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Abstract

A pseudospectral Petrov-Galerkin code is developed inracdeompute nonlinear traveling waves in pipe flow of shé&amting
fluids. The framework is continuum mechanics and the rhécédgnodel used is the purely viscous Carreau model. The iode
validated, and a study of its convergence properties is mageshown that exponential convergence is obtained,itteie highly
nonlinear nature of the viscoudtlision terms. Physical computations show that, as compathdhe case of a constant-viscosity
fluid, i.e., a Newtonian fluid, in the case of shear-thinningd the critical Reynolds number of the saddle-node bétion where
the waves with an azimuthal wavenumiogy = 3 appear increases significantly when the non-Newtorfi@tts come into play.

Keywords: Pseudospectral methods, Pipe flow, Non-Newtonian fluids

1. Introduction measurement method). This increase is connected with the ap
pearance, in an intermittent manner, offfsil In setups where
The study of the transition to turbulence in pipe flow of New- N0 special care is taken to reduce perturbations, and when a
tonian and non-Newtonian fluids is an active area of researciNewtonian fluid is used, this Reynolds numBe(based on the
The transition to turbulence has an impact on the head lpsse®ean flow speedv,),, and the pipe diameter) is of the order of
which increase: delaying the transition could lead to a cedu 2000. On these topics, see e.g. [3, 4], and references ttherei
tion of power consumption. From a more fundamental pomﬂn non-Newtonian fluids, the relevant Reynolds number is the
of view, the interest of the scientific community in this sub- Wall-viscosity Reynolds numbeRey, defined in Eq. (32) be-
ject could be explained by the fact that there are still njmse  low, and based on the viscosity at the wall deduced from the
and controversies running, see e.g. the recent Study offdhe | wall shear-stress. The onset of the transition to turb@enea-
time of turbulence in [1]. The diculties with these studies, sured inthe same way appears to be larger than 2000. The first
as far as modelling approaches are concerned, stem from ti§&@€s to mention this delayed transition are, to our knovdedg
fact that the Hagen-Poiseuille base flow is linearly stabteafi  [5]. In their article, p. 210, one can read that ‘the onsetarit
Reynolds number, see e.g. [2] and references therein. Hen&&ion is slightly but progressively delayed in the sequemd
standard stability methods cannot be used. fluids ‘by a factor of about two in Reynolds number’, i.e. in
The same theoretical fliiculty exists for non-Newtonian flu- Some fluids transition comes in only fétey 2 4000. The
ids, which are ubiquitous in nature and industry: blood, syud comparison of the curvels vs Rey in the Fig. 3b, for a Newto-
pa|ntS, Cement’ po|ymer solutions are various examp'esa‘b‘f S nian f|UId and 5b for a non-Newtonian f|UId of [6] also shows
fluids. Most of them exhibit two rather fierent types of non- @ clear delay to the transition in the latter case. A receueics
Newtonian &ects. Firstly, they are often shear-thinning: manytacular example of delayed transition is given by the case of
of their flow properties can be described with a viscous modef-125% PAA (an aqueous solution of polyacrylamide, of con-
where the viscosity depends on the rate of strain (moregeci  centration 0.125% yw) in the Fig. 4b of [7]: in this fluid the
on the second invariant of the rate-of-strain tensor, seeEq level of fluctuationdr increases abruptly only fdrey = 8000.
below), decreasing when the rate of strain increases. §ggon  The interpretation of this delayed transition is not stnéfigr-
they may also display an elastic response to strain. ward, since all fluids are both, to certain extent, shearthig
Experimentally, one can define the onset of the transitiorand viscoelastic. Therefore it appears interesting tatrpadel
to turbulence in pipe flow as the Reynolds number at whichhis delayed transition with, for instance, a purely visseon-
the relative level; of fluctuations of the axial velocity, (the  stitutive law, in order to focus on the influence of the shear-
time-averaged value off(v; — (V2),)2/ (Vz),, With (v,), the time- thinning dfects in the absence of elastic response. This is the
averaged value of,), measured close to the wall, starts to in- aim of the work presented here.
crease significantly and quit the ‘noise’ value obtainedhia t As stated hereabove, one serioufidlillty encountered in the
laminar regimel; ~ 2—-5% depending on the setup and on themodelling of the transition to turbulence in pipe flow is thetf
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that the laminar base flow is linearly stable. One could use diwith p the pressure and

rect numerical simulations to attack the problem. At thagst

we should mention the work of [8], who focused, however, on = '“2 (2)

the transitional or turbulent regimes at laigey, Rey = 5200. . . . .

We want to use here an alternate approach, which has emergJEahae viscous-stress tensor. In Eq. (2)s the viscosity,

recently in the Newtonian studies. D=Vv+W (3)
Following the ideas of [9], developed for plane shear flows, - - -

it has been shown that nonlinear traveling wave solutiorteef is the rate-of-strain tensor, withthe velocity field. The con-

Navier-Stokes equation exist above a critical Reynolds -numstitutive law chosen is the Carreau’s law, which has a firm the

ber in pipe flow [10]. If ¢, 6,2) designate the cylindrical co- oretical base [17]. The viscosity

ordinates withz the axial direction of the pipe, these solutions

k]

are invariant under the rotatioh — 6 + 2r/mg with mp the o= ul2) = po + (Ho — Hoo) (1+ /lzrz)(nc iz (4)
fundamental azimuthal wavenumber, and under the traoslati

