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Abstract 
We present the Tabula Drosophilae, a single cell atlas of the adult fruit fly that includes 580k cells from 15 
individually dissected sexed tissues as well as the entire head and body. Over 100 researchers from the fly 
community contributed annotations to >250 distinct cell types across all tissues. We provide an in-depth analysis 
of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole 
animal. Analysis of common cell types that are shared between tissues, such as blood and muscle cells, allowed the 
discovery of rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the entire 
Drosophila community and serves as a comprehensive reference to study genetic perturbations and disease models 
at single-cell resolution. 
 
One Sentence Summary: A single-cell transcriptomic map of the entire adult Drosophila melanogaster 
 
Main Text 
The fly Drosophila melanogaster has a fruitful history in biological research, dating back to experiments of Thomas 
Hunt Morgan a century ago (1). Drosophila has been at the basis of many key discoveries in genetics, development, 
neurobiology, circadian rhythms, stem cell biology, and aging (2). The highly collaborative nature of the Drosophila 
community contributed to many of these successes, and led to the development of essential research resources, 
including a high-quality genome (3), a large collection of mutant lines and a large variety of genetic and molecular 
tools, as well as important databases such as Flybase (4), FlyMine (5), FlyLight (6), VirtualFlyBrain (7) and 
ModERN (8). The fruit fly genome contains about 17,000 genes, including an estimated 13,968 protein-coding 
genes of which ~63% have human orthologues. Studies such as ModENCODE (9) and FlyAtlas (10) have explored 
their expression patterns in embryonic, larval, pupal, and adult tissues, but have lacked cell type resolution. Recent 
advances in single-cell technologies have enabled the transcriptomic profiling of thousands of cells at once, leading 
to greater insight in tissue composition and differential gene expression. Several studies have already applied single-
cell RNA sequencing (scRNA-seq) on multiple Drosophila tissues and developmental stages (11, 12). However, 
these data have been generated by different laboratories on different genetic backgrounds, with different 
dissociation protocols and sequencing platforms, hindering systematic comparison of gene expression across cells 
and tissues. 

Here, we present a single cell transcriptomic atlas of the entire adult Drosophila, separately analyzing male 
vs female samples, using a uniform genotype and a unified single-nucleus RNA-seq (snRNA-seq) platform (13) 
with two sequencing strategies: droplet-based 10x Genomics and plate-based Smart-seq2. The resulting Tabula 
Drosophilae, the first comprehensive dataset within the Fly Cell Atlas consortium, contains over 580k cells, 
resulting in >250 distinct cell types annotated by >100 experts from 40 laboratories. This atlas reports cellular 
signatures for each tissue, providing a valuable resource for the entire Drosophila community as a reference for 
studies that probe the effects of genetic perturbations and disease models at single-cell resolution. All data and 
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annotations can be accessed through multiple visualization and analysis portals from https://flycellatlas.org, also 
summarized in fig. S1-S3. 
 
Sampling single cells across the entire adult fly  
We used a unified snRNA-seq platform for all samples, because it is difficult to isolate intact cells from many adult 
Drosophila cuticular tissues, such as the antenna, wing, leg, and haltere. In addition, snRNA-seq can be applied to 
large multinucleated cells (e.g., muscle) and facilitate (frozen) tissue collection from different laboratories. A recent 
study (13) revealed that 70–90% of transcriptomic information was preserved from snRNA-seq compared to 
scRNA-seq of the same fly cell types.  

