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LEMTA, Nancy-Université& CNRS,
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Abstract

A pseudospectral Petrov-Galerkin code is developed in order to compute nonlinear traveling waves in pipe flow of shear-thinning
fluids. The framework is continuum mechanics and the rheological model used is the purely viscous Carreau model. The codeis
validated, and a study of its convergence properties is made. It is shown that exponential convergence is obtained, despite the highly
nonlinear nature of the viscous diffusion terms. Physical computations show that, as compared with the case of a constant-viscosity
fluid, i.e., a Newtonian fluid, in the case of shear-thinning fluids the critical Reynolds number of the saddle-node bifurcation where
the waves with an azimuthal wavenumberm0 = 3 appear increases significantly when the non-Newtonian effects come into play.
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1. Introduction

The study of the transition to turbulence in pipe flow of New-
tonian and non-Newtonian fluids is an active area of research.
The transition to turbulence has an impact on the head losses,
which increase: delaying the transition could lead to a reduc-
tion of power consumption. From a more fundamental point
of view, the interest of the scientific community in this sub-
ject could be explained by the fact that there are still mysteries
and controversies running, see e.g. the recent study of the life-
time of turbulence in [1]. The difficulties with these studies,
as far as modelling approaches are concerned, stem from the
fact that the Hagen-Poiseuille base flow is linearly stable for all
Reynolds number, see e.g. [2] and references therein. Hence
standard stability methods cannot be used.

The same theoretical difficulty exists for non-Newtonian flu-
ids, which are ubiquitous in nature and industry: blood, muds,
paints, cement, polymer solutions are various examples of such
fluids. Most of them exhibit two rather different types of non-
Newtonian effects. Firstly, they are often shear-thinning: many
of their flow properties can be described with a viscous model
where the viscosity depends on the rate of strain (more precisely
on the second invariant of the rate-of-strain tensor, see Eq. 5
below), decreasing when the rate of strain increases. Secondly,
they may also display an elastic response to strain.

Experimentally, one can define the onset of the transition
to turbulence in pipe flow as the Reynolds number at which
the relative levelIT of fluctuations of the axial velocityvz (the
time-averaged value of

√
(vz − 〈vz〉t)2/ 〈vz〉t, with 〈vz〉t the time-

averaged value ofvz), measured close to the wall, starts to in-
crease significantly and quit the ‘noise’ value obtained in the
laminar regime (IT ≃ 2−5% depending on the setup and on the

measurement method). This increase is connected with the ap-
pearance, in an intermittent manner, of ‘puffs’. In setups where
no special care is taken to reduce perturbations, and when a
Newtonian fluid is used, this Reynolds numberRe(based on the
mean flow speed〈vz〉rθ and the pipe diameter) is of the order of
2000. On these topics, see e.g. [3, 4], and references therein.
In non-Newtonian fluids, the relevant Reynolds number is the
wall-viscosity Reynolds numberReW, defined in Eq. (32) be-
low, and based on the viscosity at the wall deduced from the
wall shear-stress. The onset of the transition to turbulence mea-
sured in the same way appears to be larger than 2000. The first
ones to mention this delayed transition are, to our knowledge,
[5]. In their article, p. 210, one can read that ‘the onset of tran-
sition is slightly but progressively delayed in the sequence’ of
fluids ‘by a factor of about two in Reynolds number’, i.e. in
some fluids transition comes in only forReW & 4000. The
comparison of the curvesIT vsReW in the Fig. 3b, for a Newto-
nian fluid, and 5b, for a non-Newtonian fluid, of [6] also shows
a clear delay to the transition in the latter case. A recent, spec-
tacular example of delayed transition is given by the case of
0.125% PAA (an aqueous solution of polyacrylamide, of con-
centration 0.125% w/w) in the Fig. 4b of [7]: in this fluid the
level of fluctuationsIT increases abruptly only forReW & 8000.

The interpretation of this delayed transition is not straightfor-
ward, since all fluids are both, to certain extent, shear-thinning
and viscoelastic. Therefore it appears interesting to try to model
this delayed transition with, for instance, a purely viscous con-
stitutive law, in order to focus on the influence of the shear-
thinning effects in the absence of elastic response. This is the
aim of the work presented here.

As stated hereabove, one serious difficulty encountered in the
modelling of the transition to turbulence in pipe flow is the fact
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that the laminar base flow is linearly stable. One could use di-
rect numerical simulations to attack the problem. At this stage
we should mention the work of [8], who focused, however, on
the transitional or turbulent regimes at largeReW,ReW & 5200.
We want to use here an alternate approach, which has emerged
recently in the Newtonian studies.

Following the ideas of [9], developed for plane shear flows,
it has been shown that nonlinear traveling wave solutions ofthe
Navier-Stokes equation exist above a critical Reynolds num-
ber in pipe flow [10]. If (r, θ, z) designate the cylindrical co-
ordinates withz the axial direction of the pipe, these solutions
are invariant under the rotationθ 7→ θ + 2π/m0 with m0 the
fundamental azimuthal wavenumber, and under the translation
z 7→ z + 2π/q0 with q0 the fundamental axial wavenumber.
Moreover they are invariant under the spatio-temporal trans-
lations (z, t) 7→ (z+ δz, t + δt) provided thatδz = c δt with c
the axial phase velocity. The Reynolds number at which these
wave solutions appear, through a saddle-node bifurcation,could
be viewed as a lower bound for the transition Reynolds number.
Indeed, the transient turbulent states at intermediate Reynolds
numbers, in the transitional regime, i.e., the ‘puffs’, would ‘live’
upon the manifold of such nonlinear wave solutions, see e.g.
[11] and [12]. The relevant wave solutions have a fundamen-
tal azimuthal wavenumberm0 = 2, 3, 4, ... and appear at the
critical Reynolds numbersRec2 = 1359, Rec3 = 1251, Rec4 =

1647, ... when defined with the mean flow speed〈vz〉rθ and the
pipe diameter. The corresponding Reynolds numbers defined
with the centerline velocity of the base flow and the pipe ra-
dius areRec2 = 1663, Rec3 = 1631, Rec4 = 2280, ... For
each azimuthal wavenumber, the axial wavenumber has been
determined by minimizing the critical Reynolds numberRe; for
instanceq0(m0 = 2) = 1.55, q0(m0 = 3) = 2.44 [13]. More
recently, nonlinear wave solutions withm0 = 1, which appear
at lower Reynolds numbersRec1,2 = 775 andRec1,1 = 820, and
present either two or one ‘shift-and-reflect’ symmetries (like the
one defined in Eq. 28 below), have also been found [14, 15].
The role of these new solutions is not already quite clear. Some
of them may support the ‘boundary’ between laminar and tur-
bulent flow, see e.g. [16].

