Petrov-Galerkin computation of nonlinear waves in pipe flow of shear-thinning fluids: first theoretical evidences for a delayed transition

Nicolas Roland, Emmanuel Plaut, Chérif Nouar

To cite this version:

HAL Id: hal-03792139
https://cnrs.hal.science/hal-03792139
Submitted on 29 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Petrov-Galerkin computation of nonlinear waves in pipe flow of shear-thinning fluids: first theoretical evidences for a delayed transition

Nicolas Roland, Emmanuel Plaut & Chérif Nouar
LEMTA, Nancy-Université & CNRS, 2 avenue de la Forêt de Haye, 54516 Vandœuvre cedex, France

This paper has been published in Computers & Fluids 39, 1733-1743 (2010).

Abstract
A pseudospectral Petrov-Galerkin code is developed in order to compute nonlinear traveling waves in pipe flow of shear-thinning fluids. The framework is continuum mechanics and the rheological model used is the purely viscous Carreau model. The code is validated, and a study of its convergence properties is made. It is shown that exponential convergence is obtained, despite the highly nonlinear nature of the viscous diffusion terms. Physical computations show that, as compared with the case of a constant-viscosity fluid, i.e., a Newtonian fluid, in the case of shear-thinning fluids the critical Reynolds number of the saddle-node bifurcation where the waves with an azimuthal wavenumber \(m_0 = 3 \) appear increases significantly when the non-Newtonian effects come into play.

Keywords: Pseudospectral methods, Pipe flow, Non-Newtonian fluids

1. Introduction

The study of the transition to turbulence in pipe flow of Newtonian and non-Newtonian fluids is an active area of research. The transition to turbulence has an impact on the head losses, which increase: delaying the transition could lead to a reduction of power consumption. From a more fundamental point of view, the interest of the scientific community in this subject could be explained by the fact that there are still mysteries and controversies running, see e.g. the recent study of the lifetime of turbulence in [1]. The difficulties with these studies, as far as modelling approaches are concerned, stem from the fact that the Hagen-Poiseuille base flow is linearly stable for all Reynolds number, see e.g. [2] and references therein. Hence standard stability methods cannot be used.

The same theoretical difficulty exists for non-Newtonian fluids, which are ubiquitous in nature and industry: blood, muds, paints, cement, polymer solutions are various examples of such fluids. Most of them exhibit two rather different types of non-Newtonian effects. Firstly, they are often shear-thinning: many of their flow properties can be described with a viscous model where the viscosity depends on the rate of strain (more precisely on the second invariant of the rate-of-strain tensor, see Eq. 5 below), decreasing when the rate of strain increases. Secondly, they may also display an elastic response to strain.

Experimentally, one can define the onset of the transition to turbulence in pipe flow as the Reynolds number at which the relative level \(I_T \) of fluctuations of the axial velocity \(v_z \) (the time-averaged value of \(\sqrt{(v_z - \langle v_z \rangle)^2} / \langle v_z \rangle \), with \(\langle v_z \rangle \) the time-averaged value of \(v_z \), measured close to the wall, starts to increase significantly and quit the ‘noise’ value obtained in the laminar regime (\(I_T \approx 2 - 5\% \) depending on the setup and on the measurement method). This increase is connected with the appearance, in an intermittent manner, of ‘puffs’. In setups where no special care is taken to reduce perturbations, and when a Newtonian fluid is used, this Reynolds number \(Re \) (based on the mean flow speed \(\langle v_z \rangle_{mp} \) and the pipe diameter) is of the order of 2000. On these topics, see e.g. [3, 4], and references therein. In non-Newtonian fluids, the relevant Reynolds number is the wall-viscosity Reynolds number \(\overline{Re}_w \), defined in Eq. (32) below, and based on the viscosity at the wall deduced from the wall shear-stress. The onset of the transition to turbulence measured in the same way appears to be larger than 2000. The first ones to mention this delayed transition are, to our knowledge, [5]. In their article, p. 210, one can read that ‘the onset of transition is slightly but progressively delayed in the sequence’ of fluids ‘by a factor of about two in Reynolds number’, i.e. in some fluids transition comes in only for \(\overline{Re}_w \gtrsim 4000 \). The comparison of the curves \(I_T \) vs \(\overline{Re}_w \) in the Fig. 3b, for a Newtonian fluid, and 5b, for a non-Newtonian fluid, of [6] also shows a clear delay to the transition in the latter case. A recent, spectacular example of delayed transition is given by the case of 0.125% PAA (an aqueous solution of polyacrylamide, of concentration 0.125% w/w) in the Fig. 4b of [7]: in this fluid the level of fluctuations \(I_T \) increases abruptly only for \(\overline{Re}_w \gtrsim 8000 \).

The interpretation of this delayed transition is not straightforward, since all fluids are both, to certain extent, shear-thinning and viscoelastic. Therefore it appears interesting to try to model this delayed transition with, for instance, a purely viscous constitutive law, in order to focus on the influence of the shear-thinning effects in the absence of elastic response. This is the aim of the work presented here.

As stated hereabove, one serious difficulty encountered in the modelling of the transition to turbulence in pipe flow is the fact...
that the laminar base flow is linearly stable. One could use direct numerical simulations to attack the problem. At this stage we should mention the work of [8], which focused, however, on the transitional or turbulent regimes at large \(Re_w, Re_w \gtrsim 5200\). We want to use here an alternate approach, which has emerged recently in the Newtonian studies.

Following the ideas of [9], developed for plane shear flows, it has been shown that nonlinear traveling wave solutions of the Navier-Stokes equation exist above a critical Reynolds number in pipe flow [10]. If \((r, \theta, z)\) designate the cylindrical coordinates with \(z\) the axial direction of the pipe, these solutions are invariant under the rotation \(\theta \mapsto \theta + 2\pi/m_0\) with \(m_0\) the fundamental azimuthal wavenumber, and under the translation \(z \mapsto z + 2\pi/q_0\) with \(q_0\) the fundamental axial wavenumber. Moreover they are invariant under the spatio-temporal translations \((z, t) \mapsto (z + \delta z, t + \delta t)\) provided that \(\delta z = c \delta t\) with \(c\) the axial phase velocity. The Reynolds number at which these wave solutions appear, through a saddle-node bifurcation, could be viewed as a lower bound for the transition Reynolds number. Indeed, the transient turbulent states at intermediate Reynolds numbers, in the transitional regime, i.e., the ‘puffs’, would ‘live’ upon the manifold of such nonlinear wave solutions, see e.g. [11] and [12]. The relevant wave solutions have a fundamental azimuthal wavenumber \(m_0 = 2, 3, 4, \ldots\) and appear at the critical Reynolds numbers \(Re_c = 1359, Re_c = 1251, Re_c = 1647, \ldots\) when defined with the mean flow speed \(v_c\) and the pipe diameter. The corresponding Reynolds numbers defined with the centerline velocity of the base flow and the pipe radius are \(Re_c = 1663, Re_c = 1631, Re_c = 2280, \ldots\) For each azimuthal wavenumber, the axial wavenumber has been determined by minimizing the critical Reynolds number \(Re_c\) for instance \(q_0(m_0 = 2) = 1.55, q_0(m_0 = 3) = 2.44\) [13]. More recently, nonlinear wave solutions with \(m_0 = 1\), which appear at lower Reynolds numbers \(Re_{c,1} = 775\) and \(Re_{c,1} = 820\), and present either two or one ‘shift-and-reflect’ symmetries (like the one defined in Eq. 28 below), have also been found [14, 15]. The role of these new solutions is not already quite clear. Some of them may support the ‘boundary’ between laminar and turbulent flow, see e.g. [16].