Z — zZ+ 2r/qo with qo the fundamental axial wavenumber. with 1 1

Moreover they are invariant under the spatio-temporalstran I; = 52 ‘D = EDijDij (5)

lations ¢ t) — (z+ 6zt + 6t) provided thatsz = ¢ 6t with ¢
the axial phase velocity. The Reynolds number at which the
wave solutions appear, through a saddle-node bifurcaterig
be viewed as a lower bound for the transition Reynolds numbe
Indeed, the transient turbulent states at intermediateéldy
numbers, in the transitional regime, i.e., theflis would ‘live’
upon the manifold of such nonlinear wave solutions, see e.g.
[11] and [12]. The relevant wave solutions have a fundamen-=
tal azimuthal Wavenumbe_rb =23 4, .. and appear at the nhence

critical Reynolds numberRe, = 1359 Res; = 1251 Rey = L = )-,2 @)
1647, ... when defined with the mean flow spe@g),, and the

pipe diameter. The corresponding Reynolds numbers defingdf'd the relevant shear stress

with the centerline velocity of the base flow and the pipe ra- T, = ,u(sz) 5 @)

dius areRe, = 1663 Resz = 1631 Reys = 228Q ... For

each azimuthal wavenumber, the axial wavenumber has beé&Ne use, as the flow variable controling the viscodifyinstead
determined by minimizing the critical Reynolds numBeg for  of y = VI, because for three-dimensional flows this last quan-
instanceqo(my = 2) = 1.55, go(my = 3) = 2.44 [13]. More tity is singular if the strains vanish. Other shear-thimgnhaon-
recently, nonlinear wave solutions withy = 1, which appear stitutive laws are often used. The power-law model has for in
at lower Reynolds numbeRe1» = 775 andRey 1 = 820, and  stance been used in [8]. This 2-parameters model is iniegest
present either two or one ‘shift-and-reflect’ symmetride(the  because of its simplicity, but a drawback is that an infinite v
one defined in Eq. 28 below), have also been found [14, 15fcosity is obtained if the strains vanisB, = 0. This leads to

The role of these new solutions is not already quite cleameso numerical problems in the Corresponaing flow regions, &hg.,

of them may support the ‘boundary’ between laminar and turpipe axis in pipe flow. On the contrary with the Carreau’s law
bulent flow, see e.g. [16]. (4) the viscosity is a regular function @ even atD = 0.

~ We present here a code that has been developed to COMPUig,e 4-parameters model (4) can be considered as a spe@al cas
in the pipe flow of a shear-thinning fluid, nonlinear wave solu f the 5-parameters Carreau-Yasuda model [18], which has fo
tions of the first class found historically in the Newtonia@se  jhsiance been used in [7] to reconstruct the rheologica- mea
by [10, 13]. The model is presented in Section 2 and the nUMekrements for the three fluids used. Notice that, of the three

ical methods in Section 3. In Section 4, we presenta vabdati {igs used in [7], 0.125% PAA can be well described by a Car-
of the code and a study of its convergence properties, by rguay model, as proves our Fig. 1. The dashed curve in Fig. 1
covering a forced analytic solution. In Section 5, we présengnqys that, if, in the situations studied, the shear ratesiat

physical results for waves witio = 3 andgo = 2.44, which (4 high, a 3-parameters Carreau model with= 0 could also
are the first ones to emerge in this class in the Newtonian casgg rejevant.

A concluding Section will follow.

Sthe second invariant of the rate-of-strain tenggithe viscosity
&t zero strainu,, the viscosity at infinite strain} the charac-
teristic time of the fluidne < 1 the shear-thinning index. Note
hat in a unidirectional shear flow with velocity = W(r) e,,

one has

= (e ®e+6,06) with ¥ = dd—vrvthe shear rate (6)

The first equation to be solved is the linear momentum equa-
tion
2. Mathematical formulation plow + (W) -v| = - Vpe + divz ©)

2.1. Carreau model. Basic equations with dimensional units Wherep is the density, and the total pressysg: contains the
Since we focus on shear-thinning fluids without elastic re_Contr|but|0n of the gravitational force. The dengitis assumed

sponse, the constitutive law is purely viscous: the strerssar :;ZZE‘;E?:‘”L i.e. the velocity field satisfies the incorsgitel-

g=-p +1 Q) divw = 0. (10)



10. — . . . . 2.3. Base flows

We recall that cylindrical coordinates, ¢, 2) are used. Ex-
cept for the validation and convergence tests of Sectiohet, t
flows are forced by a pressure field

0.1

Pot = —Gz (18)

Viscosity[Pa §

0.01 with G > 0 the constant pressure gradient. This drives, using a

laminar flow assumption, the base flow

0.001 — : :
0.001 01 10. 1000 vy = Wy(r)e,. (19)

Shear ratgl/s]

For this unidirectional flow, one is in the situation (6),,([@&nce
Figure 1: Flow curve: vsy = I for the 0.125% PAA fluid studied by [7].
The disks show the result of the Carreau-Yasuda model, wkich perfect I = (Wt”)2 , (20)
agreement with the rheological measurements (see the Fig. Z])of The
continuous curve shows the result of the Carreau model (4)p#rameters ; ; ; N ot ;
beingo = 4.22 Pa s 1., = 0.00372 Pa sl = 458 s nc = 0.34. The dashed deno_tlng vy|th a prime the derivative with respect tdherefore
curve shows the result of the Carreau model with the same pazesrestcept e ViSCOSity e

o . o B ) o1

thatu 0. The c_iott_ed line shows the characteristic shearyatel/ A for the Up = [1 + 2 (W{)) ] ) (21)
onset of shear-thinning.