We present here a code that has been developed to compute,
in the pipe flow of a shear-thinning fluid, nonlinear wave solu-
tions of the first class found historically in the Newtonian case
by [10, 13]. The model is presented in Section 2 and the numer-
ical methods in Section 3. In Section 4, we present a validation
of the code and a study of its convergence properties, by re-
covering a forced analytic solution. In Section 5, we present
physical results for waves withm0 = 3 andq0 = 2.44, which
are the first ones to emerge in this class in the Newtonian case.
A concluding Section will follow.

2. Mathematical formulation

2.1. Carreau model. Basic equations with dimensional units

Since we focus on shear-thinning fluids without elastic re-
sponse, the constitutive law is purely viscous: the stress tensor

σ = − pI + τ (1)

with p the pressure and

τ = µD (2)

the viscous-stress tensor. In Eq. (2),µ is the viscosity,

D = ∇v + ∇vT (3)

is the rate-of-strain tensor, withv the velocity field. The con-
stitutive law chosen is the Carreau’s law, which has a firm the-
oretical base [17]. The viscosity

µ = µ(Γ2) = µ∞ + (µ0 − µ∞)
(
1+ λ2Γ2

)(nC−1)/2
(4)

with

Γ2 =
1
2

D : D =
1
2

Di j Di j (5)

the second invariant of the rate-of-strain tensor,µ0 the viscosity
at zero strain,µ∞ the viscosity at infinite strain,λ the charac-
teristic time of the fluid,nC < 1 the shear-thinning index. Note
that in a unidirectional shear flow with velocityv = W(r) ez,
one has

D = γ̇(er ⊗ez+ez⊗er ) with γ̇ =
dW
dr

the shear rate, (6)

hence
Γ2 = γ̇

2 (7)

and the relevant shear stress

τrz = µ
(
γ̇2

)
γ̇ . (8)

We use, as the flow variable controling the viscosity,Γ2 instead
of γ̇ =

√
Γ2, because for three-dimensional flows this last quan-

tity is singular if the strains vanish. Other shear-thinning con-
stitutive laws are often used. The power-law model has for in-
stance been used in [8]. This 2-parameters model is interesting
because of its simplicity, but a drawback is that an infinite vis-
cosity is obtained if the strains vanish,D = 0. This leads to
numerical problems in the corresponding flow regions, e.g.,the
pipe axis in pipe flow. On the contrary with the Carreau’s law
(4) the viscosity is a regular function ofD even atD = 0.
The 4-parameters model (4) can be considered as a special case
of the 5-parameters Carreau-Yasuda model [18], which has for
instance been used in [7] to reconstruct the rheological mea-
surements for the three fluids used. Notice that, of the three
fluids used in [7], 0.125% PAA can be well described by a Car-
reau model, as proves our Fig. 1. The dashed curve in Fig. 1
shows that, if, in the situations studied, the shear rates are not
too high, a 3-parameters Carreau model withµ∞ = 0 could also
be relevant.

The first equation to be solved is the linear momentum equa-
tion

ρ
[
∂tv +

(
∇v

)
· v

]
= − ∇ptot + divτ (9)

whereρ is the density, and the total pressureptot contains the
contribution of the gravitational force. The densityρ is assumed
to be constant, i.e. the velocity field satisfies the incompressibil-
ity equation

divv = 0 . (10)
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Figure 1: Flow curveµ vs γ̇ =
√
Γ2 for the 0.125% PAA fluid studied by [7].

The disks show the result of the Carreau-Yasuda model, which is in perfect
agreement with the rheological measurements (see the Fig. 2 of [7]). The
continuous curve shows the result of the Carreau model (4), the parameters
beingµ0 = 4.22 Pa s, µ∞ = 0.00372 Pa s, λ = 45.8 s, nC = 0.34. The dashed
curve shows the result of the Carreau model with the same parameters except
thatµ∞ = 0. The dotted line shows the characteristic shear rate ˙γ = 1/λ for the
onset of shear-thinning.

2.2. Dimensionless units and parameters
From now on hats denote the dimensional quantities, to dis-

tinguish them from the dimensionless quantities. We will use,
for the sake of simplicity, the Carreau model with

nC =
1
2
, (11)

which is considered to be a representative value of the shear-
thinning index, and

µ̂∞ = 0 , (12)

but these are not fundamental assumptions. Dimensionless vari-
ables are introduced. The velocity scale is a typical velocity Ŵ0

(the centerline velocity in the base flow for the physical compu-
tations, as it will be explained in Section 2.3), the length scale
is the radius ˆa of the pipe, the time scale is the advection time
t̂0 = â/Ŵ0, the viscosity scale is ˆµ0, the pressure and stress scale
is ρ̂Ŵ2

0. The dimensionless form of the Carreau’s law (4) reads
therefore

µ =
(
1 + λ2 Γ2

)−1/4
(13)

with

λ =
λ̂

t̂0
=
λ̂Ŵ0

â
(14)

the ‘non-Newtonian’ number. The inverse ofλ, 1/λ, is the
dimensionless shear rate for the onset of shear-thinning. The
larger λ, the stronger the shear-thinning, non-Newtonian, ef-
fects;λ = 0 corresponds to a Newtonian fluid. The dimension-
less viscous-stress tensor

τ = Re−1 µD (15)

implies the Reynolds number

Re =
Ŵ0âρ̂
µ̂0
. (16)

Finally, the dimensionless form of Eq. (9) is

∂tv +
(
∇v

)
· v = − ∇ptot + divτ . (17)

2.3. Base flows

We recall that cylindrical coordinates (r, θ, z) are used. Ex-
cept for the validation and convergence tests of Section 4, the
flows are forced by a pressure field

ptot = −Gz (18)

with G > 0 the constant pressure gradient. This drives, using a
laminar flow assumption, the base flow

vb = Wb(r) ez . (19)

For this unidirectional flow, one is in the situation (6), (7), hence

Γ2 = (W′b)2 , (20)

denoting with a prime the derivative with respect tor. Therefore
the viscosity

µb =
[
1 + λ2 (W′b)2

]−1/4
. (21)

The momentum Eq. (17) yields, in the axial direction, the ODE

α := Re G = − 1
r

d
dr

(rµbW′b) . (22)

This ODE and the conditions

Wb(0) = 1 , Wb(1) = 0 (23)

define the base flow and the productα between the Reynolds
number and the pressure gradient,α = 4 in the Newtonian case.
In a dimensional setting, the first Eq. in (23) means that the
typical velocityŴ0 is the centerline velocity in the base flow.