We present here a code that has been developed to compute, in the pipe flow of a shear-thinning fluid, nonlinear wave solutions of the first class found historically in the Newtonian case by [10, 13]. The model is presented in Section 2 and the numerical methods in Section 3. In Section 4, we present a validation of the code and a study of its convergence properties, by recovering a forced analytic solution. In Section 5, we present physical results for waves with \(m_0 = 3\) and \(q_0 = 2.44\), which are the first ones to emerge in this class in the Newtonian case. A concluding Section will follow.

2. Mathematical formulation

2.1. Carreau model. Basic equations with dimensional units

Since we focus on shear-thinning fluids without elastic response, the constitutive law is purely viscous: the stress tensor

\[
\sigma = -pI + \tau
\]

with \(p\) the pressure and \(\tau = \mu \mathbf{D}\)

the viscous-stress tensor. In Eq. (2), \(\mu\) is the viscosity,

\[
\mathbf{D} = \nabla \mathbf{v} + (\nabla \mathbf{v})^T
\]

is the rate-of-strain tensor, with \(\mathbf{v}\) the velocity field. The constitutive law chosen is the Carreau’s law, which has a firm theoretical base [17]. The viscosity

\[
\mu = \mu(\Gamma_2) = \mu_\infty + (\mu_0 - \mu_\infty) \left(1 + \lambda^2 \Gamma_2 \right)^{(\eta - \xi)/2}
\]

with

\[
\Gamma_2 = \frac{1}{2} \mathbf{D} \cdot \mathbf{D} = \frac{1}{2} D_{ij} D_{ij}
\]

the second invariant of the rate-of-strain tensor, \(\mu_0\) the viscosity at zero strain, \(\mu_\infty\) the viscosity at infinite strain, \(\lambda\) the characteristic time of the fluid, \(\eta < 1\) the shear-thinning index. Note that in a unidirectional shear flow with velocity \(\mathbf{v} = W(r) \mathbf{e}_z\), one has

\[
\mathbf{D} = \gamma (\mathbf{e}_z \otimes \mathbf{e}_z + \mathbf{e}_z \otimes \mathbf{e}_z) \quad \text{with} \quad \gamma = \frac{dW}{dr}\text{ the shear rate}, \quad (6)
\]

hence

\[
\Gamma_2 = \gamma^2
\]

and the relevant shear stress

\[
\tau_{zz} = \mu(\gamma^2) \gamma. \quad (8)
\]

We use, as the flow variable controlling the viscosity, \(\Gamma_2\) instead of \(\gamma = \sqrt{\Gamma_2}\), because for three-dimensional flows this last quantity is singular if the strains vanish. Other shear-thinning constitutive laws are often used. The power-law model has for instance been used in [8]. This 2-parameters model is interesting because of its simplicity, but a drawback is that an infinite viscosity is obtained if the strains vanish, \(\mathbf{D} = 0\). This leads to numerical problems in the corresponding flow regions, e.g., the pipe axis in pipe flow. On the contrary with the Carreau’s law (4) the viscosity is a regular function of \(\mathbf{D}\) even at \(\mathbf{D} = 0\). The 4-parameters model (4) can be considered as a special case of the 5-parameters Carreau-Yasuda model [18], which has for instance been used in [7] to reconstruct the rheological measurements for the three fluids used. Notice that, of the three fluids used in [7], 0.125% PAA can be well described by a Carreau model, as proves our Fig. 1. The dashed curve in Fig. 1 shows that, if, in the situations studied, the shear rates are not too high, a 3-parameters Carreau model with \(\mu_\infty = 0\) could also be relevant.

The first equation to be solved is the linear momentum equation

\[
\rho \left[\partial_t \mathbf{v} + (\nabla \mathbf{v}) \cdot \mathbf{v} \right] = -\nabla p_{\text{tot}} + \text{div} \tau
\]

where \(\rho\) is the density, and the total pressure \(p_{\text{tot}}\) contains the contribution of the gravitational force. The density \(\rho\) is assumed to be constant, i.e. the velocity field satisfies the incompressibility equation

\[
\text{div} \mathbf{v} = 0.
\]
is the radius \(\hat{r} \) tations, as it will be explained in Section 2.3), the length scale (the centerline velocity in the base flow for the physical com pu-
ables are introduced. The velocity scale is a typical velocity \(\hat{W}_0 \) (the centerline velocity in the base flow for the physical com-
implementation of (24), (25) in (17) yields
\[\partial_t \mathbf{v} + (\nabla \mathbf{v}) \cdot \mathbf{v} = -\nabla p_{tot} + \text{div} \tau \] (17)
implies the Reynolds number
\[Re = \frac{\hat{W}_0 \hat{\rho} \hat{\omega}}{\hat{\rho}_0} \] (16)
Finally, the dimensionless form of Eq. (9) is
\[\partial_t \mathbf{v} + (\nabla \mathbf{v}) \cdot \mathbf{v} = -\nabla \sigma_{\text{tot}} + \text{div} \tau \] (11)
which is considered to be a representative value of the shear-thinning index, and
\[\hat{\mu}_0 = 0 \] (12)
and these are not fundamental assumptions. Dimensionless vari-
ables are introduced. The velocity scale is a typical velocity \(\hat{W}_0 \) (the centerline velocity in the base flow for the physical com-
putations, as it will be explained in Section 2.3), the length scale is the radius \(\hat{a} \) of the pipe, the time scale is the advection time \(\hat{t}_0 = \hat{a}/\hat{W}_0 \), the viscosity scale is \(\hat{\mu}_0 \), the pressure and stress scale is \(\hat{\rho}\hat{W}_0^2 \). The dimensionless form of the Carreau’s law (4) reads therefore
\[\mu = (1 + \lambda^2 \Gamma_2)^{-1/4} \] (13)
with
\[\lambda = \frac{\hat{\lambda}}{\hat{b}_0} = \frac{\hat{\lambda} \hat{W}_0}{\hat{a}} \] (14)
the ‘non-Newtonian’ number. The inverse of \(\lambda \), \(1/\lambda \), is the dimensionless shear rate for the onset of shear-thinning. The larger \(\lambda \), the stronger the shear-thinning, non-Newtonian, ef-
fects; \(\lambda = 0 \) corresponds to a Newtonian fluid. The dimensionless viscous-stress tensor
\[\tau = Re^{-1} \mu D \] (15)
2.2. Dimensionless units and parameters
From now on hats denote the dimensional quantities, to dis-
tinguish them from the dimensionless quantities. We will use, for the sake of simplicity, the Carreau model with
\[n_C = \frac{1}{2} \] (11)
the ‘non-Newtonian’ number. The inverse of \(\lambda \), \(1/\lambda \), is the dimensionless shear rate for the onset of shear-thinning. The larger \(\lambda \), the stronger the shear-thinning, non-Newtonian, ef-

