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A Lyapunov approach for the exponential
stability of a damped Timoshenko beam

Andrea Mattioni, Yongxin Wu, Yann Le Gorrec

Abstract— In this technical note, we consider the sta-
bility properties of a viscously damped Timoshenko beam
equation with spatially varying parameters. With the help
of the port-Hamiltonian framework, we first prove the exis-
tence of solutions and show, by an appropriate Lyapunov
function, that the system is exponentially stable and has
an explicit decay rate. The explicit exponential bound is
computed for an illustrative example of which we provide
some numerical simulations.

Index Terms— Distributed parameter systems, port-
Hamiltonian systems, Viscous damping, Exponential stabil-
ity.

I. INTRODUCTION

The Timoshenko beam theory is often used in engineer-
ing applications to represent the propagation of vibrations
in mechanical systems such as buildings, aircraft structures,
flexible robots and micro grippers [1], [2]. In this technical
note, we consider the Timoshenko beam Partial Differential
Equations (PDEs) with space-varying parameters and viscous
damping. In the case of constant parameters, the system has
already been proven to be exponentially stable in [3], using
the Gearhart-Herbst-Prüss-Huang spectral method [4]. In [3]
the authors prove that there exists M > 0 and w > 0 such
that ||T (t)z0|| ≤Me−wt for all z0 ∈ Z, but do not suggest any
estimation of these two quantities. The same result with space
varying parameters has been proved in [5] using the same
techniques. Then, in [6] the authors constructed a Lyapunov
function to prove the exponential stability in case of constant
parameters, but without making explicit the state’s norm decay
rate. Moreover, different studies focused on the stabilisation
problem in the case of the presence of damping in only
one beam dynamics, e.g. vertical or rotational dynamics. In
particular, in [7] the authors used a Lyapunov function to
show that the system is exponentially stable if and only if the
wave propagation speeds of the two dynamics are identical. A
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technical extension to linear and nonlinear operator equations
using Lyapunov techniques can be found in [8], [9]. Over the
last twenty years, the port-Hamiltonian (PH) framework has
proved to be a useful tool for stability analysis and control
design for PDEs. It has been used to design static [10],
linear dynamic [2] and nonlinear dynamic [11] PDEs boundary
controllers able to exponentially stabilize the origin of the
closed-loop system. Existing results using the PH framework
have been obtained without considering internal dissipation
(e.g. viscous damping for flexible beams). The absence of
internal dissipation renders it difficult to explicitly find the
exponential bound parameters, and only “existence” results
have been assessed [12].

Inspired by the work in [9] and [7], in this technical
note we construct a Lyapunov function with crossing terms
in order to prove the exponential stability in the case of
spatially varying parameters with viscous damping in both
the vertical and rotational dynamics. Moreover, the proposed
Lyapunov function allows to compute the parameters M, w of
the exponential bound ||T (t)z0|| ≤Me−wt . This work relies on
the PH framework [13], [14] for the result on the existence
and uniqueness of solutions, and on [15] for the state variable
selection.

The paper is organized as follows. In Section II, we recall
some technical preliminaries that will be useful for the stability
proof. In Section III, is stated the main result of the paper i.e.
exponential stability with an explicit formulation of the decay
rate of the solution. Then, a numerical example is presented to
validate the theoretical results. This technical note ends with
some conclusions in Section IV.

II. PRELIMINARIES

A. Usefull inequalities

Throughout the paper, we make use of some standard
inequalities that are often used in the literature on the control
of PDEs. We recall three classical inequalities, that hold for
all functions f ,g : Ω→ R with Ω ∈ RN , N ∈ N≥1:
Young’s inequality

f g≤ 1
2α
| f |2 + α

2
|g|2, (1)

for all α > 0.
Cauchy-Schwarz inequality∫ L

0
f (ξ )g(ξ )dξ ≤

(∫ L

0
f (ξ )2dξ

) 1
2
(∫ L

0
g(ξ )2dξ

) 1
2
. (2)



2

Triangle-type inequality

( f ±g)2 ≤ 2(| f |2 + |g|2). (3)

In the next lemma we introduce a Poincaré-type inequality
that can be derived from [16, Theorem 256], changing the
integration interval from [0,1] to [0,L].