The momentum Eq. (17) yields, in the axial direction, the ODE
2.2. Dimensionless units and parameters

1d ,
From now on hats denote the dimensional quantities, to dis- @ = ReG= - (ruW). (22)
tinguish them from the dimensionless quantities. We wi#,us
for the sake of simplicity, the Carreau model with This ODE and the conditions
1

e =3, (11) Wh(0) = 1, Wy(1) =0 (23)
which is considered to be a representative value of the sheagefine the base flow and the producbetween the Reynolds
thinning index, and number and the pressure gradient: 4 in the Newtonian case.

fleo = 0, (12)  In a dimensional setting, the first Eq. in (23) means that the

but these are not fundamental assumptions. Dimensiordeiss v typical velocityW is the centerline velocity in the base flow.
ables are introduced. The velocity scale is a typical vejosh _ _ _
(the centerline velocity in the base flow for the physical pom 2.4. General assumptions concerning the wave solutions

tations, as it will be explained in Section 2.3), the lengthle The physical study of Section 5 will aim at computing non-

is the radiusa’of the pipe, the time scale is the advection timeinear wave solutions of (17) that are finite-amplitude pesa-
to = &/Wo, the viscosity scale igo; the pressure and stress scaletions of (18), (19),

is ﬁwg. The dimensionless form of the Carreau’s law (4) reads

therefore Pot = -Gz+ P (24)
5 \-L/4
p=(1+21n) (13)
. and
with R “n
A:?:LWO (14) V=V, + U With uUu=ue +ve + we,, (25)
0 a

the ‘non-Newtonian’ number. The inverse of 1/4, is the  f, u, v, wdepending or only throughz — ct with ¢ the phase

dimensionless shear rate for the onset of shear-thinnifg T velocity. It is also assumed that these 4 fields are periodic,
larger 4, the stronger the shear-thinning, non-Newtonian, ef-

fects; 1 = 0 corresponds to a Newtonian fluid. The dimension- O 6+21/Mp OF Z+> Z+271/Go
less viscous-stress tensor = (B.uv,w) = (P,uv,w), (26)
—1 . .
T = Re"uD (15)  with mp € N* the fundamental azimutal wavenumbey,e R*
implies the Reynolds number the fundamental axial wavenumber. The fact that the pexturb

tion pressure fielgh has no mean gradient in the axial direction

Woap (16) corresponds to the hypothesis of a fixed pressure drop. Fhe in
fo sertion of (24), (25) in (17) yields

Finally, the dimensionless form of Eq. (9) is

Re =

ou + Wue, + Wy du + (Zu)-u

-Vp + divr — divry 27)

OV + (gv)-v = — Vpt + divr. a7)



with divr, = -G e, the viscous term associated with the baseln the case of a Newtonian fluid we noRe = Reay, since

flow. Egs. (17) and (27) are equivalent, and in the next Segtio #w = 1. If the flow is laminar (Hagen-Poiseuille flow), one
for simplicity, we will refer only to (27). has(v;);, = 1/2 anduw = 1, henceRe = Re This simple
Finally, it is assumed that the velocity fieddsndu fulfill the ~ relation breaks down, however, as soon as one considers non-

symmetry property of the first waves found in the Newtonianlinéar waves, since the mean flow speed departs fran In

case [10, 13], i.e. the ‘shift-and-reflect’ symmetry the non-Newtonian case, even in the laminar regime, beaduse
the parameter dependence of the base flows, onB&ag Re

(r. 6.2 = (r. -6, 2+ 7/q) We shall come back to this in Section 5.1. We will also show

= (u,Vv,w) — (u,-Vv,w). (28)  in Section 5.2 that the nonlinear wave solutions found Exsse

a viscosity field at the wall

2.5. Wall-viscosity Reynolds number

In non-Newtonian fluids, it is questionable to use in the def- u(r=1) = pw (35)
inition of the Reynolds number the viscosjy, Which is not
always representative of the level of viscosities in the lwho defined with the base flow. This relation, which will be predis
fluid domain. A more physical point of view is given by the numerically below (Tab. 2), justifies a posteriori the redsg
consideration of the global momentum equation, for a lamileading to (33).
nar or nonlinear wave solution. The axial component of this
equation shows a balance between the mean pressure gradient
which controls the head losses, and the tangential streas- 3. Numerical methods
eraged at the wall. Coming back, momentarily, to dimendiona
calculations, as show the hats, this equation reads 3.1. Spectral development

Trow = (T(F = 8,6,2),, = — }éa, (29) The Petrov-Galerkin formulation of [2, 20] has been used to
2 solve Egs. (10) and (27). The solutions are expanded asv®llo
From an experimental point of view, the same balance is lysual

assumed to hold, even in a transitional regime, at least once L M N2
a time-average has been taken. Experimentalists meagaring u= Z Z Z Z & m n KVigo,mmy,nk » (36)
can therefore determing,w. From this shear stress and the I=-Lm=-M n=1 k=1
rheological constitutive equation of the fluid, written @ndhe with the trial fields, of the form
form (8),

A _ o~ -~ 2 o

Traw = /J<(’YW) ) wo (30) Vige,mmy,nk = qug,mnh,n,k(r) eXP{i[mmﬂ + IqO(Z_ Ct)]} P (37)
they determine the ‘wall shear rafgy and then the correspond-
ing viscosity given in Appendix A. The cd@cientsamnk 0bey

fw = f(OGw)?) (31)

a_ =g 38
which is called the ‘wall shear viscosity’. They define on m k= Hmnk (38)

the base of this viscosity and of the mean flow speed a wallyith the star designating the complex conjugate, in order fo

viscosity Reynolds number v to be real. This rule and the symmetry (28) impose some
restrictions on the cdgcientsamnk. Denoting bya .. a ..