2.3. Base flows
We recall that cylindrical coordinates \((r, \theta, z)\) are used. Ex-
cept for the validation and convergence tests of Section 4, the flows are forced by a pressure field
\[p_{tot} = -Gz \] (18)
with \(G > 0 \) the constant pressure gradient. This drives, using a laminar flow assumption, the base flow
\[\mathbf{v}_b = W_b(r) \mathbf{e}_z . \] (19)
For this unidirectional flow, one is in the situation (6), (7), hence
\[\Gamma_2 = (W_b')^2 \] (20)
denoting with a prime the derivative with respect to \(r \). Therefore the viscosity
\[\hat{\mu}_0 = \left[1 + \lambda^2 (W_b')^2 \right]^{1/4} . \] (21)
The momentum Eq. (17) yields, in the axial direction, the ODE
\[\alpha := Re G = -\frac{1}{r} \frac{d}{dr} (r \hat{\rho}_0 W_b) . \] (22)
This ODE and the conditions
\[W_b(0) = 1 , \quad W_b(1) = 0 \] (23)
define the base flow and the product \(\alpha \) between the Reynolds number and the pressure gradient, \(\alpha = 4 \) in the Newtonian case. In a dimensional setting, the first Eq. in (23) means that the typical velocity \(\hat{W}_0 \) is the centerline velocity in the base flow.
2.4. General assumptions concerning the wave solutions
The physical study of Section 5 will aim at computing non-
linear wave solutions of (17) that are finite-amplitude perturbations of (18), (19),
\[p_{tot} = -Gz + \hat{p} \] (24)
and
\[\mathbf{v} = \mathbf{v}_b + \mathbf{u} \quad \text{with} \quad \mathbf{u} = \hat{u} \mathbf{e}_r + \hat{v} \mathbf{e}_\theta + \hat{w} \mathbf{e}_z , \] (25)
\(\hat{\rho}, u, v, w \) depending on \(t \) only through \(z = ct \) with \(c \) the phase velocity. It is also assumed that these 4 fields are periodic,
\[\theta \mapsto \theta + 2\pi/m_0 \quad \text{or} \quad z \mapsto z + 2\pi/q_0 \]
\[\iff \quad (\hat{\rho}, u, v, w) \mapsto (\hat{\rho}, u, v, w) , \] (26)
with \(m_0 \in \mathbb{N}^* \) the fundamental azimuthal wavenumber, \(q_0 \in \mathbb{R}^\ast \) the fundamental axial wavenumber. The fact that the pertur-
Bation pressure field \(\hat{p} \) has no mean gradient in the axial direction corresponds to the hypothesis of a fixed pressure drop. The insertion of (24), (25) in (17) yields
\[\partial_t \mathbf{u} + W_b'' u \mathbf{e}_z + W_b \partial_r \mathbf{u} + (\nabla \mathbf{u}) \cdot \mathbf{u} = -\nabla \hat{p} + \text{div} \tau - \text{div} \tau_b \] (27)
with \(\tau_b \) the damping term in the convective equation.
with \(\text{div} \tau = -G \mathbf{e} \), the viscous term associated with the base flow. Eqs. (17) and (27) are equivalent, and in the next Section, for simplicity, we will refer only to (27).

Finally, it is assumed that the velocity fields \(\mathbf{v} \) and \(\mathbf{u} \) fulfill the symmetry property of the first waves found in the Newtonian case [10, 13], i.e. the ‘shift-and-reflect’ symmetry

\[
(r, \theta, z) \mapsto (r, -\theta, z + \pi/q_0)
\Rightarrow
(u, v, w) \mapsto (u, -v, w).
\]

(28)

2.5. Wall-viscosity Reynolds number

In non-Newtonian fluids, it is questionable to use in the definition of the Reynolds number the viscosity \(\mu_{0} \), which is not always representative of the level of viscosities in the whole fluid domain. A more physical point of view is given by the consideration of the global momentum equation, for a laminar or nonlinear wave solution. The axial component of this equation shows a balance between the mean pressure gradient, which controls the head losses, and the tangential stress \(\tau_{r\zeta} \), averaged at the wall. Coming back, momentarily, to dimensional calculations, as showed the hats, this equation reads

\[
\hat{\tau}_{r\zeta W} = \langle \hat{\tau}_{r\zeta}(r = \hat{a}, \theta, \hat{z}) \rangle_{W} = -\frac{1}{2}\hat{G}\hat{a}.
\]

(29)

From an experimental point of view, the same balance is usually assumed to hold, even in a transitional regime, at least once a time-average has been taken. Experimentalists measuring \(\hat{G} \) can therefore determine \(\hat{\tau}_{r\zeta W} \). From this shear stress and the rheological constitutive equation of the fluid, written under the form (8),

\[
\hat{\tau}_{r\zeta W} = \hat{\mu}(\hat{\gamma} W)^2 \hat{\gamma}_W,
\]

(30)

they determine the ‘wall shear rate’ \(\hat{\gamma}_W \) and then the corresponding viscosity

\[
\hat{\mu}_W = \hat{\mu}(\hat{\gamma} W)^2,
\]

(31)

which is called the ‘wall shear viscosity’. They define on the base of this viscosity and of the mean flow speed a wall-viscosity Reynolds number

\[
\overline{Re}_W = \frac{\langle \hat{\gamma} \rangle_{W} \hat{d} \mu}{\hat{\mu}_W}
\]

(32)

with \(\hat{d} = 2\hat{a} \) the pipe diameter [5, 6, 7]. This wall-viscosity Reynolds number is also the one that has been used in the numerical study [8]. In addition to arising naturally from the consideration of the mean pressure gradient, this Reynolds number has been shown to be the most relevant for stability analyses (in a channel geometry) by [19]. Importantly, the wall shear viscosity defined by (30), (31) is the viscosity at the wall in the laminar unidirectional flow solution that exists at the values of the parameters studied,

\[
\hat{\mu}_W = \hat{\mu}_0(\hat{r} = \hat{a})
\]

(33)

Turning back to dimensionless units, we note that the relation between the Reynolds numbers (16) and (32) reads

\[
\overline{Re}_W = 2 \overline{Re} \frac{\langle \hat{\gamma} \rangle_{W} \hat{d}}{\hat{\mu}_W}.
\]

(34)

In the case of a Newtonian fluid we note \(\overline{Re} = \overline{Re}_W \), since \(\mu_W = 1 \). If the flow is laminar (Hagen-Poiseuille flow), one has \(\langle \hat{\gamma} \rangle_{W} = 1/2 \) and \(\mu_W = 1 \), hence \(\overline{Re} = Re \). This simple relation breaks down, however, as soon as one considers nonlinear waves, since the mean flow speed departs from 1/2. In the non-Newtonian case, even in the laminar regime, because of the parameter dependence of the base flows, one has \(\overline{Re}_W \neq Re \). We shall come back to this in Section 5.1. We will also show in Section 5.2 that the nonlinear wave solutions found possess a viscosity field at the wall

\[
\mu(r = 1) = \mu_W
\]

(35)

defined with the base flow. This relation, which will be precised numerically below (Tab. 2), justifies a posteriori the reasoning leading to (33).