To achieve a comprehensive sampling of cell types, we used two complementary strategies. First, we 
dissected 12 individual tissues from both males and females, plus 3 sex-specific tissues (see Methods). snRNA-seq 
was performed using droplet-based 10x Genomics (14) and plate-based Smart-seq2 (15) (Fig. 1A). For tissues (fat 
body, oenocytes, and trachea) that are localized across the body and cannot be directly dissected, we used specific 
GAL4 lines driving nuclear-GFP to label nuclei and collected them using FACS (see Methods). In addition, two 
rare cell types were sequenced only with Smart-seq2: insulin-producing cells (IPCs) and corpora cardiaca cells 
(CCs). Second, we sorted nuclei from the entire head and body of sexed flies and profiled them on 24 10x Chromium 
lanes, aiming to detect cell types that may not be covered by the selected tissues. In total, we obtained 580k high-
quality cells: 570k from 10x Genomics of 63 runs and 10k from Smart-seq2 of 35 384-well plates (Fig. 1A).  

To analyze the 10x Genomics data in a reproducible manner, we used an automated computational pipeline 
called VSN (see Methods), which takes the raw sequencing data as input, performs filtering, normalization, doublet 
removal, batch effect correction, dimensionality reduction, and clustering, and produces LoomX formatted files with 
expression data, embeddings and clusterings (Fig. 1B and fig. S4). As we observed a presumed artefactual cluster 
of cells showing expression of nearly all genes, we added an additional preprocessing and filtering step that models 
and then subtracts ambient RNA from the gene expression values (16), resulting in computational removal of this 
cluster. However, since adjusting the gene expression values per cell can also introduce other biases (e.g., 
overcorrection, removal of non-doublet cells), we retained both a Relaxed dataset of 570k cells, and a Stringent 
dataset of 510k cells (see Methods and Fig. 1C). In the analyses below, unless otherwise mentioned (e.g., Fig. 2C), 
we focus on the Stringent dataset.  

Cells from 10x Genomics and Smart-seq2 were well aligned after batch correction using Harmony (17) 
(Fig. 1D). As expected, Smart-seq2 yielded a higher number of detected genes for most tissues (Fig. 1E) as cells 
were sequenced to a higher depth. We analyzed each tissue separately, combining the male and female runs, which 
yielded between 6.5k (haltere) and 100k (head) cells per tissue with a median of 16.5k cells per tissue for 10x and 
between 263 (male reproductive gland) and 1,349 (fat body) cells per tissue with a median of 534 cells for Smart-
seq2 (Fig. 1F). We obtained a similar number of male and female cells for non-sex-specific tissues. We retrieved 
on average 1895 unique molecular identifiers (UMIs) and 828 genes per cell with  variations between tissues (fig. 
S5), suggesting that different tissues have different numbers of active genes, similar to other atlas data such as 
Tabula Muris (18). Next, all cells were combined in a meta-analysis, showing tissue-specific clusters like the 
germline cells of the testis and ovary, and shared clusters of common cell types, such as neurons, glial cells, fat 
cells, epithelial cells, hemocytes, and muscle cells from different tissues (Fig. 1G; see fig. S24, 25).  
 
Crowd-based cell type annotation by tissue experts 
Experts from 40 laboratories collaborated on cell type annotation for 15 individual tissues, including 12 tissues for 
both males and females: antenna, body wall, fat body, haltere, heart, gut, leg, Malpighian tubule, oenocyte, 
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proboscis with maxillary palp, trachea, and wing; and 3 sex-specific tissues: male reproductive gland and testis, and 
female ovary (Fig. 2A). For this, we developed a consensus-voting strategy within the SCope web application 
(https://flycellatlas.org/scope) (19), allowing curators and users to access and annotate the snRNA-seq data 
simultaneously. Tissue experts worked with the SCope team in a series of virtual ‘jamborees’ to annotate clusters 
at multiple resolutions, with additional analysis performed in ASAP (https://flycellatlas.org/asap) (20). If the same 
cluster was annotated with two terms, the voting system allows users to vote for their preferred annotation. To 
ensure that cell type annotations are consistent with previous literature and databases and to allow a posteriori 
computational analyses at different anatomical resolutions, we linked the controlled vocabulary to the Flybase 
anatomy ontology (21).  