— U210 0
Rey = %;Op (32)  the real and imaginary parts af,nx, one has
w
with d = 2a the pipe diameter [5, 6, 7]. This wall-viscosity vn, aom =0, 8p=0,
Reynolds number is also the one that has been used in the nu- ¥n, Ym#0, Yk, a5, =0. @5 _mnk= —Qmnk>
merical study [8]. In addition to arising naturally from then- vl evenz 0, Vn, aon =0,

sideration of the mean pressure gradient, this Reynolddaum
has been shown to be the most relevant for stability analyses
(in a channel geometry) by [19]. Importantly, the wall shear
viscosity defined by (30), (31) is the viscosity at the wallhie Vvl even# 0, Ym# 0, Vn, Vk,
laminar unidirectional flow solution that exists at the \eswof
the parameters studied,

VYl odd Vn, aon2=0,

A —mnk= —Amnk
Vl Odd vm * 01 vns VKy al -mnk= almnk . (39)

aw = fin(f = 4). (33) Thus the velocity field depends only on the real fio&ents
Az Aomn fOr m > 0, a, for I > 0 odd, &, for | > 0
Turning back to dimensionless units, we note that the aati even,a,',;imkaH > 0. m> 0, which can be collected in a vector

between the Reynolds numbers (16) and (32) reads X of dimension
= (V)
Ray = 2 Reﬁ . (34) Net = (2L +1) (2M + 1) N; . (40)



3.2. Projection scheme term (Yu) - u in Equation (27); moreoveNG; is chosen odd

The trial fields being divergence-free, the only equation toto avoid having a point at = 0, and to be able to usefEkr-
solve is (27). Following [2, 20], this equation is projectetto ~ enciation matrices to evaluate the radial derivatives.ofrhe

test fields of the form number of azimuthal points
Vigemmnk = Vigummnk(r) expliimmyd + lgo(z— ci]} . (41) NG, = 3M +2if Mis odd 3M + 3 if M is even
which are given in Appendix A, using the scalar product the number of axial points
(VIV) = fffv.v*rdrdedz, (42) NG, = 3L+ 2if Lisodd 3L+ 3if L is even
Q

are dictated by the de-aliasing rule; besides, for tiiedinci-
ation matrices used to evaluate the azimuthal and axialaeri
Q = {(r,6,2) € [0,1] x[0,27/mg] x [0,27/q0]}.  (43) tives ofu, one wants an odd number of grid points. In prac-
tice, a partial summation technique is used to compudéthe
Because all terms in (27) satisfy the ‘shift-and-reflecthsye- grid points from the spectral expansion fioEentsaymnk, and

try (28), and their projected céiicients obey the rules (39), this then diferenciation matrices are used to compéte Relevant
projection yields exactlN; real equations. These equations —

can be written

The integration domain

quantities Iike(gu) -u anduD can then be obtained on the spa-
tial grid. The projection integrals (42) are computed withuSs
F(X,R8 := cD(X) + L(X) + Qx(X) + Re*H(X) = 0, (44) quadrature formula in the radial direction, trapezoiddsun
the azimuthal and axial directions.
with F(,Re, D, L, Q,, H functions from RNet to RN,
The linear operator® andL represent respectivelyd.u and 3 4. phase condition to set the phase velocity

Wiue; + Whou. The quadratic operat@p, representégu) - The physical wave solutions have a phase velocity that is not

The highly nonlinear operatdd representsjiv(,ug - ,ub%). a free parameter, but is determined by the advection by the

Since the test fields vanish at the pipe wall and are periclic anean flow. In fact, a phase condition must be added to the

the trial fields, forr verifying the same periodicity rules (26) EQs. (44) to prevent the solutions from drifting in the pipe a
= result of the translational invariance in the axial direatof the

one has . .
physical Eq. (27). We have chosen the phase condition
<divz'v> - —fffzzgv*rdrdadz. (45) .
#(X) = A Vomn1(r=01)-¢ = 0.  (46)
Particularly the periodic pressure gradient tefffin Eq. (27) nZ:; Lo

yields a contribution proportional tb : V v* which vanishes

since the test fields are divergence-free. The formula 4o The physical calculations will thus aim at computing theteec

used to calculatkl, which is therefore defined by a contribution _ X
proportional touD — uxDy) : ¥ V. X = (c) (47)
3.3. De-aliased pseudospectral method solution of
A fast computation of the nonlinear terms in Eq. (44) is pos-
. . X : =iz _ (F(X,Re 0
sible with a de-aliased pseudospectral method as desdobed F(X, Re) =1 e ) = o) (48)

instance in the Section 6.2 of [20]. A three-dimensionad @gi
introduced in the volume&, with Gauss-Lobatto points in the 35 Newton-GMRES method

radial direction, regularly spaced points in the azimutad L ) .
axial directions. The projected terms of Equation (27) dre a For the validation and convergence tests with a fixed phase

even under +— —r, hence the radial integration can be per-VElOCity €, one has to solve Eq. (44) to determiKe for the

formed with the Gauss-Lobatto quadrature formula retginin Physical wave computations, one has to solve Eq. (48) to de-
only the points in the interval € 10, 1], i.e. termine X andc. In both cases this is done with a Newton

method. Since the functiop (46) depends linearly oK, it is
A cos( jm ) forj=1,-- NG -1 simple to augment a method solving (44) in order to solve.(48)
! NG, 2 7 For clarity reasons, we will only describe hereafter thehudt
used to solve (44), by considering a case wlaefixed. The
more general case withunknown can be treated by replacing
NG, = 3N, +8if N, isodd 3N, + 7 if N, is even in what follows X by X andF by F, and correcting in accor-
dance the discussion orgF. We also only describe hereafter
This number has been determined by requiring that the Gausscase wher®eis fixed, postponing the evocation of a more
quadrature formula is exact for the projection of the nadin  general method whefReis variable to the next subsection.