3. Numerical methods

3.1. Spectral development

The Petrov-Galerkin formulation of [2, 20] has been used to solve Eqs. (10) and (27). The solutions are expanded as follows

\[
\mathbf{u} = \sum_{l=1}^{L} \sum_{m=-M}^{M} \sum_{n=1}^{N} \sum_{k=1}^{2} a_{lmnk} r^l m n k \mathbf{v}_{lq_{l},nmn,k},
\]

(36)

with the trial fields, of the form

\[
\mathbf{v}_{lq_{l},nmn,k} = \mathbf{V}_{lq_{l},nmn,k}(r) \exp[i(mn0\theta + lq_{l}(z - ct))],
\]

(37)

given in Appendix A. The coefficients \(a_{lmnk} \) obey

\[
a_{l-1,m,n,k} = a_{l,m,n,k}^l
\]

(38)

with the star designating the complex conjugate, in order for \(\mathbf{v} \) to be real. This rule and the symmetry (28) impose some restrictions on the coefficients \(a_{lmnk} \). Denoting by \(a_{lmnk}^l \), \(a_{lmnk}^r \) the real and imaginary parts of \(a_{lmnk} \), one has

\[
\forall n, \quad a_{001n} = 0, \quad a_{l00n}^l = 0,
\]

\[
\forall n, \forall m \neq 0, \forall k, \quad a_{0mnk}^l = 0, \quad a_{l}^{l-1,m,n,k} = -a_{l0mnk}^l
\]

\[
\forall l \text{ even} \neq 0, \forall n, \quad a_{000n} = 0, \quad a_{l0mn}^l = 0,
\]

\[
\forall l \text{ odd}, \forall n, \quad a_{0mnk}^l = 0
\]

\[
\forall l \text{ even} \neq 0, \forall m \neq 0, \forall n, \forall k, \quad a_{l-1,m,n,k} = -a_{lmnk}^l.
\]

(39)

Thus the velocity field depends only on the real coefficients \(a_{00n}^l \), \(a_{lmnk}^r \) for \(m > 0 \), \(a_{l}^{l+1,0} \), \(a_{l0mn}^l \) for \(l > 0 \) odd, \(a_{l00n}^l \) for \(l > 0 \) even, \(a_{lmnk}^r \) for \(l > 0, m > 0 \), which can be collected in a vector \(\mathbf{X} \) of dimension

\[
N_{\text{tot}} = (2L + 1)(2M + 1)N_r.
\]

(40)
3.2. Projection scheme
The trial fields being divergence-free, the only equation to solve is (27). Following [2, 20], this equation is projected onto test fields of the form
\[\tilde{v}_{lp,mn,\theta} = \tilde{v}_{lp,mn,\theta}(r) \exp \{i[m \theta l_{q} (z - c t)] \}, \]
which are given in Appendix A, using the scalar product
\[\langle \tilde{v} | \tilde{v} \rangle = \int_{\Omega} \tilde{v} \cdot \tilde{v} \, r \, dr \, d\theta \, dz. \]
The integration domain
\[\Omega = \{(r, \theta, z) \in [0, 1] \times [0, 2\pi/m_0] \times [0, 2\pi/q_0]\}. \]
Because all terms in (27) satisfy the 'shift-and-reflect' symmetry (28), and their projected coefficients obey the rules (39), this projection yields exactly \(N_{\text{tot}} \) real equations. These equations can be written
\[F(X, Re) := cD(X) + L(X) + Q_2(X) + Re^{-1} H(X) = 0, \]
with \(F(\cdot, Re) \), \(D \), \(L \), \(Q_2 \), \(H \) functions from \(\mathbb{R}^{N_{\text{tot}}} \) to \(\mathbb{R}^{N_{\text{tot}}} \). The linear operators \(D \) and \(L \) represent respectively \(-\partial_r u \) and \(W_1 \partial_r e_c + W_2 \partial_r u \). The quadratic operator \(Q_2 \) represents \(\langle \tilde{v}u \rangle \cdot u \).

The highly nonlinear operator \(H \) represents \(\text{div}(\mu_D - \mu_D) \). Since the test fields vanish at the pipe wall and are periodic as the trial fields, for verifying the same periodicity rules (26) one has
\[\langle \text{div}_\Omega | \tilde{v} \rangle = -\int_{\Omega} \tilde{v} \cdot \nabla \tilde{v} \, r \, dr \, d\theta \, dz. \]
Particularly the periodic pressure gradient term \(-\nabla \tilde{p} \) in Eq. (27) yields a contribution proportional to \(\nabla \tilde{v} \) which vanishes since the test fields are divergence-free. The formula (45) is also used to calculate \(H \), which is therefore defined by a contribution proportional to \((\mu_D - \mu_D) : \nabla \tilde{v} \).

3.3. De-aliased pseudospectral method
A fast computation of the nonlinear terms in Eq. (44) is possible with a de-aliased pseudospectral method as described for instance in the Section 6.2 of [20]. A three-dimensional grid is introduced in the volume \(\Omega \), with Gauss-Lobatto points in the radial direction, regularly spaced points in the azimuthal and axial directions. The projected terms of Equation (27) are all even under \(r \mapsto -r \), hence the radial integration can be performed with the Gauss-Lobatto quadrature formula retaining only the points in the interval \(r \in [0, 1] \), i.e.
\[r_j = \cos \left(\frac{j \pi}{NG_r} \right) \quad \text{for} \quad j = 1, \cdots, \frac{NG_r - 1}{2}, \]
with
\[NG_r = 3N_r + 8 \quad \text{if} \quad N_r \text{ is odd}, \quad 3N_r + 7 \quad \text{if} \quad N_r \text{ is even}. \]
This number has been determined by requiring that the Gauss quadrature formula is exact for the projection of the nonlinear term \(\langle \tilde{v}u \rangle \cdot u \) in Equation (27); moreover \(NG_r \) is chosen odd to avoid having a point at \(r = 0 \), and to be able to use differentiation matrices to evaluate the radial derivatives of \(u \). The number of azimuthal points
\[NG_\theta = 3M + 2 \quad \text{if} \quad M \text{ is odd}, \quad 3M + 3 \quad \text{if} \quad M \text{ is even}, \]
the number of axial points
\[NG_z = 3L + 2 \quad \text{if} \quad L \text{ is odd}, \quad 3L + 3 \quad \text{if} \quad L \text{ is even}, \]
are dictated by the de-aliasing rule; besides, for the differentiation matrices used to evaluate the azimuthal and axial derivatives of \(u \), one wants an odd number of grid points. In practice, a partial summation technique is used to compute \(u \) at the grid points from the spectral expansion coefficients \(a_{mnk} \), and then differentiation matrices are used to compute \(\tilde{v}u \). Relevant quantities like \(\langle \tilde{v}u \rangle \cdot u \) and \(\mu_D \) can then be obtained on the spatial grid. The projection integrals (42) are computed with Gauss quadrature formula in the radial direction, trapezoidal rules in the azimuthal and axial directions.