Since some cell types are present at low clustering resolution, and others appear only at higher resolution, 
we used the VSN pipeline to calculate different Leiden resolutions ranging from 0.8 to 8 (fig. S6A). Annotations 
were then collapsed across resolutions and the annotation with the highest number of up-votes was selected per cell. 
All initial annotations were performed on the Relaxed dataset, and were then exported to the Stringent dataset, 
where field experts verified the accuracy of the annotation transfer (Fig. 2 and fig. S6-S18). Overall, we annotated 
251 cell types in the Stringent dataset (262 cell types if combining Relaxed and Stringent datasets, Table S1), with 
a median of 15 cell types per tissue.  

Our dataset provides the first single-cell transcriptomic profiling for several adult tissues, including the 
haltere, heart, leg, Malpighian tubule, proboscis, maxillary palp, trachea, and wing (fig. S6–S18). In these tissues, 
all major expected cell types were identified. For example, in the proboscis and maxillary palp (fig. S7A, B), we 
could annotate gustatory and olfactory receptor neurons, mechanosensory neurons and several glial clusters, and all 
7 olfactory receptors expressed in the maxillary palp could be detected. In the wing (fig. S8), we could identify four 
different neuronal types – gustatory receptor neurons, pheromone-sensing neurons, nociceptive neurons and 
mechanosensory neurons, as well as three glial clusters. In the leg (fig. S9), we could distinguish gustatory receptor 
neurons from two clusters of mechanosensory neurons. In the heart (fig. S10), we found a large proportion of 
resident hemocytes and muscle cells, with the cardial cells marked by the genes Hand and tinman constituting a 
small proportion. In the Malpighian tubule (fig. S11), we were able to identify 15 cell types, including the different 
principal cells of the stellate and main segments. In the haltere (fig. S13), we identified two clusters of neurons, 
three clusters of glial cells and a large population of epithelial cells. In some tissues, one cell type formed a big 
cluster instead of being split into distinct populations. In these cases, we tried to identify genes or pathways that 
showed gradient or compartmentalized expression. For example, in the fat body (fig. S14 and S19), the main fat 
body cells formed one big cluster, but our metabolic pathway enrichment analysis performed through ASAP (20) 
revealed that fatty acid biosynthesis and degradation are in fact compartmentalized, highlighting possible fat body 
cell heterogeneity in terms of metabolic capacities.  

Our crowd annotations with tissue experts also revealed many cell types not profiled previously, such as 
multinucleated muscle cells (Fig. 2B) and two distinct types of nuclei among main cells in the male accessory gland 
(fig. S17), a cell type previously thought to be uniform. The high number of nuclei analyzed allowed identification 
of rare cell types. For example, in the testis (Fig. 2C), one of the best characterized but also most complex tissues 
in the fly, our FCA data allowed identification of 25 unique cell types, covering all expected cell types, including 
very rare cells, such as germinal proliferation center hub cells (79 nuclei in the Relaxed version, out of 44,621 total 
testis nuclei). In addition to annotation of differentiated cell types, the snRNA-seq data from testis captured and 
displayed in the geography of the UMAP the dynamic sequence of gene expression changes in the resident germline 
and somatic cyst stem cell lineages, identifying many genes that alter expression at specific steps in the 
differentiation process (see trajectory analyses in Fig. 6).  Clustering at higher resolution (Leiden 6) was especially 
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useful in these stem cell lineages as it highlighted as an emergent property the stepwise changes in gene expression 
as the development proceeds.  

Next, we compared the distribution of cells between 10x and Smart-seq2 for all tissues profiled by both 
sequencing technologies. In almost all cases, cells from two technologies were well matched from co-clustering 
analysis (fig. S20 and S21). Since Smart-seq2 cells only account for a small fraction, our previous annotations 
focused on 10x cells. The cell-matched co-clustering analysis allowed us to directly transfer annotations from 10x 
to Smart-seq2 datasets (fig. S20E), validating the transfer using cluster-specific markers (fig. S20F). We also 
identified genes specifically detected using Smart-seq2, presumably because the deeper sequencing allowed a 
higher gene detection rate (fig. S20G and Fig. 1E). In summary, the 10x datasets, containing many more cells, 
provide an important resource for identifying cell types while the Smart-seq2 datasets facilitate the detection of 
low-expressed genes and enable future exploration of cell-specific isoform information.  