Lemma 2.1 (Variation of the Wirtinger’s inequality): For
any absolutely continuous function f such that f (0) = 0,∫ L

0
f (x)2dx≤

(
2L
π

)2 ∫ L

0

(
d
dx

f (x)
)2

dx. (4)

B. Lyapunov stability theory
Let z belong to a Hilbert space Z and consider the linear

differential equation

ż = Az z(0) = z0 (5)

where we assume that the operator A with domain D(A) is the
infinitesimal generator of a C0-semigroup T (t) on the state
space Z. In the following we denote the solution of (5) with
initial condition z0 as z(t,z0) = T (t)z0. Now, we introduce the
concept of Lyapunov function for (5).

Definition 2.2: A continuous functional V : Z 7→ [0,∞) is
a Lyapunov functional for (5) on Z if V (z(t,z0)) is Dini
differentiable at t = 0 for all z0 ∈ X and there holds

V̇+(z0) := limsup
t→0

V (z(t,z0))−V (z0)

t
≤ 0. (6)

�
Since in most practical cases, the limit (6) it is not easy
to compute, we rely on Lemma 11.2.5 of [17] to establish
the relation between the Dini time derivative (see Definition
A.5.43 in [17]) and the Fréchet derivative (see Definition
A.5.31 in [17]). In fact, if V is Fréchet differentiable, then
for z ∈ D(A), V (z(t,z0)) is Dini differentiable and

V̇+(z0) := dV (z0)Az0 (7)

where dV is the Fréchet derivative of V . In the following,
we cite a part of Theorem 11.2.7 from [17], that will be
instrumental to prove exponential stability.

Theorem 2.3: Suppose that V is a Lyapunov functional for
(5) with V (0)= 0. If there exist two positive constants κ1,κ2 >
0 such that V (z)≥ κ1||z||2 and V̇+(z)≤−κ2V (z) for all z ∈ Z,
then the origin is globally exponentially stable, i.e.

||z(t,z0)|| ≤

√
V (z0)

κ1
e−

κ2
2 t . (8)

III. MAIN RESULT

A. Port Hamiltonian formulation of the Timoshenko’s
beam with viscous damping

We consider the dynamics equations of a clamped Timo-
shenko beam with viscous damping

ρ
∂ 2w
∂ t2 = ∂

∂ξ

(
K
(

∂w
∂ξ
−φ

))
− γ

∂w
∂ t

Iρ
∂ 2φ

∂ t2 = ∂

∂ξ

(
EI ∂φ

∂ξ

)
+K

(
∂w
∂ξ
−φ

)
−δ

∂φ

∂ t

w(0, t) = φ(0, t) = 0

K(L)
(

∂w
∂ξ

(L, t)−φ(L, t)
)
= γ(L) dw

dt (L, t)

EI(L, t) ∂φ

∂ξ
(L, t) = δ (L) dφ

dt (L, t).

(9)

The term ξ ∈ [0,L] identifies the spatial coordinate, while
w(ξ , t) and φ(ξ , t) represent the deflection and the relative
rotation of a beam cross-section in the rotating frame at
position ξ and time t, respectively. E(ξ ), I(ξ ) are the spatially
dependent Young’s modulus and moment of inertia of the
beam’s cross-section, respectively. ρ(ξ ), Iρ(ξ ) are the spatially
dependent density and mass moment of inertia of the beam’s
cross-section, respectively. The mass moment of inertia of the
cross-section is defined as Iρ(ξ ) = I(ξ )ρ(ξ ). K(ξ ) is defined
as K(ξ ) = kG(ξ )A(ξ ), where k is a constant dependent on
the shape of the cross-section G(ξ ) is the shear modulus and
A(ξ ) is the cross-sectional area. γ(ξ ) and δ (ξ ) represent the
space depending translating and the rotating components of
the viscous damping, respectively. Throughout this paper, all
physical parameters and their reciprocals are assumed to be
absolutely continuous, positive definite and belonging to the
L∞([0,L]) equivalent class of functions. Following [15] we
define the energy variables,