3.4. Phase condition to set the phase velocity
The physical wave solutions have a phase velocity that is not a free parameter, but is determined by the advection by the mean flow. In fact, a phase condition must be added to the Eqs. (44) to prevent the solutions from drifting in the pipe, as a result of the translational invariance in the axial direction of the physical Eq. (27). We have chosen the phase condition
\[\phi(X) = \sum_{n=1}^{N_r} a_{1n1} \tilde{v}_{gp, mn,\theta}(r = 0.1) \cdot e_r = 0. \]
The physical calculations will thus aim at computing the vector
\[\tilde{X} = \begin{pmatrix} X \\ \phi \end{pmatrix} \]
solution of
\[\tilde{F}(\tilde{X}, Re) := \begin{pmatrix} F(X, Re) \\ \phi(X) \end{pmatrix} = \begin{pmatrix} \theta \\ 0 \end{pmatrix}. \]

3.5. Newton-GMRES method
For the validation and convergence tests with fixed phase velocity \(c \), one has to solve Eq. (44) to determine \(X \); for the physical wave computations, one has to solve Eq. (48) to determine \(X \) and \(c \). In both cases this is done with a Newton method. Since the function \(\phi \) (46) depends linearly on \(X \), it is simple to augment a method solving (44) in order to solve (48). For clarity reasons, we will only describe hereafter the method used to solve (44), by considering a case where \(c \) is fixed. The more general case with \(c \) unknown can be treated by replacing in what follows \(X \) by \(\tilde{X} \) and \(F \) by \(\tilde{F} \), and correcting in accordance the discussion on \(\nabla_{\tilde{X}}\tilde{F} \). We also only describe hereafter a case where \(Re \) is fixed, postponing the evocation of a more general method where \(Re \) is variable to the next subsection.
We start with a guess value X_0 of X not too far from the solution at the parameters studied (the determination of X_0 will be explained in Sec. 3.6). At the iteration $j + 1$ of the Newton method, the computation of X_{j+1} from X_j requires in principle the knowledge of the gradient of F, to solve
\[\nabla_X F(X_j, Re) \cdot (X_{j+1} - X_j) = -F(X_j, Re). \] (49)
Formally
\[\nabla_X F = cD + L + \nabla_X Q_2 + Re^{-1} \nabla_X H. \] (50)
The operators D and L are constant and simple; they are represented by matrices. On the contrary computing the full matrices representing the gradients of Q_2 and H is a quite long task, which should be avoided, or at least not be done at each iteration, especially concerning H which is highly nonlinear. For this reason a GMRES method [21] is used to solve (49). The restarted version of GMRES, the algorithm 4 of [21] is used, with a restart every 60 steps if convergence has not been obtained before. The criterion of convergence is the choice 2 of the ‘inexact Newton method’ of [22], with $\gamma = 1$ and the exponent $\alpha = 1.6$. The action of $\nabla_X H$ on the vectors implied in the GMRES method is done with a finite difference formula of order 4. Note also that, instead of a Gram-Schmidt process, Householder transformations are used in the GMRES method, following [23]. To accelerate the convergence of the GMRES method, the preconditioner
\[P = cD + L + \nabla_X Q_{2old} + Re^{-1} H_{old} \] (51)
is applied to the system (49). The indexes ‘old’ mean that it is not computed at each Newton iteration, but typically every 5 Newton iterations. Moreover H' is the operator that represents
\[\text{div}(\mu_{old} D). \] (52)
It corresponds to one contribution to $\nabla_X H$; other contributions also exist, where the viscosity has to be varied. Right preconditioning of the system (49) with the operator P defined by (51), which is stored and used with a LU decomposition, appears to be efficient. The criterion of convergence of the Newton method is
\[\|X_j - X_{j-1}\|_2 < 10^{-8} \text{ or } \|F(X_j, Re)\|_2 < 10^{-14}. \] (53)
If the first inequality stops the Newton iterations, it is checked that $\|F(X_j, Re)\|_2$ is small; typically $\|F(X_j, Re)\|_2 \lesssim 10^{-10}$.

3.6. Continuation method - Euler predictor

For the test computations of Sec. 4, the guess value X_0 is a simple perturbation of the real solution, which is known, see Eq. (63) below. For the physical computations of Sec. 5, the situation is more complicated since the solutions are unknown, and the solution branches can present bifurcation points. The pseudo-arc length method of [24] is used to follow the solutions in the parameter space, starting at the very beginning from Newtonian solutions obtained with the intermediate forcing method of [13]. In the pseudo-arc length method, Re is treated as a parameter, and to pass from a numerical solution (X_s, Re_s) to another one on the solution branch on uses first an Euler predictor formula,
\[(X_0, Re_0) = (X_s, Re_s) + \delta s \left(\frac{dX}{ds}, \frac{dRe}{ds} \right). \] (54)
In this equation δs is the curvilinear abscissa increment, whereas the tangent to the solution branch is computed by solving
\[\nabla_X F(X_s, Re_s) \cdot \frac{dX}{ds} + \nabla_{Re} F(X_s, Re_s) \cdot \frac{dRe}{ds} = 0 \] (55)
and a normalization condition. The system (55) is also solved with a preconditioned GMRES method. The Newton method that follows has a variable Re; it is the modified Newton-GMRES method of [25]. An automatic control of the curvilinear abscissa increment δs is done, with criteria based on the variations of the vector $(\delta X, \delta Re)$.

3.7. Numerical performances

The code is written in Fortran 95 and runs on PCs, Intel Xeon 5160 at 3.00 GHz. A typical run for physical computations, to obtain the results that will be presented in Sec. 5, with truncation levels $(L, M, N_f) = (7, 10, 30)$, takes around 45 minutes to pass from one solution to the next one on the solution branch. The peak of RAM use, reached during the GMRES computations, is of the order of 4.5 Gb. An underestimated value of magnitude of the RAM needed can be obtained by considering that 5 large matrices of $N_{tot} \times N_{tot}$ double-precision floating numbers (the matrices $P, D, L, \nabla_X Q_{2old}$ and H_{old} of Equation 51) have to be stored.