2.4. General assumptions concerning the wave solutions

The physical study of Section 5 will aim at computing non-
linear wave solutions of (17) that are finite-amplitude perturba-
tions of (18), (19),

ptot = −Gz + p̃ (24)

and

v = vb + u with u = uer + veθ + wez , (25)

p̃, u, v, w depending ont only throughz− ct with c the phase
velocity. It is also assumed that these 4 fields are periodic,

θ 7→ θ + 2π/m0 or z 7→ z+ 2π/q0

=⇒ (p̃,u, v,w) 7→ (p̃,u, v,w) , (26)

with m0 ∈ N
∗ the fundamental azimutal wavenumber,q0 ∈ R

∗

the fundamental axial wavenumber. The fact that the perturba-
tion pressure field ˜p has no mean gradient in the axial direction
corresponds to the hypothesis of a fixed pressure drop. The in-
sertion of (24), (25) in (17) yields

∂tu + W′bu ez + Wb ∂zu +
(
∇u

)
· u

= −∇p̃ + divτ − divτb (27)

3



with divτb = −G ez the viscous term associated with the base

flow. Eqs. (17) and (27) are equivalent, and in the next Section,
for simplicity, we will refer only to (27).

Finally, it is assumed that the velocity fieldsv andu fulfill the
symmetry property of the first waves found in the Newtonian
case [10, 13], i.e. the ‘shift-and-reflect’ symmetry

(r, θ, z) 7→ (r, − θ, z+ π/q0)

=⇒ (u, v,w) 7→ (u,−v,w) . (28)

2.5. Wall-viscosity Reynolds number
In non-Newtonian fluids, it is questionable to use in the def-

inition of the Reynolds number the viscosity ˆµ0, which is not
always representative of the level of viscosities in the whole
fluid domain. A more physical point of view is given by the
consideration of the global momentum equation, for a lami-
nar or nonlinear wave solution. The axial component of this
equation shows a balance between the mean pressure gradient,
which controls the head losses, and the tangential stressτrz av-
eraged at the wall. Coming back, momentarily, to dimensional
calculations, as show the hats, this equation reads

τ̂rzW = 〈τ̂rz(r̂ = â, θ, ẑ)〉θz = −
1
2

Ĝâ . (29)

From an experimental point of view, the same balance is usually
assumed to hold, even in a transitional regime, at least once
a time-average has been taken. Experimentalists measuringĜ
can therefore determine ˆτrzW. From this shear stress and the
rheological constitutive equation of the fluid, written under the
form (8),

τ̂rzW = µ̂
(
( ˆ̇γW)2

)
ˆ̇γW , (30)

they determine the ‘wall shear rate’ˆ̇γW and then the correspond-
ing viscosity

µ̂W = µ̂
(
( ˆ̇γW)2

)
, (31)

which is called the ‘wall shear viscosity’. They define on
the base of this viscosity and of the mean flow speed a wall-
viscosity Reynolds number

ReW =
〈v̂z〉rθ d̂ρ̂

µ̂W
(32)

with d̂ = 2â the pipe diameter [5, 6, 7]. This wall-viscosity
Reynolds number is also the one that has been used in the nu-
merical study [8]. In addition to arising naturally from thecon-
sideration of the mean pressure gradient, this Reynolds number
has been shown to be the most relevant for stability analyses
(in a channel geometry) by [19]. Importantly, the wall shear
viscosity defined by (30), (31) is the viscosity at the wall inthe
laminar unidirectional flow solution that exists at the values of
the parameters studied,

µ̂W = µ̂b(r̂ = â) . (33)

Turning back to dimensionless units, we note that the relation
between the Reynolds numbers (16) and (32) reads

ReW = 2 Re
〈vz〉rθ
µW

. (34)

In the case of a Newtonian fluid we noteRe = ReW, since
µW = 1. If the flow is laminar (Hagen-Poiseuille flow), one
has〈vz〉rθ = 1/2 andµW = 1, henceRe = Re. This simple
relation breaks down, however, as soon as one considers non-
linear waves, since the mean flow speed departs from 1/2. In
the non-Newtonian case, even in the laminar regime, becauseof
the parameter dependence of the base flows, one hasReW , Re.
We shall come back to this in Section 5.1. We will also show
in Section 5.2 that the nonlinear wave solutions found possess
a viscosity field at the wall

µ(r = 1) ≃ µW (35)

defined with the base flow. This relation, which will be precised
numerically below (Tab. 2), justifies a posteriori the reasoning
leading to (33).

3. Numerical methods

3.1. Spectral development

The Petrov-Galerkin formulation of [2, 20] has been used to
solve Eqs. (10) and (27). The solutions are expanded as follows

u =
L∑

l=−L

M∑

m=−M

Nr∑

n=1

2∑

k=1

al m n kvlq0,mm0,n,k , (36)

with the trial fields, of the form

vlq0,mm0,n,k = V lq0,mm0,n,k(r) exp{i[mm0θ + lq0(z− ct)]} , (37)

given in Appendix A. The coefficientsalmnk obey

a−l −m n k= a∗l m n k (38)

with the star designating the complex conjugate, in order for
v to be real. This rule and the symmetry (28) impose some
restrictions on the coefficientsalmnk. Denoting byar

lmnk, ai
lmnk

the real and imaginary parts ofalmnk, one has

∀n, a00n1 = 0 , ai
00n2 = 0 ,

∀n, ∀m, 0, ∀k, ar
0mnk= 0 , ai

0 −m n k= −ai
0mnk ,

∀l even, 0, ∀n, al0n1 = 0 ,

∀l odd, ∀n, al0n2 = 0 ,

∀l even, 0, ∀m, 0, ∀n, ∀k, al −m n k= −almnk ,

∀l odd, ∀m, 0, ∀n, ∀k, al −m n k= almnk . (39)