z1 = ρ
∂w
∂ t

z2 = Iρ

∂φ

∂ t
z3 =

∂w
∂ξ
−φ z4 =

∂φ

∂ξ
(10)

such to write the PH representation of the system with z =
[z1 z2 z3 z4]

T

ż = P1
∂

∂ξ
(H z)+(P0−G0)(H z) (11)

where,

P1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 P0 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


H =


1
ρ

0 0 0
0 1

Iρ
0 0

0 0 K 0
0 0 0 EI

 G0 =


γ 0 0 0
0 δ 0 0
0 0 0 0
0 0 0 0

 .
(12)

We define the state space Z = L2([0,L],R4) and we equip it
with the energy inner product

〈z1,z2〉Z = 〈z1,H z2〉L2 =
∫ L

0
zT

1 H z2dξ (13)

such that the state’s norm is defined as ||z||Z =
√
〈z,z〉Z while

the energy writes

E =
1
2
〈z,z〉Z . (14)

Following [18], we define the boundary flow and effort as a
composition of the co-energy variables at the boundary of the
spatial domain[

f∂ (t)
e∂ (t)

]
=

1√
2

[
P1 −P1
I I

][
(H z)(0, t)
(H z)(L, t)

]
. (15)

The boundary flow and effort are instrumental to define
the boundary operators such to obtain a well-posed (in the
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Hadamard sense) set of PDEs

B1z(t) =WB1

[
f∂ (t)
e∂ (t)

]
=

[
1

ρ(0) z1(0, t)
1

Iρ (0)
z2(0, t)

]
B2z(t) =WB2

[
f∂ (t)
e∂ (t)

]
=

[
−K(L)z3(L, t)
−EI(L)z4(L, t)

]
C1z(t) =WC1

[
f∂ (t)
e∂ (t)

]
=

[
K(0)z3(0, t)
EI(0)z4(0, t)

]
C2z(t) =WC2

[
f∂ (t)
e∂ (t)

]
=

[
1

ρ(L) z1(L, t)
1

Iρ (L)
z2(L, t)

]
(16)

with

WB1 =− 1√
2

[
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0

]
WB2 =

1√
2

[1 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 −1

]
WC1 =

1√
2

[
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

]
WC2 =

1√
2

[0 0 −1 0 1 0 0 0
0 0 0 −1 0 1 0 0

]
.

(17)
We can now define the operator

J z = P1
∂

∂ξ
(H z)+(P0−G0)(H z) (18)

with domain

D(J )= {z∈ Z |H z∈H1, B1z= 0,B2z=−S(L)C2z} (19)

and S = diag{γ,δ}. In the following proposition, we show that
the operator J with domain D(J ) generates a contraction
C0-semigroup, or equivalently that the dynamical system (11)
is well-posed.

Proposition 3.1: The operator J in (18) with domain (19)
generates a contraction C0-semigroup on the state space Z.
Moreover, it is true that

Ė+ = 〈J z,z〉Z
= −

∫ L

0

{
γ

ρ2 z2
1 +

δ

I2
ρ

z2
2

}
dξ − (C2z)T S(L)C2z.

(20)

Proof: For the generation result, is sufficient to use
Theorem 6.9 of [13]. For the energy time derivative, we
compute

Ė+(z) = dE(z)J z = 〈J z,z〉Z
=

∫ L

0

(
P1

∂

∂ξ
(H z)+(P0−G0)(H z)

)T
H zdξ

= −
∫ L

0
(H z)T G0(H z)dξ

+
∫ L

0

(
P1

∂

∂ξ
(H z)+P0(H z)

)T
(H z)dξ .