4. Validation and convergence tests

In order to test the code, we have performed consistency tests similar to the ones exposed in the Section 4 of [26]. The analytical solution
\[u_a = \frac{1}{2} r^2 (1 - r^2)^2 \cos \theta \sin \theta \sin (z - t/2), \]
\[v_a = \frac{1}{2} r^2 (r^2 - 1) \left(7r^2 - 3 \right) \cos \theta \sin (z - t/2), \]
\[w_a = r^2 (1 - r^2) \sin \theta \cos (z - t/2) \] (56)
has been forced in a case without pressure gradient ($G = 0$) and base flow ($v_b = 0$). A forcing term
\[F_a = -\frac{1}{t} \partial_t v_a + (\nabla v_a) \cdot v_a - Re^{-1} \text{div}(\mu_a D) \] (57)
has been calculated by computing firstly the coefficients X_a of the spectral development of v_a and secondly $F_a = F(X_a, Re_s)$. Whereas v_a is only rich in radial modes, and corresponds to $q_0 = l = 1$, $m_0 = m = 1$ only, F_a is rich in modes in all spatial directions, because of the nonlinear nature of μ_a. This is especially true if the Reynolds number is not too large. Since the
nology of our code is precisely the encoding of $\text{div} \mu \mathbf{D}$ with a nonlinear viscosity μ given by (13), we have chosen to perform our first tests at $Re = 10$. The comparison of the spectrum of Y_a, the real and imaginary parts of $\langle v_a | \overline{v}_{l,m,n,k} \rangle$ for $l, m, n, k \geq 0$, shown in Fig. 2, and of the spectrum of F_a, shown in Fig. 3, demonstrates the richness of the latter. In the upper graphs of these two Figures, the generalized wavenumber

$$K = \sqrt{(l+1)^2 + (m+1)^2 + n^2}$$

has been used to index the coefficients in a manner representing the ‘degree of oscillations’ in all spatial directions of the associated test fields. In the lower graphs, the quantities

$$A(m) = \sqrt{\sum_{l,n,k} |(a_{l,m,n,k}^r)^2 + (a_{l,m,n,k}^i)^2|},$$

$$B(l) = \sqrt{\sum_{l,n,k} |(a_{l,m,n,k}^r)^2 + (a_{l,m,n,k}^i)^2|},$$

with $a_{l,m,n,k}$ designating, here, one projection integral, are used, in order to show the ‘energy’ associated with a particular wavenumber.

Independently of the Fortran computations, a calculation of F_a has been realized with Mathematica, through a formal computation of F_a followed by a numerical computation of some projection coefficients $\langle F_a | \overline{v}_{l,m,n,k} \rangle$ for some values of l, m, n and k. The relative errors between the integrals obtained with Mathematica and the corresponding components of F_a computed with the fully numeric Fortran code are smaller than 4×10^{-6}.

With the Fortran code, the forced momentum equation

$$\partial_t v + (\nabla v) \cdot v = -\nabla p + Re^{-1} \text{div}(\mu \mathbf{D}) + F_a,$$

represented by

$$F(X, Re) - F_a = 0,$$

has been solved with the Newton-GMRES method, starting from the initial condition

$$X_0 = X_a + \frac{1}{100} X_p.$$

In this equation, X_p is the spectral development on the base of the trial fields of the solenoidal vector field

$$u_p = \cos \theta, \quad v_p = -\sin \theta, \quad w_p = r \cos \theta.$$

Convergence of the solution towards a fixed point X_{∞} quite close to X_a is obtained, and a discrete L2-error on the spatial grid points between the corresponding field v_{∞}, computed numerically, and the analytical field v_a has been computed. This test has been performed with various values of N, the number of real modes in each direction, i.e., according to Eq. (40),

$$N = 2L + 1 = 2M + 1 = N_r.$$
The Fig. 4 has been obtained, which proves that exponential convergence occurs, even in the non-Newtonian cases ($\lambda > 0$), despite the highly-nonlinear nature of the viscous terms in Eq. (61). Another test has been performed at a higher value of the Reynolds number, $Re = 1000$. Fig. 5 has been obtained, which shows that for $\lambda > 0$ one does not always converge to $X_\infty = X_a$. However exponential convergence still occurs, though in a slower manner, especially for the case $\lambda = 4$ of a strongly shear-thinning fluid.

5. Physical results

5.1. Base flows

For a given non-Newtonian fluid and pipe diameter, setting λ given by Eq. (14) amounts to set the characteristic velocity

$$\hat{W}_0 = \frac{\hat{a}}{\lambda} \lambda.$$

The Reynolds number (16) is also set to

$$Re = \frac{\hat{\rho} \hat{a}^2}{\mu_0} \lambda.$$

This Reynolds number is a 'pressure-gradient Reynolds number', since, according to the model described in Section 2.3, all flows are controlled by the applied pressure gradient

$$\hat{G} = \frac{\hat{\rho} \hat{W}_0^2}{\hat{a}} \alpha = \frac{\hat{\rho} \hat{W}_0^2}{\hat{a}} \alpha \lambda.$$

(68)

For the purpose of completeness, we show in Fig. 6 the base flows W_b, the corresponding shear-rates W'_b and the viscosities μ_b for various values of λ. They have been obtained through a numerical solution of the problem (22), (23). When λ increases, $|W_b(r = 1)|$ increases only slightly, whereas $\mu_b = \mu_b(r = 1)$ decreases strongly, hence

$$\alpha = -\frac{d}{dr}(r \mu_b W'_b) \bigg|_{r=1}^{-1} \lambda.$$

(69)

decreases, as shown in the Tab. 1. The last column of this Table shows that the dimensional pressure gradient needed to sustain the base flow increases significantly when λ increases; note that the Eqs. (66) to (68) are not valid for a Newtonian fluid ($\lambda = 0$).