 
Correspondence between dissected tissues and whole head and body 
To generate a complete atlas of the fly, we performed snRNA-seq experiments on whole-head and whole-body 
samples, inspired by earlier work on whole-body single-cell experiments of less complex animals (22, 23). Full 
head and body sequencing can provide a practical means to assess the impact of mutations or to track disease 
mechanisms, without having to focus on, or dissect, specific tissues. In addition, it could yield cell types that are 
not covered by any of the targeted tissue dissections.  

First, we analyzed the head and body separately. In the head, we annotated 81 unique cell types with most 
cells being neurons (Fig. 3A and S19). We identified photoreceptors and cone cells based on gl and lz expression 
respectively, olfactory receptor neurons with orco expression, glial cells based on repo expression, head hemocytes 
based on Hml expression, and different types of muscle and epithelial cells. In the body, we annotated the top 33 
most abundant cell classes, including epithelia, muscle, and ventral nerve cord and peripheral neurons, followed by 
fat body cells, oenocytes, germ line cells, glial cells, and tracheal cells (Fig. 3B and S20). Many of these cell classes 
can be further divided into cell types for further annotation, as from tissue sequencing (see Fig. 2 and fig. S6-S18).  

Next, we examined how well the body and head samples covered the cell types from the dissected tissues. 
Analyzing the head and body samples together with the tissue samples revealed that most of the selected tissues 
cluster together with the body sample, as expected. We also detected head and body enriched clusters (Fig. 3C) and 
even clusters without cells from the dissected tissues (Fig. 3D). One body-specific cluster was cuticle cells, likely 
from connective tissue. Others were relatively rare cell types in their respective tissues, such as adult stem cells. 
Conversely, most tissue clusters contained body cells, with only a small number being completely specific to 
dissected tissues. As tissue-specific clusters were mostly observed in tissues with high cell coverage, such as the 
testis and Malpighian tubule, we anticipate that these clusters would also be identified in the body upon sampling a 
larger number of cells. 

For head, antenna and proboscis with maxillary palp were dissected for tissue sequencing. Cell types from 
those two tissues largely overlapped with head sequencing data. Many other cell types, such as central brain cells, 
including Kenyon cells (ey, prt) and lamina glia (repo, Optix), were only detected in the head sample.  

To compare our data with existing dataset, we integrated our head snRNA-seq dataset (“head” hereafter) 
with previously published brain single-cell RNA-seq data (“brain” hereafter) (19, 24–26) (Fig. 3E). Clusters unique 
to head made up 20% of the cells, including the antennae, photoreceptors, muscle, cone cells and cuticular cell 
types, while the other 80% were present in mixed clusters containing both head- and brain-derived cells covering 
the neuronal and glial cell types of the brain. This co-clustering across genotypes and protocols underscores the 
usefulness of our snRNA-seq data, as well as its quality compared to conventional scRNA-seq data. Next, we used 
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a neural network for optic lobe cell types and trained a support-vector machine on a whole brain sample to predict 
annotations per cluster that were manually checked in an additional Jamboree. Given the high number of neuron 
types, additional automatic subclustering was performed on each cluster, identifying different groups of peptidergic 
neurons based on dimm and Pdf expression and olfactory projection neurons based on oaz, c15, and kn. Finally, we 
identified many cell types in the optic lobe, including lamina (e.g. L1–L5), medulla (e.g. Mi1, Mi15), lobula (e.g. 
LC), and lobula plate (e.g. LPLC). Using acj6 and SoxN, we identified the T4/T5 neurons of the optic lobe that split 
in T4/T5a-b and T4/T5c-d subtypes by subclustering. Lastly, we identified the major types of glia, leading to a total 
of 81 cell types in the head. It is worth noting that many neurons cluster together into a big clump that we were 
unable to annotate (Fig. 3A), indicating that our dataset does not contain a sufficient number of cells to resolve the 
complexity of the central brain, which may contain hundreds or thousands of neuron types. 