Thus the velocity field depends only on the real coefficients
ar

00n2, ai
0mnk for m > 0, ar,i

l0n1 for l > 0 odd, ar,i
l0n2 for l > 0

even,ar,i
lmnk for l > 0, m> 0, which can be collected in a vector

X of dimension

Ntot = (2L + 1) (2M + 1) Nr . (40)
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3.2. Projection scheme

The trial fields being divergence-free, the only equation to
solve is (27). Following [2, 20], this equation is projectedonto
test fields of the form

ṽlq0,mm0,n,k = Ṽ lq0,mm0,n,k(r) exp{i[mm0θ + lq0(z− ct)]} , (41)

which are given in Appendix A, using the scalar product

〈
v | ṽ

〉
=

∫∫∫

Ω

v · ṽ∗ r dr dθ dz . (42)

The integration domain

Ω = {(r, θ, z) ∈ [0,1] × [0,2π/m0] × [0,2π/q0]} . (43)

Because all terms in (27) satisfy the ‘shift-and-reflect’ symme-
try (28), and their projected coefficients obey the rules (39), this
projection yields exactlyNtot real equations. These equations
can be written

F(X,Re) := cD(X) + L(X) + Q2(X) + Re−1 H(X) = 0 , (44)

with F(.,Re), D, L, Q2, H functions from R
Ntot to R

Ntot.
The linear operatorsD andL represent respectively−∂zu and
W′buez+Wb∂zu. The quadratic operatorQ2 represents

(
∇u

)
· u.

The highly nonlinear operatorH representsdiv
(
µD − µbDb

)
.

Since the test fields vanish at the pipe wall and are periodic as
the trial fields, forτ verifying the same periodicity rules (26)
one has

〈
divτ

∣∣∣∣ ṽ
〉
= −

∫∫∫

Ω

τ : ∇ ṽ∗ r dr dθ dz . (45)

Particularly the periodic pressure gradient term−∇p̃ in Eq. (27)
yields a contribution proportional toI : ∇ ṽ∗ which vanishes
since the test fields are divergence-free. The formula (45) is also
used to calculateH, which is therefore defined by a contribution
proportional to

(
µD − µbDb

)
: ∇ ṽ∗.

3.3. De-aliased pseudospectral method

A fast computation of the nonlinear terms in Eq. (44) is pos-
sible with a de-aliased pseudospectral method as describedfor
instance in the Section 6.2 of [20]. A three-dimensional grid is
introduced in the volumeΩ, with Gauss-Lobatto points in the
radial direction, regularly spaced points in the azimuthaland
axial directions. The projected terms of Equation (27) are all
even underr 7→ −r, hence the radial integration can be per-
formed with the Gauss-Lobatto quadrature formula retaining
only the points in the intervalr ∈ ]0,1[, i.e.

r j = cos
( jπ
NGr

)
for j = 1, · · · , NGr − 1

2
,

with

NGr = 3Nr + 8 if Nr is odd, 3Nr + 7 if Nr is even.

This number has been determined by requiring that the Gauss
quadrature formula is exact for the projection of the nonlinear

term
(
∇u

)
· u in Equation (27); moreoverNGr is chosen odd

to avoid having a point atr = 0, and to be able to use differ-
enciation matrices to evaluate the radial derivatives ofu. The
number of azimuthal points

NGθ = 3M + 2 if M is odd, 3M + 3 if M is even,

the number of axial points

NGz = 3L + 2 if L is odd, 3L + 3 if L is even,

are dictated by the de-aliasing rule; besides, for the differenci-
ation matrices used to evaluate the azimuthal and axial deriva-
tives of u, one wants an odd number of grid points. In prac-
tice, a partial summation technique is used to computeu at the
grid points from the spectral expansion coefficientsalmnk, and
then differenciation matrices are used to compute∇u. Relevant

quantities like
(
∇u

)
· u andµD can then be obtained on the spa-

tial grid. The projection integrals (42) are computed with Gauss
quadrature formula in the radial direction, trapezoidal rules in
the azimuthal and axial directions.

3.4. Phase condition to set the phase velocity

The physical wave solutions have a phase velocity that is not
a free parameter, but is determined by the advection by the
mean flow. In fact, a phase condition must be added to the
Eqs. (44) to prevent the solutions from drifting in the pipe,as a
result of the translational invariance in the axial direction of the
physical Eq. (27). We have chosen the phase condition

φ(X) =
Nr∑

n=1

ar
11n1Vq0,m0,n,1(r = 0.1) · er = 0 . (46)

The physical calculations will thus aim at computing the vector

X =
(
X
c

)
(47)

solution of

F
(
X,Re

)
:=

(
F(X,Re)
φ(X)

)
=

(
0
0

)
. (48)

3.5. Newton-GMRES method

For the validation and convergence tests with a fixed phase
velocity c, one has to solve Eq. (44) to determineX; for the
physical wave computations, one has to solve Eq. (48) to de-
termineX and c. In both cases this is done with a Newton
method. Since the functionφ (46) depends linearly onX, it is
simple to augment a method solving (44) in order to solve (48).
For clarity reasons, we will only describe hereafter the method
used to solve (44), by considering a case wherec is fixed. The
more general case withc unknown can be treated by replacing
in what followsX by X andF by F, and correcting in accor-
dance the discussion on∇XF. We also only describe hereafter
a case whereRe is fixed, postponing the evocation of a more
general method whereReis variable to the next subsection.
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We start with a guess valueX0 of X not too far from the
solution at the parameters studied (the determination ofX0 will
be explained in Sec. 3.6). At the iterationj + 1 of the Newton
method, the computation ofX j+1 from X j requires in principle
the knowledge of the gradient ofF, to solve

∇XF(X j ,Re) · (X j+1 − X j) = − F(X j ,Re) . (49)

Formally

∇XF = cD + L + ∇XQ2 + Re−1∇XH . (50)

The operatorsD andL are constant and simple; they are repre-
sented by matrices. On the contrary computing the full matri-
ces representing the gradients ofQ2 andH is a quite long task,
which should be avoided, or at least not be done at each iter-
ation, especially concerningH which is highly nonlinear. For
this reason a GMRES method [21] is used to solve (49). The
restarted version of GMRES, the algorithm 4 of [21] is used,
with a restart every 60 steps if convergence has not been ob-
tained before. The criterion of convergence is the choice 2 of
the ‘inexact Newton method’ of [22], withγ = 1 and the ex-
ponentα = 1.6. The action of∇XH on the vectors implied in
the GMRES method is done with a finite difference formula of
order 4. Note also that, instead of a Gram-Schmidt process,
Householder transformations are used in the GMRES method,
following [23]. To accelerate the convergence of the GMRES
method, the preconditioner

P = cD + L + ∇XQ2old + Re−1H′old (51)

is applied to the system (49). The indexes ‘old’ mean that it
is not computed at each Newton iteration, but typically every 5
Newton iterations. MoreoverH′ is the operator that represents

div
(
µoldD

)
. (52)

It corresponds to one contribution to∇XH; other contributions
also exist, where the viscosity has to be varied. Right precondi-
tioning of the system (49) with the operatorP defined by (51),
which is stored and used with a LU decomposition, appears to
be efficient. The criterion of convergence of the Newton method
is

||X j − X j−1||2 < 10−8 or ||F(X j ,Re)||2 < 10−14 . (53)

If the first inequality stops the Newton iterations, it is checked
that ||F(X j ,Re)||2 is small; typically||F(X j ,Re)||2 . 10−10.