5.2. Nonlinear waves

As stated in the introduction, we focus on the case of the waves found by [10, 13] in Newtonian fluids that display the lowest critical Reynolds number Re. These waves correspond to an axial wavenumber $q_0 = 2.44$ and an azimuthal wavenumber $m_0 = 3$. Selecting these values of the geometrical parameters, we have first recovered (with the intermediate forcing method of [13]) the Newtonian solutions for $\lambda = 0$, which constitutes another validation of our code. Thus the dashed curve in our Fig. 7 corresponds to the lowest curve in the Fig. 7 of [13]. We have then increased the non-Newtonian parameter λ by steps, and followed by continuation the solution branches. In the (Re, c) plane, as shown in Fig. 7, first for $\lambda \lesssim 1$ the non-Newtonian waves appear at lower Re than for $\lambda = 0$, but then, for $\lambda \gtrsim 1$, the non-Newtonian waves appear at higher Re. A simpler picture is obtained, however, if
one uses the Reynolds number \bar{Re}_W, more relevant for non-
Newtonian fluids, as the main parameter. As explained in
Sec. 2.5, this Reynolds number is the wall-viscosity Reynol-
ds number (34), $\bar{Re}_W = 2Re (v_\gamma)_\theta / \mu_W$. Because the factor $1/\mu_W$
increases rapidly with λ, as shown in the fourth column of
Tab. 1, whereas the mean flow speed $\langle v_\gamma \rangle_\theta$ remain roughly con-
stant ($\langle (v_\gamma)_\theta \rangle = 0.39$), the onset of the waves is clearly delayed
when considered in terms of \bar{Re}_W; compare Fig. 7 and 8. Note
that the Newtonian, dashed curve in Fig. 8 corresponds to the
leftmost curve in the Fig. 10 of [13]. From now on we denote
as ‘critical waves’ the waves that appear at the lowest values
of \bar{Re}_W. The results of our Fig. 8, which are complemented by
the Tab. 2, clearly show a tendency to delay the transition as
the non-Newtonian parameter λ increases. In Tab. 2, the sixth
column shows the averaged viscosity at the wall in the critical
wave solutions: it coincides with the wall-viscosity μ_W (33) of
the laminar flow (the third column of Tab. 1) within 1.4%. Nev-
evertheless, the fluctuations of the viscosity at the wall are non-
negligible, as shown in the seventh column of Tab. 2, which
displays the maximum difference between the viscosity at the
wall, computed at the grid points, and the averaged viscosity at the
wall,

$$
\delta \mu_W = \max_{\theta, z} \left| \mu(r = 1, \theta, z) - \langle \mu(r = 1, \theta, z) \rangle_{Re} \right|.
$$

(70)

All the computations in Fig. 7 and 8 have been performed
with the truncation levels (L, M, N_r) specified in the last col-
umn of Tab. 2. Convergence tests have been made to verify that
computations with lower truncation levels (L', M', N'_r) such that

$$
L' \leq L - 2, \quad M' \leq M - 2, \quad N'_r \leq N_r - 2,
$$
give quite similar curves. Such a convergence test is displayed in
Fig. 9. Note that, because of Eq. (40), the number of real
modes increases from $N_{tot} = 4488$ to $N'_{tot} = 9450$ between
the two truncation levels used. The variations of the Reynolds num-
bers at the saddle-node points in the (\bar{Re}_W, c) plane obtained
with the different truncation levels have been used to estimate
the error bars in the Tab. 2. At this stage it is interesting to con-
sider, as shown in Figs. 10 and 11, the spectra of the critical
waves. One observes, in Figs. 10a and 11a, a decrease of more
than 4 order of magnitudes between the largest coefficients with
$K = 1$ and $K = 30$, which confirms that the solutions are well
converged. In Figs. 10b and 11b one also observes a decrease
of the energy with increasing m and l. One remarks in Fig. 10b,
for $\lambda = 0$, that one has $A(2) > A(1)$, which means that there is
more energy on the modes in $\exp(+6i\theta)$ than on the modes in
$\exp(+3i\theta)$. The Fig. 11b shows that this is is not the case for
$\lambda = 2$.

The velocity field of these nonlinear waves can be visualized
in a simple way if one averages it in the axial direction, as [10]
and [13] did it. In most of their Figures, they substracted a lam-
inar flow with the same mass flux to this mean flow (see the
Eq. 5.2 of [13]). This procedure has a meaning in a Newto-
nian fluid, where the laminar flow is always given by the same
parabolic function. On the contrary in a non-Newtonian fluid
the laminar flow depends on the parameters, and it seems more
relevant to consider either the total mean flow, i.e. $\langle v_\gamma \rangle_c$, or
the mean flow minus the laminar base flow, i.e. $\langle v_\gamma \rangle_c - \langle u \rangle_c$. The corre-
sponding fields are displayed in Fig. 12. The scales of all the
plots are defined by the columns 8 to 11 in Tab. 2. On the plots
of $\langle v_\gamma \rangle_c$ (left column of Fig. 12), one observes a classical ef-
fect due to the shear-thinning: the streamwise velocity tends

![Figure 7](image1.png)

Figure 7: Phase velocities of nonlinear waves vs the pressure gradient Reynolds number for $m_0 = 3, q_0 = 2.44$. The dashed line shows the Newtonian case $\lambda = 0$, the continuous lines of increasing thickness show the cases $\lambda = 0.5, 1$ and 2. The values of λ are displayed to the left of the saddle-node points.

![Figure 8](image2.png)

Figure 8: Same as Figure 7, except that the wall-viscosity Reynolds number (34) is used. The disks denote the saddle-node points, which define the critical waves.

![Figure 9](image3.png)

Figure 9: Convergence test for $\lambda = 2$. The continuous curve has been computed with the truncation levels indicated in Tab. 2, $(L, M, N_r) = (7, 10, 30)$. The dotted curve has been computed with lower truncation levels, $(L', M', N'_r) = (5, 8, 24)$.

9
to become roughly constant in a larger and larger region near the axis. This effect is essentially due to the base flow contribution (see the Fig. 6a), since it is not visible on the plots of $\langle w \rangle_z$ (right column of Fig. 12). On these plots one notices the presence of fast streaks near the pipe wall, which may be explained by the presence of 3 pairs of counter-rotating vortices visible in the cross-stream fields. Indeed these vortices transport some rapidly moving fluid in the region of the axis towards the walls. A remarkable effect is the transition from 6 fast streaks, in Figs. 12a and b, for $\lambda = 0$ and 1, to 3 fast streaks, in Fig. 12c, for $\lambda = 2$. For $\lambda = 0$, 6 fast streaks are also visible in the Fig. 13a of [13], which we have been able to reproduce. The transition from 6 to 3 fast streaks can be seen as a consequence of a spatial broadening of the cross-stream outflows associated with the cross-stream vortices, as visible in Fig. 13. The fact that one has 6 fast streaks for $\lambda = 0$ vs 3 fast streaks for $\lambda = 2$ is obviously linked to the dominance of the second azimuthal harmonic in the spectrum for $\lambda = 0$ (Fig. 10b) but not in the spectrum for $\lambda = 2$ (Fig. 11b).

6. Concluding discussion

A Petrov-Galerkin code has been developed. It is similar, in his principles, to the code of Meseguer and collaborators, especially to the Newton-Krylov version used in [27, 28]. However, a major difference is the encoding of a nonlinear viscosity that depends on the velocity field according to Eqs. (4) and (5). This required a special care at the level of the Newton-GMRES method, as explained in our Sec. 3.5. This code has been validated and its convergence properties have been studied. Spectral convergence is obtained, despite of the highly nonlinear nature of the relation between the viscosity and the velocity components.