5
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We start with a guess valug, of X not too far from the treated as a parameter, and to pass from a numerical solution
solution at the parameters studied (the determinatiofyafill (Xs, Rey) to another one on the solution branch on uses first an
be explained in Sec. 3.6). At the iteratigr- 1 of the Newton  Euler predictor formula,
method, the computation ofj.; from X; requires in principle

the knowledge of the gradient 6f, to solve (Xo,R®) = (Xs, Re) + 55(‘;_);,%%3. (54)
VxF(X,R9 - (Xjea = X)) = —F(X},Rg. (49) In this equationds is the curvilinear abscissa increment,
Formally whereas the tangent to the solution branch is computed by sol
ing
VxF = cD + L + VxQ, + Re'VyH . 50
’ - ’ °0 VF(XR)d—X+VeF(XR)@3—O (55)
The operator® andL are constant and simple; they are repre- xF(As R& ds R s RS ds

sented by matrices. On the contrary computing the full matri _ — " .
ces representing the gradients@fandH is a quite long task, together with a normalization condition. The system (55) is

which should be avoided, or at least not be done at each itef—ls‘O SOlt\éez \ftvr']tht? pIJlreconhd|t|oned G'\SEEES,[ mettthd' -l(—jhf? I(\jlew—
ation, especially concerning which is highly nonlinear. For on Te C?MRSS 0 ?ngsd a}s 2&15va2a " ' 'St. € mto II |ef th
this reason a GMRES method [21] is used to solve (49). Thé\lew_lpn- bsci metho Oegn' ].d nau gmma 'ItC c_onbro % €
restarted version of GMRES, the algorithm 4 of [21] is used,Cﬁé\C;?izzgiss(;'?ﬁg Lneccrt%nfk LRSe) one, with criteria based on
with a restart every 60 steps if convergence has not been 015- ds’ ds J*

tained before. The criterion of convergence is the choicé 2 o3 7 N ical perf
the ‘inexact Newton method’ of [22], witlk = 1 and the ex- <. Numerical performances

ponenta = 1.6. The action ofVxH on the vectors implied in The code is written in Fortran 95 and runs on PCs, Intel Xeon
the GMRES method is done with a finitefidirence formula of 5160 at 3.00 GHz. A typical run for physical computations, to
order 4. Note also that, instead of a Gram-Schmidt proces§btain the results that will be presented in Sec. 5, withdaun
Householder transformations are used in the GMRES methodion levels €, M, Ny) = (7,10, 30), takes around 45 minutes to
following [23]. To accelerate the convergence of the GMRESPass from one solution to the next one on the solution branch.

method, the preconditioner The peak of RAM use, reached during the GMRES computa-
tions, is of the order of & Gb. An underestimation of the order
P=20cD+L + VxQuq + REMH,, (51)  of magnitude of the RAM needed can be obtained by consider-

ing that 5 large matrices ®,; x Nyt double-precision floating

is applied to the system (49). The indexes ‘old’ mean that ity mpers (the matrice®, D, L, VxQuuq andH, of Equation
is not computed at each Newton iteration, but typically gver 51) have to be stored.

Newton iterations. Moreovet’ is the operator that represents
div(oiaD) - (52) 4. Validation and convergence tests

It corresponds to one contribution ¥xH: other contributions In order to test the code, we have performed consistency test

also exist, where the viscosity has to be varied. Right préieo  Similar to the ones exposed in the Section 4 of [26]. The ana-

tioning of the system (49) with the opera@defined by (51),  lytical solution

which is stored and used with a LU decomposition, appears to 1, - ' .

be eficient. The criterion of convergence of the Newton method ~ Ua = 5r*(1—r%)"coshr siné sinz-t/2),

is

Va = }rz(rz -1) [(7r2 - 3)coshr +

IXj = Xj-1ll < 1078 or [F(Xj,RE)l» < 107. (53) 2
rsinhr (r2 -1+ 2r sinhr)] cost sinz-1/2),

If the first inequality stops the Newton iterations, it is cked 3 2 Sinf?r si

that/|F (X, Re)[ is small; typically||F(X;, Ra|l» < 10°1°. Wa = r(1-r9sinfrr sing cose-t/2) (56)

has been forced in a case without pressure gradizrt Q) and

3.6. Continuation method - Euler predictor base flow ¢, = 0). A forcing term

For the test computations of Sec. 4, the guess VAlus a
simple perturbation of the real solution, which is knowne se Fa = —30Va + (YVa)-Va — Re'div(uaDa)  (57)
Eq. (63) below. For the physical computations of Sec. 5, the - -
situation is more complicated since the solutions are uwkno has been calculated by computing firstly the fogentsX, of
and the solution branches can present bifurcation point® T the spectral development g and secondlyfF, = F(X3, Re.
pseudo-arc length method of [24] is used to follow the so-Whereasv, is only rich in radial modes, and corresponds to
lutions in the parameter space, starting at the very beginni o =1 =1, my = m= 1 only, F, is rich in modes in all spatial
from Newtonian solutions obtained with the intermediatefo directions, because of the nonlinear naturg.ofThis is espe-
ing method of [13]. In the pseudo-arc length meth&#&is  cially true if the Reynolds number is not too large. Since the
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mnke the real and imaginary parts of Figure 3: FoRe= 10, A = 4, spectrum of the cdicientsF,’ | that constitute

(Va | Vimnk ), computed withN = 19 (see Eq. 65). (a) : Decimal logarithms F, computed withN = 19 (see Eq. 65). (a) : Decimal logarithms of the 3399
of the 24 cosiicients|Yf., | > 10710 vs the generalized wavenumitérefined ~ coeficients|Fy; | > 1071 vs the generalized wavenumbdér (b) : The disks
by Eq. (58). (b) : The disks (resp. squares) showAg) vs m (resp. logd(l) (resp. squares) show légm) vs m (resp. logB(l) vsl).
vsl) with the amplitudes defined by Egs. (59) and (60). In this csisee there
is energy only on the modes = | = 1, one hasA(1) = B(1), A(m) < 10~ for
m= 1,B() < 1014 for | # 1. projection coéficients{ F, | Vmnx ) for some values df m, n
andk. The relative errors between the integrals obtained with
novelty of our code is precisely the encodingddfuD with a Mathemgtlca and the corrgspondlng componentgptom-