3.6. Continuation method - Euler predictor

For the test computations of Sec. 4, the guess valueX0 is a
simple perturbation of the real solution, which is known, see
Eq. (63) below. For the physical computations of Sec. 5, the
situation is more complicated since the solutions are unknown,
and the solution branches can present bifurcation points. The
pseudo-arc length method of [24] is used to follow the so-
lutions in the parameter space, starting at the very beginning
from Newtonian solutions obtained with the intermediate forc-
ing method of [13]. In the pseudo-arc length method,Re is

treated as a parameter, and to pass from a numerical solution
(Xs,Res) to another one on the solution branch on uses first an
Euler predictor formula,

(X0,Re0) = (Xs,Res) + δs
(dX

ds
,
dRe
ds

)
. (54)

In this equationδs is the curvilinear abscissa increment,
whereas the tangent to the solution branch is computed by solv-
ing

∇XF(Xs,Res) ·
dX
ds
+ ∇ReF(Xs,Res) ·

dRe
ds
= 0 (55)

together with a normalization condition. The system (55) is
also solved with a preconditioned GMRES method. The New-
ton method that follows has a variableRe; it is the modified
Newton-GMRES method of [25]. An automatic control of the
curvilinear abscissa incrementδs is done, with criteria based on
the variations of the vector

(
dX
ds ,

dRe
ds

)
.

3.7. Numerical performances

The code is written in Fortran 95 and runs on PCs, Intel Xeon
5160 at 3.00 GHz. A typical run for physical computations, to
obtain the results that will be presented in Sec. 5, with trunca-
tion levels (L,M,Nr ) = (7,10,30), takes around 45 minutes to
pass from one solution to the next one on the solution branch.
The peak of RAM use, reached during the GMRES computa-
tions, is of the order of 4.5 Gb. An underestimation of the order
of magnitude of the RAM needed can be obtained by consider-
ing that 5 large matrices ofNtot × Ntot double-precision floating
numbers (the matricesP, D, L, ∇XQ2old andH′old of Equation
51) have to be stored.

4. Validation and convergence tests

In order to test the code, we have performed consistency tests
similar to the ones exposed in the Section 4 of [26]. The ana-
lytical solution

ua =
1
2

r2(1− r2)2 coshr sinθ sin(z− t/2) ,

va =
1
2

r2(r2 − 1)
[
(7r2 − 3) coshr +

r sinhr (r2 − 1+ 2r sinhr)
]

cosθ sin(z− t/2) ,

wa = r3(1− r2) sinh2 r sinθ cos(z− t/2) (56)

has been forced in a case without pressure gradient (G = 0) and
base flow (vb = 0). A forcing term

Fa = − 1
2∂zva +

(
∇va

)
· va − Re−1div

(
µaDa

)
(57)

has been calculated by computing firstly the coefficientsXa of
the spectral development ofva and secondlyFa = F(Xa,Re).
Whereasva is only rich in radial modes, and corresponds to
q0 = l = 1, m0 = m = 1 only,Fa is rich in modes in all spatial
directions, because of the nonlinear nature ofµa. This is espe-
cially true if the Reynolds number is not too large. Since the
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Figure 2: Spectrum of the coefficientsYr,i
lmnk, the real and imaginary parts of〈

va | ṽl,m,n,k
〉
, computed withN = 19 (see Eq. 65). (a) : Decimal logarithms

of the 24 coefficients|Yr,i
lmnk| > 10−10 vs the generalized wavenumberK defined

by Eq. (58). (b) : The disks (resp. squares) show logA(m) vs m (resp. logB(l)
vs l) with the amplitudes defined by Eqs. (59) and (60). In this case, since there
is energy only on the modesm= l = 1, one hasA(1) = B(1), A(m) < 10−14 for
m, 1, B(l) < 10−14 for l , 1.

novelty of our code is precisely the encoding ofdivµD with a
nonlinear viscosityµ given by (13), we have chosen to perform
our first tests atRe= 10. The comparison of the spectrum ofYa,
the real and imaginary parts of

〈
va | ṽl,m,n,k

〉
for l,m,n, k ≥ 0,

shown in Fig. 2, and of the spectrum ofFa, shown in Fig. 3,
demonstrates the richness of the latter. In the upper graphsof
these two Figures, the generalized wavenumber

K =
√

(l + 1)2 + (m+ 1)2 + n2 (58)

has been used to index the coefficients in a manner represent-
ing the ‘degree of oscillations’ in all spatial directions of the
associated test fields. In the lower graphs, the quantities

A(m) =

√∑

l,n,k

[(ar
lmnk)

2 + (ai
lmnk)

2] , (59)

B(l) =

√∑

m,n,k

[(ar
lmnk)

2 + (ai
lmnk)

2] , (60)

with almnk designating, here, one projection integral, are used,
in order to show the ‘energy’ associated with a particular
wavenumber.

Independently of the Fortran computations, a calculation of
Fa has been realized with Mathematica, through a formal com-
putation ofFa followed by a numerical computation of some
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Figure 3: ForRe= 10, λ = 4, spectrum of the coefficientsFr,i
lmnk that constitute

Fa computed withN = 19 (see Eq. 65). (a) : Decimal logarithms of the 3399
coefficients|Fr,i

lmnk| > 10−10 vs the generalized wavenumberK. (b) : The disks
(resp. squares) show logA(m) vs m (resp. logB(l) vs l).

projection coefficients
〈

Fa | ṽl,m,n,k
〉

for some values ofl, m, n
andk. The relative errors between the integrals obtained with
Mathematica and the corresponding components ofFa com-
puted with the fully numeric Fortran code are smaller than
4 10−6.