Subclustering analysis performed on cells within larger groups was especially useful in identifying cell 
types in the combined dataset (Fig. 3F). This separated photoreceptors into inner and outer, with the inner 
photoreceptors further splitting into R7 and R8 subtypes, each with pale and yellow types based on rhodopsin 
expression. Additionally, subclustering identified dorsal rim area and ocellar photoreceptors and further split 
Kenyon cells into the three different KC subtypes: α/β, α’/β’ and γ based on known marker genes (19). These case 
studies highlight the resolution in our dataset and the potential of using subclustering to discover rare cell types. 

 
Cross-tissue analyses allow comparison of cell types by location 
Using the whole body and head sequencing data, we created a compilation of the entire fly, assigning cells to major 
cell classes (e.g. epithelial cells, neurons, muscle cells, hemocytes) using a hierarchy of ontology terms and marker 
gene expression (Fig. 4A-C, S22, S23). Epithelial cells and muscle cells were the most abundant cell classes in the 
body, while neurons were the most abundant in the head. These assignments allowed us to compare common cell 
classes across tissues (fig. S24, S25).   

First, we compared blood cells, termed hemocytes in the fly, across tissues by selecting all Hml-positive 
cells, a known marker for hemocytes (Fig. 4D). Hemocytes are generated in the embryo and larva and become 
resident cells in many tissues. Combining hemocytes across tissues revealed a major group of plasmatocytes, the 
most common hemocyte type (~56%), crystal cells (1.5%, PPO1, PPO2), and several unknown types (fig. S26A, 
B). Looking deeper into the plasmatocytes, we uncovered different gradients of gene expression that were not seen 
in the plasmatocyte clusters of individual tissues. This gradient is based on the expression of Pxn, LysX, Tep4, trol 
and Nplp2 and can be linked to maturation of hemocytes and their plasticity with Pxn positive cells showing the 
highest Hml expression, while Tep4, trol and Nplp2 are prohemocyte markers (27–29). Furthermore, different 
antimicrobial peptide (AMP) families such as the Attacins and Cecropins were expressed in different subgroups of 
plasmatocytes, indicating further specialization. Finally, expression of acetylcholine receptors was specific for a 
subset of hemocytes, which could be related to the cholinergic anti-inflammatory pathway as described in humans 
and mice (30, 31). Lamellocytes were not observed in adults as previously suggested (32). On the contrary, an 
unknown hemocyte type expressed Antp and kn (43 cells, 0.5%) reminiscent of the posterior signaling center in the 
lymph gland, an organization center previously thought to be absent in the adult  (33, 34) (Fig. S26B). These 
findings highlight the value of performing a whole organism-level single cell analysis and constitute a foundation 
to investigate the fly immune system in greater detail. 