The main physical result of this work is the stabilizing influence of shear-thinning effects on the nonlinear waves that may support the turbulent puffs in pipe flow. As shown in the first columns of Tab. 2, the stabilization for the wave with the critical wavenumbers for the Newtonian case ($m_0 = 3$ and $q_0 = 2.44$)
is moderate in terms of the pressure-gradient Reynolds number Re: the transition is delayed from $Re(0) \approx 1630$ in the Newtonian case $\lambda = 0$ to $Re(2) \approx 2020$ in the non-Newtonian case $\lambda = 2$. However, the transition delay becomes substantial when the wall-viscosity Reynolds number Re_w, which is more relevant for non-Newtonian fluids (Sec. 2.5), is used. In terms of Re_w, the transition is delayed from $Re_w(0) = Re \approx 1250$ in the Newtonian case $\lambda = 0$ to $Re_w(2) \approx 3770$ in the non-Newtonian case $\lambda = 2$. It is our conviction that this delay is related to the experimental results mentioned in Introduction.

The delay factor, the ratio of the two Reynolds numbers,

$$\frac{Re_w(\lambda)}{Re_w(0)} \propto \frac{Re(\lambda)}{\mu_w(\lambda)} \frac{Re(0)}{Re}$$

(71)

because the flow rates are similar in the Newtonian and non-Newtonian waves. The role of the ratio $1/\mu_w$ between the viscosity at zero strain and the wall-viscosity ($1/\mu_w = 2.365$ in the case $\lambda = 2$, according to the Tab. 1) is remarkable. It would be interesting to extend these computations to higher values of the non-Newtonian parameter λ, to see if the ratio $Re(\lambda)/Re(0)$ continues to increase with λ for $\lambda > 2$, which would lead to a very strong stabilization at large λ in terms of the ratio $Re_w(\lambda)/Re_w(0)$. This regime of large λ is the experimentally relevant one. Indeed, the inversion of the Eqns. (34), where we consider that approximately $2 \langle v_r \rangle_{an} \approx 1$, and (67), yields

$$\lambda = \frac{\hat{\mu}_0 \lambda}{\hat{\rho} \hat{a}^2} Re \approx \frac{\hat{\mu}_0 \lambda}{\hat{\rho} \hat{a}^2} \mu_w Re_w .$$

(72)

For the case of 0.125% PAA studied in [7], the factor

$$\frac{\hat{\mu}_0 \lambda}{\hat{\rho} \hat{a}^2} \approx 77 ,$$

(73)

whereas a laminar computation such as the ones presented in Sec. 5.1, yields, for a typical wall-viscosity Reynolds number $Re_w = 6000$, a value of the wall-viscosity $\mu_w \approx 0.004$. This corresponds, according to Eq. (72), to

$$\lambda \approx 1900 .$$

(74)

Preliminary studies for $\lambda > 2$ show that high truncation levels, more precisely high values of N_s, may have to be used in such cases, which could pose practical problems, notably in terms of memory capacity. In order to overcome this difficulty, a matrix-free version of the code (with, for instance, a SOR preconditioning) might be developed, since storing the matrices implied in Equation (51) explains most of the memory use (cf. the discussion in Section 3.7).

Another relevant question that will be less difficult to solve is the influence of the azimuthal and axial wavenumbers. A study of this influence will be the object of a forthcoming paper.

Appendix A. Trial and test fields

The choice of the trial and test fields has been discussed in [2, 20]. For the purpose of completeness, we list these functions here. They are defined in terms of the functions

$$h_p(r) = (1 - r^2) T_{2m-2}(r) , \quad g_p(r) = (1 - r^2) h_p(r)$$

(A.1)

Figure 12: Visualization of the velocity field of the critical waves averaged in the axial direction, for (a) $\lambda = 0$, (b) $\lambda = 1$, (c) $\lambda = 2$. Left: contours of the axial velocity $\langle v_r \rangle_z$; the contour steps are $\text{max}(\langle v_r \rangle_z)/10$. Right: axial velocity difference $\langle w \rangle_z = \langle v_r \rangle_z$ and arrows showing the cross-stream velocity field $\langle v_r \rangle_z = \langle (v_n, v_r, v_z) \rangle_z$. The contour steps for the axial velocity are $(\text{max}(\langle w \rangle_z) - \text{min}(\langle w \rangle_z))/10$. The contour line $\langle w \rangle_z = 0$ is drawn. In the grayscale plots dark regions denote slow velocities whereas clear regions denote high velocities.

Figure 13: Cross-stream velocity fields in one half of the pipe for (a) $\lambda = 0$, (b) $\lambda = 2$. On a regular grid, only the vectors with $\text{max}(\langle v_c \rangle) > \frac{1}{10} \text{max}(\langle v_r \rangle_z)$ are shown.
with \(T_n \) the Chebyshev polynomial of degree \(n \), and of the operators

\[
D = \frac{d}{dr}, \quad D_+ = D + \frac{1}{r}.
\]

Appendix A.1. Trial fields

In the case \(m = 0 \),

\[
\nu_{l,0,1} = r \eta_0 e_\theta, \\
\nu_{l,0,2} = -irl \eta_0 e_\tau + D_+(r \eta_0) e_z,
\]

except that, if \(l = 0 \),

\[
\nu_{0,0,2} = \eta_0 e_z.
\]

In the case \(m \neq 0 \),

\[
\nu_{l,m,1} = -im r^{\sigma - 1} \beta \eta_0 e_\tau + D(\beta r^\sigma \eta_0) e_\theta, \\
\nu_{l,m,2} = -i l r^{\sigma + 1} \eta_0 e_\theta + im r^{\sigma + 1} \eta_0 e_z,
\]

with \(\sigma = \sigma(m) = 1 \) if \(m \) is odd, \(2 \) if \(m \) is even.

Appendix A.2. Test fields

They are all proportional to the Chebyshev weight function

\[
W = 1 / \sqrt{1 - r^2}.
\]

In the case \(m = 0 \),

\[
\tilde{\nu}_{l,0,1} = W \eta_0 e_\theta, \\
\tilde{\nu}_{l,0,2} = W[-irl r^2 \eta_0 e_\tau + [D_+(r^2 \eta_0) + r^2 \eta_0] e_z],
\]

except that, if \(l = 0 \),

\[
\tilde{\nu}_{0,0,2} = W r \eta_0 e_z.
\]

In the case \(m \neq 0 \),

\[
\tilde{\nu}_{l,m,1} = W[-im r^{\sigma - 1} \eta_0 e_\tau + [D(\beta r^\sigma \eta_0) + \beta r^{\sigma + 1} \eta_0] e_\theta], \\
\tilde{\nu}_{l,m,2} = W(-irl^{\sigma + 1} \eta_0 e_\theta + im r^{\sigma + 1} \eta_0 e_z),
\]

except that, if \(l = 0 \),

\[
\tilde{\nu}_{0,m,2} = W im r^{1-\beta} \eta_0 e_z.
\]

In these last Eqs., \(\beta = \beta(m) = 1 \) if \(m \) is odd, \(0 \) if \(m \) is even.

References