With the Fortran code, the forced momentum equation

∂tv +
(
∇v

)
· v = − ∇p̃ + Re−1div

(
µD

)
+ Fa , (61)

represented by
F(X,Re) − Fa = 0 , (62)

has been solved with the Newton-GMRES method, starting
from the initial condition

X0 = Xa +
1

100Xp . (63)

In this equation,Xp is the spectral development on the base of
the trial fields of the solenoidal vector field

up = cosθ , vp = − sinθ , wp = r cosθ . (64)

Convergence of the solution towards a fixed pointX∞ quite
close toXa is obtained, and a discrete L2-error on the spatial
grid points between the corresponding fieldv∞, computed nu-
merically, and the analytical fieldva has been computed. This
test has been performed with various values ofN, the number
of real modes in each direction, i.e., according to Eq. (40),

N = 2L + 1 = 2M + 1 = Nr . (65)

7



ø

ø

ø

ø ø
ø

ø

3 5 7 9 11 13 15 17 19
-14

-12

-10

-8

-6

-4

-2

0

N

lo
gH

L2
-

E
rr

or
L

Figure 4: Decimal logarithm of the L2-error vs the number of modes N (65)
for a consistency test where the analytic solution (56) has been forced. The
parameters areRe= 10 andλ = 0 (disks), 1 (squares), 4 (stars).

ø

ø

ø

ø

ø ø ø

3 5 7 9 11 13 15 17 19
-14

-12

-10

-8

-6

-4

-2

0

N

lo
gH

L2
-

E
rr

or
L

Figure 5: Same as Fig. 4, but forRe= 1000.

The Fig. 4 has been obtained, which proves that exponential
convergence occurs, even in the non-Newtonian cases (λ > 0),
despite the highly-nonlinear nature of the viscous terms in
Eq. (61). Another test has been performed at a higher value of
the Reynolds number,Re = 1000. Fig. 5 has been obtained,
which shows that forλ > 0 one does not always converge
to X∞ = Xa. However exponential convergence still occurs,
though in a slower manner, especially for the caseλ = 4 of a
strongly shear-thinning fluid.

5. Physical results

5.1. Base flows

For a given non-Newtonian fluid and pipe diameter, settingλ
given by Eq. (14) amounts to set the characteristic velocity

Ŵ0 =
â

λ̂
λ . (66)

The Reynolds number (16) is also set to

Re =
ρ̂ â2

µ̂0 λ̂
λ . (67)

This Reynolds number is a ‘pressure-gradient Reynolds num-
ber’, since, according to the model described in Section 2.3, all
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0.5

1

r

(a)

Wb

0 0.5 1
-3

-2

-1

0

r

(b)

W′
b

0 0.5 1
0

0.5

1

r

(c)

µb

Figure 6: Base flow functions vs the cylindrical radiusr. The dashed line shows
the Newtonian caseλ = 0, the continuous lines of increasing thickness show the
casesλ = 0.5, 1, 2 and 4. (a) : Axial velocity. (b) : Shear-rate. (c) : Viscosity.

λ 〈Wb〉rθ µW 1/µW α α λ

0 0.500 1 1 4 0
0.5 0.517 0.8199 1.220 3.611 1.806
1 0.541 0.6107 1.637 3.038 3.038
2 0.567 0.4228 2.365 2.327 4.654
4 0.585 0.2933 3.410 1.699 6.794

Table 1: Properties of the base flows for various values ofλ.

flows are controlled by the applied pressure gradient

Ĝ =
ρ̂ Ŵ2

0

â
G =

ρ̂ Ŵ2
0

â
α

Re
=
µ̂0

â λ̂
α λ . (68)

For the purpose of completeness, we show in Fig. 6 the base
flows Wb, the corresponding shear-ratesW′b and the viscosities
µb for various values ofλ. They have been obtained through a
numerical solution of the problem (22), (23). Whenλ increases,
|W′b(r = 1)| increases only slightly, whereasµW = µb(r = 1)
decreases strongly, hence

α = − d
dr

(rµbW′b)
∣∣∣∣
r=1

(69)

decreases, as shown in the Tab. 1. The last column of this Table
shows that the dimensional pressure gradient needed to sustain
the base flow increases significantly whenλ increases; note that
the Eqs. (66) to (68) are not valid for a Newtonian fluid (λ = 0).

5.2. Nonlinear waves

As stated in the introduction, we focus on the case of the
waves found by [10, 13] in Newtonian fluids that display the
lowest critical Reynolds numberRe. These waves correspond
to an axial wavenumberq0 = 2.44 and an azimuthal wavenum-
ber m0 = 3. Selecting these values of the geometrical param-
eters, we have first recovered (with the intermediate forcing
method of [13]) the Newtonian solutions forλ = 0, which
constitutes another validation of our code. Thus the dashed
curve in our Fig. 7 corresponds to the lowest curve in the
Fig. 7 of [13]. We have then increased the non-Newtonian pa-
rameterλ by steps, and followed by continuation the solution
branches. In the (Re, c) plane, as shown in Fig. 7, first for
λ . 1 the non-Newtonian waves appear at lowerRe than for
λ = 0, but then, forλ & 1, the non-Newtonian waves ap-
pear at higherRe. A simpler picture is obtained, however, if
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Figure 7: Phase velocities of nonlinear waves vs the pressure gradient Reynolds
number form0 = 3, q0 = 2.44. The dashed line shows the Newtonian case
λ = 0, the continuous lines of increasing thickness show the casesλ = 0.5, 1
and 2. The values ofλ are displayed to the left of the saddle-node points.

one uses the Reynolds numberReW, more relevant for non-
Newtonian fluids, as the main parameter. As explained in
Sec. 2.5, this Reynolds number is the wall-viscosity Reynolds
number (34),ReW = 2Re〈vz〉rθ /µW. Because the factor 1/µW

increases rapidly withλ, as shown in the fourth column of
Tab. 1, whereas the mean flow speed〈vz〉rθ remain roughly con-
stant (〈vz〉rθ ≃ 0.39), the onset of the waves is clearly delayed
when considered in terms ofReW: compare Fig. 7 and 8. Note
that the Newtonian, dashed curve in Fig. 8 corresponds to the
leftmost curve in the Fig. 10 of [13]. From now on we denote
as ‘critical waves’ the waves that appear at the lowest values
of ReW. The results of our Fig. 8, which are complemented by
the Tab. 2, clearly show a tendency to delay the transition as
the non-Newtonian parameterλ increases. In Tab. 2, the sixth
column shows the averaged viscosity at the wall in the critical
wave solutions: it coincides with the wall-viscosityµW (33) of
the laminar flow (the third column of Tab. 1) within 1.4%. Nev-
ertheless, the fluctuations of the viscosity at the wall are non-
negligible, as shown in the seventh column of Tab. 2, which
displays the maximum difference between the viscosity at the
wall, computed at the grid points, and the averaged viscosity at
the wall,