(21)
We notice that the first term of the last equation corresponds to
the first term in (20), while the second term, after integration
by parts, makes appear the second term in (20).

Next, we present two inequalities that will be useful in the
consequent stability analysis with Lyapunov arguments.

Lemma 3.2: For any function z3,z4 ∈ L2([0,L],R), the fol-
lowing inequalities hold through∫ L

0

(∫
ξ

0
Kz3ds

)2

dξ ≤ k1

∫ L

0
Kz2

3dξ , (22)

∫ L

0

(∫
ξ

0
EIz4ds

)2

dξ ≤ k2

∫ L

0
EIz2

4dξ . (23)

with k1 =
( 2L

π

)2
K̄ and k2 =

( 2L
π

)2
ĒI, where K̄ = esssup

ξ∈[0,L]
K(ξ )

and ĒI = esssup
ξ∈[0,L]

EI(ξ ).

Proof: To obtain the first inequality we apply Wirtinger’s
inequality of Lemma 2.1∫ L

0

(∫ ξ

0 Kz3ds
)2

dξ ≤
( 2L

π

)2 ∫ L
0 (Kz3)

2dξ

≤
( 2L

π

)2
K̄
∫ L

0 K(z3)
2dξ .

(24)

The second inequality can be obtained in exactly the same
manner.

B. Stability analysis
The aim of this section is to find an appropriate Lyapunov

function allowing to show the exponential stability of the
system and to explicit its decay rate. The Lyapunov function
will be composed of the natural energy of the system together
with two cross-coupling terms. More precisely we define the
Lyapunov function as

V = n0E +n1F1 +n2F2 (25)

with n1,n2 > 0 while F1,F2 are defined as

F1 =
∫ L

0
z1

(∫
ξ

0
Kz3ds

)
dξ , F2 =

∫ L

0
z2

(∫
ξ

0
EIz4ds

)
dξ

(26)
Lemma 3.3: For any state z∈ Z the Lyapunov function (25)

is well-defined, i.e. it is finite in all the state space Z.
Proof: The energy term E in (25) is bounded as soon

as z ∈ Z. The function F1 can be bounded by using firstly the
Young’s inequality and secondly Lemma 3.2∫ L

0
z1

(∫
ξ

0
Kz3ds

)
dξ ≤ 1

2

∫ L

0

(∫
ξ

0
Kz3ds

)2

dξ

+
1
2

∫ L

0
z2

1dξ

≤ 1
2

k1

∫ L

0
Kz2

3dξ +
1
2

∫ L

0
z2

1dξ

(27)
which is bounded as soon as z ∈ Z. The term F2 can be
bounded in a very similar manner.
Since the objective of this Lyapunov study is to obtain an
inequality of the type V̇+ ≤ −κ2V , the choice of the F1,F2
crossing terms is justified by the need of making appear the
missing negative square terms in the time derivative of the
Lyapunov functional. Similarly, as in [7], the general idea
comes from the fact that for i ∈ {1,2,3,4}∫ L

0

∂ zi

∂ξ

(∫
ξ

0
zids

)
dξ =

[
zi

∫
ξ

0
zids

]L

0
−
∫ L

0
z2

i dξ . (28)

In the next proposition, we show that the functional V is
positive definite and bounded by the energy if the constants
n0,n1,n2 are chosen appropriately.

Proposition 3.4: For all n0,n1,n2 > 0, the Lyapunov func-
tion V in (25) is such that:

i) V (z) ≥ κ1||z||2 for all z ∈ Z, with κ1 =

min{
(

n0
2 −

n1ρ̄

2

)
,
(

n0
2 −

n2 Īρ
2

)
,
(

n0
2 −

n1k1
2

)
,
(

n0
2 −

n2k2
2

)
},

with ρ̄ = esssup
ξ∈[0,L]

ρ(ξ ) and Īρ = esssup
ξ∈[0,L]

Iρ(ξ ).
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ii) V (z) ≤ ηE for all z ∈ Z, with η =
max{(n0 +n1ρ̄) ,

(
n0 +n2 Īρ

)
,(n0 +n1k1) ,(n0 +n2k2)}.