Second, we compared the muscle cells of the different tissues (Fig. 4E, S23C). Muscle cells are syncytia—
individual cells containing many nuclei, and to our knowledge have not been profiled by single-cell sequencing 
prior to our study. With snRNA-seq, we recovered all known muscle cell types, with specific enrichment in the 
body, body wall, and leg. The integrated analysis of all muscle cells provided a comprehensive view of the fly 
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muscular system, highlighting separation of visceral, skeletal, and indirect flight muscle based on the expression of 
different troponins. Specifically, we discovered previously unreported gradients of dysf and fln in the indirect flight 
muscle, which may indicate regional gradients of transcriptional activity in these very large cells containing more 
than 1000 nuclei per cell (fig. S26D). In visceral muscles, we noted a separation of types based on neuropeptide 
receptors being expressed. We identified 4 types of visceral muscle in the gut based on expression of the AstC, Ms, 
Dh31 and CCAP neuropeptide receptors, indicating potential modulators for muscle contraction (35). Receptors for 
Ms and Dh31 have been described to be expressed in spatially restricted domains in the gut, suggesting that the 
other two neuropeptides might also exhibit spatial domains (36, 37). Furthermore, the corresponding neuropeptides 
are released by neuroendocrine cells in similar spatially bound sections (38). All visceral muscle cells, including 
the ovarian sheath muscle, are enriched for the receptor of Pdf, a neuropeptide involved in circadian rhythms in the 
brain, which has also been found to regulate ureter contractions, pointing towards a dual role of circadian rhythm 
and muscle contraction (39). 
 
Transcription factors and cell type specificity 
Our data allow comparison of gene expression across the entire fly for 251 annotated cell types. Clustering cell 
types showed the germline cells as the most distinct group, followed by neurons (fig. S27-S32). Marker genes were 
calculated for every cell type using the whole FCA data as background, with 14,240 genes found as a marker for at 
least one cell type and a median of 638 markers per cell type [min: visceral muscle (94), max: spermatocyte (7736)]. 
Notably, markers specific for cell types in a tissue were not always specific in the whole body (fig. S33). 

To begin to understand what underlies cell-type-specific transcriptomes, we analyzed the expression of all 
predicted transcription factors (TFs) (4) encoded by the fly genome, and investigated whether certain TFs are 
specifically expressed in a single cell type (Fig. 5A). We used the tau score of tissue specificity (40) and identified 
500 TFs with a score > 0.85, indicating a high specificity for one or very few cell types ( Table S2). 127 of these 
TFs were "CG" numbers (computed genes), indicating that their functions are poorly studied. These patterns provide 
hypotheses about where these genes may function. We found that the male germline stands out in showing 
expression of a great number of cell type-specific TFs. This may be related to the broad activation of many genes 
in late spermatocytes discussed below.   

Similar analysis across broad cell types (Fig 5B, C) identified 156 TFs with high tau scores, for example 
the previously known regulators grh for epithelial cells and repo for glia; as well as 24 uncharacterized genes. These 
factors can be visualized in a network, also taking semantic similarity into account for linking similar terms (see 
Methods). This led to the grouping of CNS neurons and sensory organ cells, including many sensory neurons, with 
shared pan-neuronal factors such as onecut and scrt but each cluster having a unique set of TFs, such as ey, scro 
and dati for CNS neurons and lz and gl for sensory neurons. Further, esg, Sox21a and Sox100B expression was 
mostly restricted to somatic precursor cells. 

In addition to the specificity of TF expression, we predicted gene regulatory networks based on co-
expression and motif enrichment using the SCENIC method (41). Because of the stochasticity of this network 
inference method, we ran SCENIC 100 times, enabling the ranking of predicted target genes by their recurrence. 
This approach selected 6112 "regulons” for 583 unique TFs across all tissues, whereby each regulon consists of the 
TF, its enriched motif, and the set of predicted target genes. In fat cells, our analysis predicted a regulon for 
sugarbabe (sug), a sugar-sensitive TF necessary for the induction of lipogenesis (42). In photoreceptors, the analysis 
identified a glass (gl) regulon, with key photoreceptor markers such as Arr1, eya and multiple rhodopsins as 
predicted target genes (Fig. 5D, E). This is in line with previous studies identifying gl as a key photoreceptor 
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regulator (43, 44). The SCENIC predictions for all cell types can be easily investigated via the SCope browser 
(https://flycellatlas.org/scope).  