δµW = max
θ,z

∣∣∣ µ(r = 1, θ, z) − 〈µ(r = 1, θ, z)〉θz
∣∣∣ . (70)

All the computations in Fig. 7 and 8 have been performed
with the truncation levels (L,M,Nr ) specified in the last col-
umn of Tab. 2. Convergence tests have been made to verify that
computations with lower truncation levels (L′,M′,N′r ) such that

L′ ≤ L − 2, M′ ≤ M − 2, N′r ≤ Nr − 2 ,

give quite similar curves. Such a convergence test is displayed
in Fig. 9. Note that, because of Eq. (40), the number of real
modes increases fromNtot = 4488 toNtot = 9450 between the
two truncation levels used. The variations of the Reynolds num-
bers at the saddle-node points in the (ReW, c) plane obtained
with the different truncation levels have been used to estimate
the error bars in the Tab. 2. At this stage it is interesting tocon-
sider, as shown in Figs. 10 and 11, the spectra of the critical

1000 2000 3000 4000 5000
0.35

0.4

0.45

0.5

0.55

c

ReW

Figure 8: Same as Figure 7, except that the wall-viscosity Reynolds number
(34) is used. The disks denote the saddle-node points, whichdefine the critical
waves.
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Figure 9: Convergence test forλ = 2. The continuous curve has been computed
with the truncation levels indicated in Tab. 2, (L,M,Nr ) = (7,10,30). The
dotted curve has been computed with lower truncation levels,(L′,M′,N′r ) =
(5,8,24).

waves. One observes, in Figs. 10a and 11a, a decrease of more
than 4 order of magnitudes between the largest coefficients with
K ≃ 1 andK ≃ 30, which confirms that the solutions are well
converged. In Figs. 10b and 11b one also observes a decrease
of the energy with increasingmandl. One remarks in Fig. 10b,
for λ = 0, that one hasA(2) > A(1), which means that there is
more energy on the modes in exp(±6iθ) than on the modes in
exp(±3iθ). The Fig. 11b shows that this is is not the case for
λ = 2.

The velocity field of these nonlinear waves can be visualized
in a simple way if one averages it in the axial direction, as [10]
and [13] did it. In most of their Figures, they substracted a lam-
inar flow with the same mass flux to this mean flow (see the
Eq. 5.2 of [13]). This procedure has a meaning in a Newto-
nian fluid, where the laminar flow is always given by the same
parabolic function. On the contrary in a non-Newtonian fluid
the laminar flow depends on the parameters, and it seems more
relevant to consider either the total mean flow, i.e.〈v〉z, or the
mean flow minus the laminar base flow, i.e.〈u〉z. The corre-
sponding fields are displayed in Fig. 12. The scales of all the
plots are defined by the columns 8 to 11 in Tab. 2. On the plots
of 〈vz〉z (left column of Fig. 12), one observes a classical ef-
fect due to the shear-thinning: the streamwise velocity tends

9



λ ReW Re c 〈vz〉rθ 〈µ(r = 1)〉θz δµW max〈vz〉z max〈w〉z min 〈w〉z max〈|v⊥ |〉z (L,M,Nr )
0 1251± 1 1629± 3 0.491 0.384 1.000 0.000 0.70 0.057 −0.31 0.019 (7, 10, 30)

0.5 1481± 1 1567± 1 0.485 0.387 0.818 0.089 0.67 0.062 −0.33 0.019 (7, 10, 30)
1 2028± 3 1638± 3 0.458 0.378 0.614 0.143 0.61 0.062 −0.39 0.019 (9, 12, 34)
2 3769± 9 2016± 5 0.480 0.395 0.429 0.120 0.61 0.055 −0.42 0.011 (7, 10, 30)

Table 2: Form0 = 3, q0 = 2.44, properties of the critical wave solutions shown by the disks in Fig. 8. The third column is the corresponding value of the pressure
gradient Reynolds number. The symbolδµW is defined in Eq. (70). The max and min in the following columns aretaken with respect tor andθ. The last column
indicates the truncation levels used for the computations.
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Figure 10: Spectrum of the critical wave in the Newtonian case λ = 0. (a) :
Decimal logarithms of the 9398 coefficients|ar,i

lmnk| > 10−10 vs the generalized
wavenumberK defined by Eq. (58). (b) : The disks (resp. squares) show
logA(m) vsm (resp. logB(l) vs l) with the amplitudes defined by Eqs. (59) and
(60).

to become roughly constant in a larger and larger region near
the axis. This effect is essentially due to the base flow con-
tribution (see the Fig. 6a), since it is not visible on the plots
of 〈w〉z (right column of Fig. 12). On these plots one notices
the presence of fast streaks near the pipe wall, which may be
explained by the presence of 3 pairs of counter-rotating vor-
tices visible in the cross-stream fields. Indeed these vortices
transport some rapidly moving fluid in the region of the axis
towards the walls. A remarkable effect is the transition from 6
fast streaks, in Figs. 12a and b, forλ = 0 and 1, to 3 fast streaks,
in Fig. 12c, forλ = 2. Forλ = 0, 6 fast streaks are also visible
in the Fig. 13a of [13], which we have been able to reproduce.
The transition from 6 to 3 fast streaks can be seen as a con-
sequence of a spatial broadening of the cross-stream outflows
associated with the cross-stream vortices, as visible in Fig. 13.
The fact that one has 6 fast streaks forλ = 0 vs 3 fast streaks
for λ = 2 is obviously linked to the dominance of the second
azimuthal harmonic in the spectrum forλ = 0 (Fig. 10b) but not
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Figure 11: Same as Fig. 10, but in the non-Newtonian caseλ = 2. In (a) there
are 9442 coefficients|ar,i

lmnk| > 10−10.

in the spectrum forλ = 2 (Fig. 11b).