. . L = puted with the fully numeric Fortran code are smaller than
nonlinear viscosity: given by (13), we have chosen to perform 4106
our first tests aRe= 10. The comparison of the spectrum\f :

the real and imaginary parts ¢V, | Vimnk ) forl,mn,k > 0,

Figure 2: Spectrum of the cfigientsY" ri

With the Fortran code, the forced momentum equation

shown in Fig. 2, and of the spectrum Bf, shown in Fig. 3, oV + (Vv)-v - _Vp+ Re‘ldiv(pD) + F (61)
demonstrates the richness of the latter. In the upper graphs = = as
these two Figures, the generalized wavenumber represented by
FX,Re — F5 =0, 62
K = vV +12+(m+ 1) +n? (58) (GRS - Fe (62)

has been solved with the Newton-GMRES method, starting
has been used to index the flbg@ents in a manner represent- from the initial condition
ing the ‘degree of oscillations’ in all spatial directionktbe

associated test fields. In the lower graphs, the quantities Xo = Xa + 1_%)0Xp- (63)
; In this equationX,, is the spectral development on the base of
— r 2 i 2 p
Alm) = IZ;([(almnk) + (@] - (59) the trial fields of the solenoidal vector field
N,
Uy = COs, VvV, = —sinfd, wp = r cosb. (64)
B(l) = o2+ (@ )2, 60

0 r;lk[(a'm”k) (B! (60) Convergence of the solution towards a fixed pofat quite

close toX, is obtained, and a discrete L2-error on the spatial

with amni designating, here, one projection integral, are usedgrid points between the corresponding figld, computed nu-

in order to show the ‘energy’ associated with a particularmerically, and the analytical field, has been computed. This

wavenumber. test has been performed with various valuedNothe number
Independently of the Fortran computations, a calculation oof real modes in each direction, i.e., according to Eq. (40),

F4 has been realized with Mathematica, through a formal com-

putation ofF, followed by a numerical computation of some N=2L+1=2M+1=N;. (65)

7
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N casest = 0.5, 1, 2 and 4. (a) : Axial velocity. (b) : Shear-rate. (c) : Viscgsit
Figure 4: peumal logarithm of the L2-9rror vs'the number of neoNg65) 1 Wo)rg o Uaw p o1
for a consistency test where the analytic solution (56) heenlforced. The 0 0.500 1 1 7 0
parameters arRe= 10 anda = 0 (disks), 1 (squares), 4 (stars). 05 0'517 08199 1220 3611 1.806
1 0.541 0.6107 1.637 3.038 3.038
0—— —— 11— 2 | 0567 04228 2365 2327 4.654
4 0.585 0.2933 3410 1.699 6.794
2+ -
s \ | Table 1: Properties of the base flows for various valuek of
S
o -6 1
ﬁ' sl 1 flows are controlled by the applied pressure gradient
g R -
L2 0k i 5 W2 5 W2 ~
~ P 1Y a
G=""e=222_-K,, (68)
_12F — a a Re aAd
_ 1 L L 1 L 1 L 1 L 1 L 1 L 1 L 1 . .
s 7 . 11 13 15 17 19 For the purpose of completeness, we show in Fig. 6 the base
N flows Wy, the corresponding shear-ratd4 and the viscosities
up for various values oft. They have been obtained through a
Figure 5: Same as Fig. 4, but fie= 1000. numerical solution of the problem (22), (23). Wheimcreases,

Wy (r = 1) increases only slightly, whereagy = up(r = 1)

The Fig. 4 has been obtained, which proves that exponenti:ﬂecreases strongly, hence

convergence occurs, even in the non-Newtonian cases(), d
despite the highly-nonlinear nature of the viscous terms in @ = - a(r,ubWé) 1 (69)
Eqg. (61). Another test has been performed at a higher value of
the Reynolds numbeRe = 1000. Fig. 5 has been obtained, decreases, as shown in the Tab. 1. The last column of this Tabl
which shows that fol > 0 one does not always converge shows that the dimensional pressure gradient needed mrsust
to X, = Xa. However exponential convergence still occurs,the base flow increases significantly wheincreases; note that
though in a slower manner, especially for the case 4 of a  the Egs. (66) to (68) are not valid for a Newtonian fluid<( 0).
strongly shear-thinning fluid.

5.2. Nonlinear waves

5. Physical results As stated in the introduction, we focus on the case of the
waves found by [10, 13] in Newtonian fluids that display the
5.1. Base flows lowest critical Reynolds numbd®e These waves correspond

For a given non-Newtonian fluid and pipe diameter, setling to an axial wavenumbey, = 2.44 and an azimuthal wavenum-
given by Eq. (14) amounts to set the characteristic velocity bermy = 3. Selecting these values of the geometrical param-
eters, we have first recovered (with the intermediate fgrcin
1. (66)  method of [13]) the Newtonian solutions far = 0, which
constitutes another validation of our code. Thus the dashed
curve in our Fig. 7 corresponds to the lowest curve in the
Fig. 7 of [13]. We have then increased the non-Newtonian pa-
p & rameterd by steps, and followed by continuation the solution
Re= ~—4. (67)  pranches. In theRe c) plane, as shown in Fig. 7, first for
A < 1 the non-Newtonian waves appear at lolerthan for
This Reynolds number is a ‘pressure-gradient Reynolds num} = 0, but then, ford > 1, the non-Newtonian waves ap-
ber’, since, according to the model described in Sectiondl.3 pear at higheRe A simpler picture is obtained, however, if

8

Wo =

ool

The Reynolds number (16) is also set to
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Figure 7: Phase velocities of nonlinear waves vs the preggadient Reynolds ~ Figure 8: Same as Figure 7, except that the wall-viscositynBlelg number
number formp = 3, go = 2.44. The dashed line shows the Newtonian case (34) is used. The disks denote the saddle-node points, wdeithe the critical
A = 0, the continuous lines of increasing thickness show thescas: 0.5, 1 waves.

and 2. The values of are displayed to the left of the saddle-node points.