Comparative analysis of genes across broad cell types or all tissues (Fig. 5F, fig. S34) allowed identification 
of common genes and specifically expressed genes, such as a shared set of 555 housekeeping genes that are 
expressed in all tissues. There was a wide spectrum between tissues, with the testis having the highest number of 
uniquely expressed genes consistent with previous reports (45–47), followed by the Malpighian tubule and male 
reproductive glands (fig. S34). These tissue-specific genes seemed to be evolutionarily “younger” based on GenTree 
age compared to the set of commonly expressed genes that are all present in the common ancestor. This suggests 
that natural selection works on the tissue specialization level, with the strongest selection on testis, male 
reproductive tract, and Malgpighian tubules (48). In addition, this analysis allowed an estimation of transcriptomic 
similarity or difference measured by the number of shared unique genes. For example, the two flight appendages, 
the haltere and wing, share a set of 16 uniquely expressed genes including vestigial, a key factor for wing and haltere 
development (49), reflecting the evolutionary origin of halteres as a modified wing (50) (fig. S34).  

In conclusion, TF expression analysis reveals many known regulators, with specific expression across the 
adult, as well as dozens of previously uncharacterized genes with specific expression that constitute promising 
candidates for downstream functional characterization.  
 
Analysis of sex-biased expression and sex-specialized tissues  
Much of the genome showed sex-biased expression (51), presumably to support the function of highly sex-
specialized gonads and reproductive tract tissues.  Sequencing male and female samples separately allowed us to 
study sex-related differences in tissues common to both sexes. Comparing male- versus female-derived nuclei for 
all common tissues (fig. S35), we found the top male- or female-specific genes were known male or female markers 
(roX1/2, Yp1/2/3). Notably, a large fraction of genes with male-enriched expression were CGs (52). The primary 
sex determination pathway in somatic cells is activated by a two-X-chromosome karyotype followed by an 
alternative splicing cascade resulting in sex-specific splicing of doublesex (dsx) to encode female- or male-specific 
TFs (53) (Fig. 6A). Consistent with this, we found dsx expression in a largely non-sex-specific pattern, while many 
other genes showed sex-biased expression (Fig. 6B). 

As many cell types common to both sexes showed sex-biased expression, we performed differential 
expression between sexes for all cell types. Notably, cell types tended to show either high female- or male-bias, not 
both (Fig. 6B-C). We found strong female-bias in the excretory system, including the principal and stellate cells of 
the Malpighian tubule (MT) and in the pericardial nephrocytes (Fig. 6C). Examples of genes expressed with female-
bias include eEF1A1, eEF2, irk3, and Rack1, which are also differentially expressed when Cl– channels are 
disrupted in a Drosophila cystic fibrosis model (54). Other female-biased genes (i.e., Ics and whe) were 
differentially expressed under high salt conditions (55), suggesting sex-bias in nephric ion transport. Across cell 
types, sex-biased expression strongly correlated with dsx expression (Fig. 6D) (56, 57), consistent with the role of 
Dsx as a key regulator. 

For analysis of sex-specialized tissues, we focused on the testis plus seminal vesicle as a case study, as this 
dissected sample had one of the most complex cell type compositions, the highest number of 'unique' marker genes 
(Fig. 5F), and two dynamic differentiation trajectories. Among all tissues in the adult fly, those best characterized 
that have ongoing cellular differentiation are the gut, ovaries, and testis. Trajectory analysis has been performed on 
gut and ovary stem cell lineages in previous studies (58–60), and our FCA data on gut and ovary accurately co-
clustered with these published datasets (fig. S36, S37).  