Proof: i) We apply Young’s inequality (with α = 1 and
f replaced with − f ) to get

V ≥
∫ L

0

{( n0
2 −

n1ρ

2

) z2
1

ρ
+
(

n0
2 −

n2Iρ
2

)
z2
2

Iρ

n0
2 Kz2

3 +
n0
2 EIz2

4−
n1
2

(∫
ξ

0
Kz3ds

)2

− n2
2

(∫
ξ

0
EIz4ds

)2
}

dξ

≥
∫ L

0

a1︷ ︸︸ ︷(
n0
2 −

n1ρ̄

2

)
z2
1

ρ
+

a2︷ ︸︸ ︷(
n0
2 −

n2 Īρ
2

)
z2
2

Iρ
a3︷ ︸︸ ︷(

n0
2 −

n1k1
2

)
Kz2

3 +

a4︷ ︸︸ ︷(
n0
2 −

n2k2
2

)
EIz2

4dξ

(29)

where Lemma 3.2 has been applied to obtain the second
inequality. Defining κ1 = min{a1,a2,a3,a4} we obtain the
inequality of item i).
ii) We apply Cauchy-Swartz and Young’s Inequalities with
α = 1 to get

V ≤
∫ L

0

{( n0
2 + n1ρ

2

) z2
1

ρ
+
(

n0
2 +

n2Iρ
2

)
z2
2

Iρ

n0
2 Kz2

3 +
n0
2 EIz2

4 +
n1
2

(∫
ξ

0
Kz3ds

)2

+ n2
2

(∫
ξ

0
EIz4ds

)2
}

dξ

≤ 1
2

∫ L

0

b1︷ ︸︸ ︷
(n0 +n1ρ̄)

z2
1

ρ
+

b2︷ ︸︸ ︷(
n0 +n2 Īρ

) z2
2

Iρ
b3︷ ︸︸ ︷

(n0 +n1k1)Kz2
3 +

b4︷ ︸︸ ︷
(n0 +n2k2)EIz2

4dξ ,

(30)

where Lemma 3.2 has been applied to obtain the second
inequality. We define the constant η = max{b1,b2,b3,b4} to
obtain the inequality of item ii).

In the following theorem, we present the main result of
this paper, i.e. we show the exponential stability of the
Timoshenko beam model with viscous damping making use
of the Lyapunov function in (25).

Theorem 3.5: Consider the Timoshenko’s beam equation
with space-varying parameters (11) and the Lyapunov func-
tional V in (25), then the norm of the C0-semigroup generated
by the operator (18)-(19) can be bounded by

||z(t,z0)|| ≤

√
V (z0)

κ1
e−

κ2
2 t (31)

where κ1 > 0 is defined in point i) of Proposition 3.4,
κ2 = β

η
> 0 with η defined in point ii) of Proposition 3.4

and β = min{c1,c2,c3,c4} > 0 with ci defined in (39) and
ci = ess inf

ξ∈[0,L]
ci(ξ ) with i ∈ {1,2,3,4}.

Proof: We start by computing the estimates of the
Dini’s time derivative of the functionals F1, F2 composing the

Lyapunov functional in (25)

Ḟ1,+ =
∫ L

0

{(
∂

∂ξ
(Kz3)− γ

ρ
z1

)(∫ ξ

0
Kz3ds

)
+z1

(∫
ξ

0
K
(

∂

∂ s

(
z1
ρ

)
− z2

Iρ

)
ds
)}

dξ

=
∫ L

0

{
∂

∂ξ
(Kz3)

(∫
ξ

0
Kz3ds

)
− γ

ρ
z1

(∫
ξ

0
Kz3ds

)
+z1

∫
ξ

0
K ∂

∂ s

(
z1
ρ

)
ds− z1

(∫
ξ

0

K
Iρ

z2ds
)}

dξ .