0.55

one uses the Reynolds numtRey, more relevant for non-
Newtonian fluids, as the main parameter. As explained in 05
Sec. 2.5, this Reynolds number is the wall-viscosity Regsiol
number (34)Ray = 2Re(V,),, /uw. Because the factor/iy © 045
increases rapidly witi, as shown in the fourth column of
Tab. 1, whereas the mean flow spéeg,, remain roughly con-
stant (v;),, ~ 0.39), the onset of the waves is clearly delayed
when considered in terms &gey: compare Fig. 7 and 8. Note
that the Newtonian, dashed curve in Fig. 8 corresponds to the ¢35 ! >
leftmost curve in the Fig. 10 of [13]. From now on we denote 3600 4000 _ e 480¢
as ‘critical waves’ the waves that appear at the lowest alue
of Ray. The results of our Fig. 8, which are complemented byFigure 9: Convergence test for= 2. The continuous curve has been computed
the Tab. 2, clearly show a tendency to delay the transition agith the truncation levels indicated in Tab. 2,, M, N;) = (7,10,30). The
the non-Newtonian paramet@rincreases. In Tab. 2, the sixth dotted curve has been computed with lower truncation legelsM’, N) =
column shows the averaged viscosity at the wall in the afitic (-8 24)-

wave solutions: it coincides with the wall-viscosjiy, (33) of
the laminar flow (the third column of Tab. 1) withindB6. Nev-
ertheless, the fluctuations of the viscosity at the wall ame-n
negligible, as shown in the seventh column of Tab. 2, whic
displays the maximum fference between the viscosity at the
wall, computed at the grid points, and the averaged viscasit

0.4

waves. One observes, in Figs. 10a and 11a, a decrease of more
than 4 order of magnitudes between the largesffiments with

~ 1 andK = 30, which confirms that the solutions are well
converged. In Figs. 10b and 11b one also observes a decrease
of the energy with increasing andl. One remarks in Fig. 10b,
the wall, for 2 = 0, that one ha&\(2) > A(1), which means that there is

Suw = max| u(r =1,6,2) — (u(r = 1,6,2)),, | . (70) ~ ™more energy on 'Fhe modes in exi{s) t_ha_n on the modes in
0.z exp@3ig). The Fig. 11b shows that this is is not the case for

) o A=2.
All the computations in Fig. 7 and 8 have been performed e yelocity field of these nonlinear waves can be visualized

with the truncation levelsl( M, Nr) specified in the last Cf)l' in a simple way if one averages it in the axial direction, & [1
umn of Tab. 2. Convergence tests have been made to verify that, [13] did it. In most of their Figures, they substractera-

computations with lower truncation levels' (M’, Nf) suchthat o fiow with the same mass flux to this mean flow (see the
U'<sL-2 M<M-2 N <N-2, E_q. 5.2_ of [13]). This pr_ocedure _has a mea_ning in a Newto-
nian fluid, where the laminar flow is always given by the same
give quite similar curves. Such a convergence test is disgla parabolic function. On the contrary in a hon-Newtonian fluid
in Fig. 9. Note that, because of Eq. (40), the number of reathe laminar flow depends on the parameters, and it seems more
modes increases frold,,; = 4488 toNi = 9450 between the relevant to consider either the total mean flow, (¥),, or the
two truncation levels used. The variations of the Reynolden  mean flow minus the laminar base flow, i.@1),. The corre-
bers at the saddle-node points in tiRg(, c) plane obtained sponding fields are displayed in Fig. 12. The scales of all the
with the diferent truncation levels have been used to estimatelots are defined by the columns 8 to 11 in Tab. 2. On the plots
the error bars in the Tab. 2. At this stage it is interestingaio-  of (v,), (left column of Fig. 12), one observes a classical ef-
sider, as shown in Figs. 10 and 11, the spectra of the criticdect due to the shear-thinning: the streamwise velocitgden

9



A Rey Re C (VZ>r0 (;1([' = 1)>HZ Spw maX<Vz>z max{w), min (W) max(|v,|); (L: M, NI’)
0 1251+1 1629+3 0.491 0.384 1.000 0.000 0.70 0.057 -0.31 0.019 (7, 10, 30)
05| 1481+1 1567+1 0.485 0.387 0.818 0.089 0.67 0.062 -0.33 0.019 (7, 10, 30)
1 2028+3 1638+3 0.458 0.378 0.614 0.143 0.61 0.062 -0.39 0.019 (9, 12, 34)
2 3769+9 2016+5 0.480 0.395 0.429 0.120 0.61 0.055 -042 0.011 (7, 10, 30)

Table 2: Fomg = 3, qo = 2.44, properties of the critical wave solutions shown by thekslin Fig. 8. The third column is the corresponding value effitessure
gradient Reynolds number. The symbply is defined in Eq. (70). The max and min in the following columnstaken with respect to andé. The last column
indicates the truncation levels used for the computations.
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Figure 10: Spectrum of the critical wave in the Newtonianecés= 0. (a) : Figure 11: Same as Fig. 10, but in the non-Newtonian dase?. In (a) there

Decimal logarithms of the 9398 cfigients|a;;, | > 1071° vs the generalized  are 9442 coficientsla;; | > 10710,
wavenumberK defined by Eq. (58). (b) : The disks (resp. squares) show
log A(m) vsm (resp. logB(l) vs1) with the amplitudes defined by Egs. (59) and

(60). in the spectrum fonr = 2 (Fig. 11b).

