEfe and the eFEL Python
libraries (see section “Methods”) by hiding from the user
the technical details of configuration file writing and data
management (as required when both tools are run in a
standalone manner on a local machine) and exposing a
user-friendly point-and-click interface, instead. The models
available for the optimization are fetched from the EBRAINS
Model Catalog (see Table 1), which provides details and
links related to the modeling work carried out in the
framework of the HBP/EBRAINS research infrastructure as
well as results concerning the validation of models against
experimental observations (Sáray et al., 2021). A tight
integration is also in place between the HHNB and the HPC
systems available for job optimization: via the UNICORE
Python library or dedicated APIs for the interaction with
the CSCS-DAINT system and the NSG, respectively, and
using an intuitive web interface, the HHNB seamlessly
allows to authenticate to the remote platforms, configure
the job execution files and fetch the optimization results.
With respect to HPC use, an additional service has been
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FIGURE 9

Model Optimization results. (A) The objective scores convey information on the deviation of the electrophysiological features computed on the
simulated activity from the same features values extracted from in vitro experiments and used in the optimization process (see Van Geit et al.,
2016). Close-to-zero values have not been reported for ease of visualization. (B) The sum of the smallest objectives tends to decrease as the
number of generations adopted for the genetic algorithm execution increases. (C) Example of simulated model activity recorded at soma
location for a 1 nA step stimulus amplitude, plotted against one of the experimental traces selected for the extraction of the features used for
the model optimization. The spike count and the spike timing are comparable as well as the voltage base value. Given that the experimental
behavior that the model aims to capture is obtained against the average feature values extracted from multiple recordings, individual simulated
and experimental traces will present variable differences, depending on the extent of success of the optimization process.
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developed to guarantee the availability of the HHNB to as
large an audience as possible: the Service Account Utility
allows the optimization jobs to be run (and the workflow
to be completed) by users who neither have credentials on
any of the available HPC systems nor are part of any HPC
project. The only requirement for using such functionality
is to have an EBRAINS account (registration is free at
https://ebrains.eu/register, and only requires an institutional
email address). Finally, the BlueNaaS simulation tool has
been embedded in the HHNB interface using a dedicated
API, specifically developed for this purpose, that allows to
transparently upload the optimized model to the BlueNaaS
server, display the model morphology, set the execution
and stimulus parameters, and run the simulation. Via the
same interface, users can also register the model in the
EBRAINS Model Catalog and make it available to the
scientific community.

While the HHNB already offers a complete environment
for electrophysiological data analysis, model optimization
and simulation, a number of improvements and upgrades
are planned in order to provide the users with a better
experience and further promote collaborative research.
The interaction with the EBRAINS KG is being made
tighter: we plan to develop an interface that automatically
updates the list of available electrophysiological traces and
NEURON models suitable for the optimization workflow
as soon as they are available in the KG. A further
improvement will leverage the EBRAINS provenance
engine, currently under development, to keep track of
the data recordings used, the parameters adopted for
the feature extraction and the model optimization, the
model files chosen or uploaded by the users and the
HPC resources exploited. This will allow to flawlessly
reproduce users’ workflows for data comparison and
validation or further analysis. Finally, we plan to strengthen
the collaborative aspect of the HHNB by creating a
seamless integration with the EBRAINS Collaboratory
environment.17 The EBRAINS Collaboratory provides a
framework to create and share documents, tools, code
and applications via dedicated workspaces called Collabs,
which are individually linked to a data drive18 that can
be used as a common repository. In order to provide
the scientific community with a resource able to foster
research collaboration, we plan to leverage the storage
space of the EBRAINS Collaboratory and the services it
offers for saving and sharing the HHNB relevant data
and metadata files, to allow partners and collaborator to
visualize, download, finalize or modify existing or newly
created HHNB workflows.

17 https://wiki.ebrains.eu

18 https://drive.ebrains.eu
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