6. Concluding discussion

A Petrov-Galerkin code has been developed. It is similar, in
his principles, to the code of Meseguer and collaborators, es-
pecially to the Newton-Krylov version used in [27, 28]. How-
ever, a major difference is the encoding of a nonlinear viscosity
that depends on the velocity field according to Eqs. (4) and (5).
This required a special care at the level of the Newton-GMRES
method, as explained in our Sec. 3.5. This code has been vali-
dated and its convergence properties have been studied. Spec-
tral convergence is obtained, despite of the highly nonlinear na-
ture of the relation between the viscosity and the velocity com-
ponents.

The main physical result of this work is the stabilizing influ-
ence of shear-thinning effects on the nonlinear waves that may
support the turbulent puffs in pipe flow. As shown in the first
columns of Tab. 2, the stabilization for the wave with the critical
wavenumbers for the Newtonian case (m0 = 3 andq0 = 2.44)
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(a)

(b)

(c)

Figure 12: Visualization of the velocity field of the critical waves averaged in
the axial direction, for (a)λ = 0, (b) λ = 1, (c) λ = 2. Left: contours of the
axial velocity〈vz〉z; the contour steps are (max〈vz〉z)/10. Right: axial velocity
difference〈w〉z = 〈vz −Wb〉z and arrows showing the cross-stream velocity
field 〈v⊥〉z = 〈u〉z er + 〈v〉z eθ. The contour steps for the axial velocity are
(max〈w〉z−min 〈w〉z)/10. The contour line〈w〉z = 0 is drawn. In the grayscale
plots dark regions denote slow velocities whereas clear regions denote high
velocities.

is moderate in terms of the pressure-gradient Reynolds number
Re: the transition is delayed fromRe(0) ≃ 1630 in the New-
tonian caseλ = 0 to Re(2) ≃ 2020 in the non-Newtonian case
λ = 2. However, the transition delay becomes substantial when
the wall-viscosity Reynolds numberReW, which is more rele-
vant for non-Newtonian fluids (Sec. 2.5), is used. In terms of
ReW, the transition is delayed fromReW(0) = Re≃ 1250 in the
Newtonian caseλ = 0 to ReW(2) ≃ 3770 in the non-Newtonian
caseλ = 2. It is our conviction that this delay is related to the
experimental results mentioned in Introduction.
The delay factor, the ratio of the two Reynolds numbers,

ReW(λ)

ReW(0)
≃ 1
µW(λ)

Re(λ)
Re(0)

(71)

because the flow rates are similar in the Newtonian and non-
Newtonian waves. The role of the ratio 1/µW between the vis-
cosity at zero strain and the wall-viscosity (1/µW = 2.365 in
the caseλ = 2, according to the Tab. 1) is remarkable. It would

(a) (b)

Figure 13: Cross-stream velocity fields in one half of the pipe for (a)λ = 0, (b)
λ = 2. On a regular grid, only the vectors with| 〈v⊥〉z | > 1

10 max| 〈v⊥〉z | are
shown.

be interesting to extend these computations to higher values of
the non-Newtonian parameterλ, to see if the ratioRe(λ)/Re(0)
continues to increase withλ for λ > 2, which would lead
to a very strong stabilization at largeλ in terms of the ratio
ReW(λ)/ReW(0). This regime of largeλ is the experimentally
relevant one. Indeed, the inversion of the Eqs. (34), where we
consider that approximately 2〈vz〉rθ ≃ 1, and (67), yields

λ =
µ̂0 λ̂

ρ̂ â2
Re ≃ µ̂0 λ̂

ρ̂ â2
µWReW . (72)

For the case of 0.125% PAA studied in [7], the factor

µ̂0 λ̂

ρ̂ â2
≃ 77 , (73)

whereas a laminar computation such as the ones presented in
Sec. 5.1, yields, for a typical wall-viscosity Reynolds number
ReW = 6000, a value of the wall-viscosityµW ≃ 0.004. This
corresponds, according to Eq. (72), to

λ ≃ 1900. (74)

Preliminary studies forλ > 2 show that high truncation levels,
more precisely high values ofNr , may have to be used in such
cases, which could pose practical problems, notably in terms of
memory capacity. In order to overcome this difficulty, a matrix-
free version of the code (with, for instance, a SOR precondition-
ing) might be developped, since storing the matrices implied in
Equation (51) explains most of the memory use (cf. the discus-
sion in Section 3.7).
Another relevant question that will be less difficult to solve is
the influence of the azimuthal and axial wavenumbers. A study
of this influence will be the object of a forthcoming paper.

Appendix A. Trial and test fields

The choice of the trial and test fields has been discussed in
[2, 20]. For the purpose of completeness, we list these functions
here. They are defined in terms of the functions

hn(r) = (1− r2) T2n−2(r) , gn(r) = (1− r2) hn(r) (A.1)
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with Tn the Chebyshev polynomial of degreen, and of the op-
erators

D =
d
dr
, D+ = D +

1
r
. (A.2)

Appendix A.1. Trial fields

In the casem= 0,

V l,0,n,1 = rhneθ ,

V l,0,n,2 = −ilrgner + D+(rgn)ez , (A.3)

except that, ifl = 0,

V0,0,n,2 = hnez . (A.4)

In the casem, 0,

V l,m,n,1 = −imrσ−1gner + D(rσgn)eθ ,

V l,m,n,2 = −ilr σ+1hneθ + imrσhnez , (A.5)

with σ = σ(m) = 1 if m is odd, 2 ifm is even.

Appendix A.2. Test fields

They are all proportional to the Chebyshev weight function

W = 1/
√

1− r2 . (A.6)

In the casem= 0,

Ṽ l,0,n,1 = Whneθ ,

Ṽ l,0,n,2 = W{−ilqr 2gner + [D+(r
2gn) + r3hn]ez} , (A.7)

except that, ifl = 0,

Ṽ0,0,n,2 = Wrhnez . (A.8)

In the casem, 0,

Ṽ l,m,n,1 = W{−imrβgner + [D(rβ+1gn) + rβ+2hn]eθ} ,
Ṽ l,m,n,2 = W(−ilr β+2hneθ + imrβ+1hnez) , (A.9)

except that, ifl = 0,

Ṽ0,m,n,2 = Wimr1−βhnez . (A.10)

In these last Eqs.,β = β(m) = 1 if m is odd, 0 ifm is even.
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