to become roughly constant in a larger and larger region ne&@. Concluding discussion

the axis. This fect is essentially due to the base flow con-

tribution (see the Fig. 6a), since it is not visible on thetplo A Petrov-Galerkin code has been developed. It is similar, in
of (w), (right column of Fig. 12). On these plots one noticeshis principles, to the code of Meseguer and collaboratess, e
the presence of fast streaks near the pipe wall, which may bgecially to the Newton-Krylov version used in [27, 28]. How-
explained by the presence of 3 pairs of counter-rotating vorever, a major dterence is the encoding of a nonlinear viscosity
tices visible in the cross-stream fields. Indeed thesecesti that depends on the velocity field according to Egs. (4) ahd (5
transport some rapidly moving fluid in the region of the axisThis required a special care at the level of the Newton-GMRES
towards the walls. A remarkabldfect is the transition from 6 method, as explained in our Sec. 3.5. This code has been vali-
fast streaks, in Figs. 12a and b, foe 0 and 1, to 3 fast streaks, dated and its convergence properties have been studied- Spe
in Fig. 12c, ford = 2. ForA = 0, 6 fast streaks are also visible tral convergence is obtained, despite of the highly noalime-

in the Fig. 13a of [13], which we have been able to reproduceture of the relation between the viscosity and the veloaity€
The transition from 6 to 3 fast streaks can be seen as a coponents.

sequence of a spatial broadening of the cross-stream ostflow The main physical result of this work is the stabilizing influ
associated with the cross-stream vortices, as visiblegn®.  ence of shear-thinningfects on the nonlinear waves that may
The fact that one has 6 fast streaks doe 0 vs 3 fast streaks support the turbulent gis in pipe flow. As shown in the first
for 2 = 2 is obviously linked to the dominance of the secondcolumns of Tab. 2, the stabilization for the wave with théicai
azimuthal harmonic in the spectrum foe 0 (Fig. 10b) but not  wavenumbers for the Newtonian case (= 3 andqy = 2.44)
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be interesting to extend these computations to higher satie
the non-Newtonian parameteyto see if the ratidrg1)/Rg0)
continues to increase with for 1 > 2, which would lead
to a very strong stabilization at largein terms of the ratio
Ray(1)/Ren(0). This regime of largel is the experimentally
relevant one. Indeed, the inversion of the Egs. (34), whare w
consider that approximately(2,),, ~ 1, and (67), yields

fo A fod —
A = - Re = = R . 72
p a2 p a2 HwREy ( )
For the case of 0.125% PAA studied in [7], the factor
Figure 12: Visualization of the velocity field of the critioaaves averaged in M ~ 77 (73)
the axial direction, for (a)l = 0, (b)1 = 1, (c) A = 2. Left: contours of the p a2 ’

axial velocity(vy),; the contour steps are (méx),)/10. Right: axial velocity . . .
difference(w), = (v; — Wh), and arrows showing the cross-stream velocity Whereas a laminar computation such as the ones presented in

field (v.), = (u),& + (v),e. The contour steps for the axial velocity are Sec. 5.1, yields, for a typical wall-viscosity Reynolds raen

(max(w)z—mir_\<w)z)/10. The contour I?r?ew)z =0is drawr_l. In the grayst_:ale R_QN = 6000, a value of the wall-viscosiiyy =~ 0.004. This
plots dark regions denote slow velocities whereas cleapmegdenote high corresponds, according to Eq. (72), to

velocities.
A = 1900. (74)

is moderate in terms of the pressure-gradient Reynolds 8umbpreliminary studies for > 2 show that high truncation levels,
Re the transition is delayed froRg0) = 1630 in the New-  mgre precisely high values of, may have to be used in such
tonian casel = 0 to Rg2) = 2020 in the non-Newtonian case cases, which could pose practical problems, notably ingerim

A = 2. However, the transition delay becomes substantial whegyemory capacity. In order to overcome thigidilty, a matrix-
the wall-viscosity Reynolds numb@&wey, which is more rele-  free version of the code (with, for instance, a SOR precanit
vant for non-Newtonian fluids (Sec. 2.5), is used. In terms ofnq) might be developped, since storing the matrices irdgtie
Rew, the transition is delayed froRey(0) = Re= 1250 inthe  Equation (51) explains most of the memory use (cf. the discus
Newtonian casa = 0 toRey(2) ~ 3770 in the non-Newtonian  gjon in Section 3.7).

cased = 2. Itis our conviction that this delay is related to the aAnother relevant question that will be lesgfiult to solve is

experimental results mentioned in Introduction. the influence of the azimuthal and axial wavenumbers. A study
The delay factor, the ratio of the two Reynolds numbers, of this influence will be the object of a forthcoming paper.

Rey()) 1 ReQ)
Rey(0)  #w(1) Re0)

(71)  Appendix A. Trial and test fields

i The choice of the trial and test fields has been discussed in
r’[2, 20]. For the purpose of completeness, we list these ifmet

Newtonian waves. The role of the ratigidy between the vis- here. They are defined in terms of the functions

cosity at zero strain and the wall-viscosity/(dy = 2.365 in
the casel = 2, according to the Tab. 1) is remarkable. ltwould  h,(r) = (1-12) Tana(r), gn(r) = A -r?) hy(r) (A1)
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with T,, the Chebyshev polynomial of degragand of the op-
erators

d 1
D—a, D+—D+F. (A2)
Appendix A.l. Trial fields
In the casen = 0,
VI,O,n,l = rhnee s
Vionz = —ilrgner + Di(rgn)e;. (A.3)
except that, it =0,
Voon2 = hne;. (A.4)
In the casean = 0,
Vimni = —imrflg.e + D(rgn)e,
V|’mn’2 = _ilr(r+1hne§> + imr(rhnez, (A.5)

with o = o-(m) = 1 if mis odd, 2 ifmis even.

Appendix A.2. Test fields

They are all proportional to the Chebyshev weight function

W= 1/Vi-r2. (A.6)
In the casen =0,
Vioni = Whes,
Vion2 = W{_"qrzgner + [D+(r29n) + r3hn]ez} (A7)

except that, it =0,
Voonz = Wrhue;. (A.8)

In the casen # 0,

Vimni = W{-imrfgeer + [D(r**gy) + r¥*2hiley)
Vimnz = W(=ilr’*?h.e + imrf*he,), (A.9)
except that, it =0,
Vomnz = Wimr#hye, . (A.10)

In these last EqsB = g(m) = 1 if mis odd, O ifmis even.
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