(32)
We apply integration by parts on the first and third terms while
using Cauchy-Schwartz in the second and fourth terms

Ḟ1,+ ≤
[

Kz3

∫
ξ

0
Kz3ds

]L

0
−
∫ L

0
(Kz3)

2 dξ

+

(∫ L

0

(
γ

ρ
z1

)2
dξ

) 1
2
(∫ L

0

(∫
ξ

0
Kz3ds

)2

dξ

) 1
2

+
∫ L

0
z1

([
K
ρ

z1

]ξ

0
−
∫

ξ

0

z1
ρ

dK
ds ds

)
dξ

+

(∫ L

0
z2

1dξ

) 1
2
(∫ L

0

(∫
ξ

0

K
Iρ

z2ds
)2

dξ

) 1
2

.

(33)
We define the parameter Kd =

dK
ds while using Lemma 2.1 and

the Young’s inequality to obtain

Ḟ1,+ ≤ K(L)z3(L, t)
∫ L

0
Kz3dξ −

∫ L

0
(Kz3)

2dξ

+

(∫ L

0

(
γ

ρ
z1

)2
dξ

) 1
2
(( 2L

π

)2
∫ L

0
(Kz3)

2 dξ

) 1
2

+
∫ L

0

K
ρ

z2
1dξ −

∫ L

0
z1

K(0)
ρ(0) z1(0, t)dξ

−
∫ L

0
z1

(∫
ξ

0

Kd
ρ

z1ds
)

dξ +

(∫ L

0
z2

1dξ

) 1
2

·
(( 2L

π

)2
∫ L

0

(
K
Iρ

z2

)2
dξ

) 1
2

(34)
then, using again the Young’s inequality together with Cauchy-
Schwartz, Lemma 2.1 and the boundary conditions B1z = 0
we get

Ḟ1,+ ≤ L
2 (K(L)z3(L, t))2 +

∫ L

0

{ 1
2 (Kz3)

2− (Kz3)
2

+α1
2

(
γ

ρ
z1

)2
+ 1

2α1

( 2L
π

)2
(Kz3)

2

+ K
ρ

z2
1 +

1
2 z2

1 +
1
2

( 2L
π

)2
(

K
Iρ

z2

)2
}

dξ

+

(∫ L

0
z2

1dξ

) 1
2
(∫ L

0

(∫
ξ

0

Kd
ρ

z1ds
)2

dξ

) 1
2

≤
∫ L

0

{(
α1γ2

2ρ
+K +ρ + 1

2ρ

(
2LKd

π

)2
)

z2
1

ρ

+ 1
2Iρ

( 2LK
π

)2 z2
2

Iρ
−
(

K
2 −

K
2α1

( 2L
π

)2
)

Kz2
3

}
dξ

+L
2 (K(L)z3(L, t))2.

(35)
With a very similar procedure as for F1 we bound the F2 time
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derivative with

Ḟ2,+ =
∫ L

0

(
∂

∂ξ
(EIz4)−Kz3− δ

Iρ
z2

)(∫ ξ

0
EIz4ds

)
+z2

(∫
ξ

0
EI ∂

∂ξ

(
1
Iρ

z2

)
ds
)

dξ

≤ L
2 (EI(L)z4(L, t))2 +

∫ L

0

{ 1
2 (EIz4)

2− (EIz4)
2

+α2
2 (Kz3)

2 + (2L)2

2α2π2 (EIz4)
2 + α3

2

(
δ

Iρ
z2

)2

+ (2L)2

2α3π2 (EIz4)
2 + EI

Iρ
z2

2 +
1
2 z2

2

+ 1
2

( 2L
π

)2
(

EId
Iρ

z2

)2
}

dξ

≤
∫ L

0

{(
α3δ 2

2Iρ
+EI + Iρ

2 + 1
2Iρ

(
2LEId

π

)2
)

z2
2

Iρ

+α2K
2 Kz2

3−
(

EI
2 −

EI(2L)2

2α2π2 −
EI(2L)2

2α3π2

)
·EIz2

4
}

dξ + L
2 (EI(L)z4(L, t))2

(36)
where EId =

dEI
dξ

and α1,α2,α3 > 0 are constants to be deter-
mined later. We replace (35), (36) and (20) in the Lyapunov
function’s time derivative

V̇+ = n0Ė++n1Ḟ1,++n2Ḟ2,+ (37)

and considering B1z = 0, B2z =−S(L)C2z we obtain

V̇+ ≤ −
∫ L

0

{
c1

z2
1

ρ
+ c2

z2
Iρ
+ c3Kz2

3 + c4EIz2
4

}
dξ

−c5

(
z1(L,t)
ρ(L)

)2
− c6

(
z2(L,t)
Iρ (L)

)2 (38)

with functions

c1 =
n0γ

ρ2 −
n1α1γ2

2ρ
−n1K−n1ρ− n1

2ρ

(
2LKI

π

)2

c2 =
n0δ

I2
ρ

− n1
2Iρ

( 2LK
π

)2− n2α3δ 2

2Iρ
−n2EI−n2

Iρ
2

− n2
2Iρ

(
2LEII

π

)2

c3 =
n1K

2 −
n1K
2α1

( 2L
π

)2− n2α2K
2

c4 =
n2EI

2 −
n2EI(2L)2

2α2π2 −
n2EI(2L)2

2α3π2

c5 = n0γ(L)− Ln1γ(L)2

2

c6 = n0δ (L)− Ln2δ (L)2

2 .

(39)

Then, the constants n0,n1,n2 and α1, α2, α3 could be chosen
as following

1) Fix an arbitrary n2 > 0.
2) Select α2,α3 sufficiently large to obtain c4 > 0 ∀ξ ∈ [0,L].
3) Select α1 and n1 sufficiently large such that c3 > 0 ∀ξ ∈

[0,L].
4) The constant n0 is selected sufficiently large such that

c1,c2,c5,c6 > 0 ∀ξ ∈ [0,L] and κ1 of point i) of Proposi-
tion 3.4 is strictly positive κ1 > 0.

Therefore we have
V̇+ ≤−βE (40)

with β defined in the Theorem’s statement. Using point ii) of
Proposition 3.4 we obtain

V̇+ ≤−κ2V (41)

with κ2 = β

η
. Hence, using Theorem 2.3, we can conclude

that the origin is an exponentially stable equilibrium, and the
trajectories of system (11) fulfil the estimation (31).

Remark 1: The boundary conditions at ξ = 0 and ξ = L can
be interchanged without changing the result of Theorem 3.5.

Remark 2: In case of constant parameters ρ, Iρ ,K,EI it is
possible to prove that the Dini time derivative of the cross-term
functions in (26) becomes

Ḟ1,+ ≤
∫ L

0

{(
α1γ2

2ρ
+K +ρ

)
z2
1

ρ
+ 1

2Iρ

( 2LK
π

)2 z2
2

Iρ

−
(

K
2 −

K
2α1

( 2L
π

)2
)

Kz2
3

}
dξ

+L
2 (Kz3(L, t))

2

(42)

Ḟ2,+ ≤
∫ L

0

{(
α3δ 2

2Iρ
+ 3

2 EI
)

z2
2

Iρ
+ α2K

2 Kz2
3

−
(

EI
2 −

EI(2L)2

2α2π2 −
EI(2L)2

2α3π2

)
EIz2

4

}
dξ

+L
2 (EIz4(L, t))2.

(43)

Therefore, the Dini time derivative of the Lyapunov function
takes the same form as in (38), but with constant coefficients

c1 =
n0γ

ρ2 −
n1α1γ2

2ρ
−n1K−n1ρ

c2 =
n0δ

I2
ρ

− n1
2Iρ

( 2LK
π

)2− n2α3δ 2

2Iρ
− 3n2

2 EI

c3 =
n1K

2 −
n1K
α1

( 2L
π

)2− n2α2K
2

c4 =
n2EI

2 −
n2EI(2L)2

2α2π2 −
n2EI(2L)2

2α3π2

c5 = n0γ(L)− Ln1γ(L)2

2

c6 = n0δ (L)− Ln2δ (L)2

2 .

(44)

The explicit value of the exponential decay rate κ2 de-
pends on the coefficients n0,n1,n2 as well as on α1,α2,α3.
Given a certain set of values of the physical parameters
ρ, Iρ ,K,EI,L,γ,δ , different values of the exponential decrease
rate can be obtained by varying n0,n1,n2,α1,α2,α3 as soon
as the positive conditions of κ1,β and η are respected.

Example 1: Assume that the Timoshenko’s beam equation
in (9) have a length L= 1 and the parameters ρ, Iρ , K EI, γ, δ

have the following shape

(·) = 0.4+0.01sin(2πξ +φ(·)), (45)

with

φρ =
π

4
φIρ =

3π

4
φK =

π

6
φEI =

2π

3
φγ = 0 φδ =

π

2
.

Consider the Lyapunov function in (25) with constants n0 =
37, n1 = 67, n2 = 39 and α1 = 5, α2 = 1, α3 = 6. Therefore,
according to Theorem 3.5, we can compute the exponential
bound (31) coefficients κ1 = 4.77 and κ2 = β

η
= 4.01

64.47 =
0.0622.
In order to show the exponential bound of the system’s
state norm, we perform the numerical simulations using the
Matlab® environment and the “ode23tb” time integration al-
gorithm. To do that, a PH structure-preserving finite element
spatial discretization as described in [19, Section 2.2] has been
carried on (11) to obtain a finite dimensional Linear Time
Invariant (LTI) PH approximation of (11). In this specific
example, the system has been divided into 50 discretizing
elements; therefore, the LTI system has 200 states. To perform
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Fig. 1. w(ξ , t) and ẇ(ξ , t) evolution along time.

Fig. 2. State’s norm evolution along time and exponential bound with
current parameters selection.

the numerical simulations, we impose the initial conditions
z1(ξ ,0) = z2(ξ ,0) = 0 and z3 = 1

2 (1− cos( 2πξ

L )), z4 = 1−
cos( 2πξ

L ). Figure 1 shows the trajectory time evolution of
the beam deformation w(ξ , t) and its velocity ẇ(ξ , t), while
Figure 2 shows the state’s norm evolution together with the
computed exponential bound (31). We remark that the com-
puted exponential bound is conservative. This is because the
proposed Lyapunov parameters are not optimal with respect
to the maximum decay rate.

IV. CONCLUSIONS

In this paper, the exponential stability problem of Timo-
shenko’s beam equations with space-varying parameters and
with viscous damping in both the vertical and rotational
dynamics has been considered. After recalling some basic in-
equalities, Timoshenko’s equations have been rewritten in the
PH framework and the existence and uniqueness of solutions
have been proven. The exponential bound of the state norm
has been obtained using Lyapunov arguments. The defined
Lyapunov function is composed of the internal energy and two
crossing terms and it has been proven to be finite in all the

state space. Therefore, the time derivative of the Lyapunov
function along the system trajectories has been computed,
and the exponential stability has been proven. For sake of
generality, the Lyapunov function’s parameters have not been
a priori fixed. In an illustrative example, the exponential bound
coefficients are computed for Timoshenko’s beam equations
with space-varying parameters.
The future work will focus on the stabilization problem in case
the viscously damped flexible beam is part of a mechanism.
For this purpose, the Lyapunov function proposed in this
technical note can be used, in composition with other terms,
to prove exponential stability.
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Université de Bourgogne Franche-Comté, 2021.