The testis has two populations of stem cells, the somatic cyst stem cells (CySCs) that produce cell types 



9 

with supporting roles essential to spermatogenesis, and the germline stem cells (GSCs) that produce haploid sperm 
(Fig. 2C). Trajectory inference on germ cells from the testis (Fig. 6E-F) revealed transitions from GSCs and 
proliferating spermatogonia, to cells expressing early spermatocyte markers, followed by progressively maturing 
spermatocytes, early spermatids, and finally mid-to-late elongation stage spermatids (Fig. 2C). As expected, the 
spermatocyte stage featured a robust increase in the number of genes being transcribed (high UMI) (Fig. 6E), 
leading to a substantial rise in RNA complexity. Many of the genes that are strongly upregulated in spermatocytes 
(kmg, Rbp4, fzo, can, sa, and, for later spermatocytes, Y-linked fertility factors kl-3 and kl-5) are not substantially 
expressed in most other cell types. An unexpected finding in the FCA data was that late spermatocytes showed 
expression of many genes that were normally thought of as markers of somatic cells (Upd1 and eya, for example). 
Notable otherwise cell type-specific examples were marker genes from Fig. 4B, grh (epithelial cells), Mhc (muscle), 
and Hml (Fig. 5A), although the level of expression of these genes in spermatocytes was considerably lower than 
in their cognizant marked tissue. This late spermatocyte expression may contribute to the expression of many 
transcription factors in male germ cells reported in Figure 5A. Early spermatids, as expected from their 
transcriptional quiescence, had a very low number of nuclear transcripts (Fig. 6F, low UMI). Later, elongating 
spermatids turn on a coordinated burst of new transcription as previously identified (61).  Our snRNA-seq study 
identified many new such genes (Fig. 6F). Again, the comprehensive Tabula Drosophilae snRNA-seq effort 
identified many new genes to be investigated for roles in differentiation of specific cell types. 

The early stages of the somatic cyst cell lineage also emerged as a clear trajectory, starting from CySCs 
expressing the cell cycle marker string, transitioning into post-mitotic (no string expression) early cyst cells, then 
branching into two related clusters of cyst cells likely associated with spermatocytes (Fig. 6G). Together, the FCA 
data from the progression of germ cell types and early somatic cyst cell types identify many additional genes 
differentially up or down regulated at specific steps in the respective stem cell lineages, presenting a unique 
opportunity for functional tests to identify new players in the transitions from one cell state to the next.  
 
 
Discussion 
Recent technological development has enabled single-cell transcriptomic atlases of C. elegans (23) and selected 
tissues in mice and humans (18, 62–65). Here, we provide the first single-cell transcriptomic map of the entire adult 
Drosophila melanogaster, a premier model organism for studies of fundamental and evolutionarily conserved 
biological mechanisms. The Fly Cell Atlas provides a valuable resource for the Drosophila community as a 
reference for studies of gene function at single-cell resolution. The ability to annotate cell types by whole-head and 
whole-body sequencing facilitate the use of Drosophila to study biological processes and to model human diseases 
at a whole-organism level with cell-type resolution. 

A key challenge in large-scale cell atlas projects is the definition of cell types. We addressed this using a 
consensus-based voting system across multiple resolutions. An FCA cell type is thus defined as a cluster detected 
at any clustering resolution that could be separated by the expression of known marker genes from other clusters. 
Further, all annotations were manually curated by tissue experts, leading to a high-confidence dataset with over 250 
annotated cell types. We note differences in annotation depth for different cell groups, with some cell types only 
linked to broad classes (e.g. epithelial cell, CNS neuron), in contrast to more detailed cell types (e.g., different types 
of olfactory receptor neurons). We also note that while many marker genes are useful in identifying cell types, some 
marker gene expression was not congruent with cluster expression. This can be caused by discrepancies between 
mRNA expression and protein or by mistakes made in literature. These examples highlight the need and the 
opportunities presented by Tabula Drosophilae to serve as the basis for future validation.  

Comparisons of our snRNA-seq dataset with previously published scRNA-seq datasets from three tissues—
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brain (Fig. 3E), gut (fig. S36) and ovary (fig. S37)—not only validated consistency of these methods, but also 
revealed additional cell types not detected in previous studies. For example, the FCA dataset has increased our 
knowledge of late-stage follicle cells and allowed identification of new marker genes that were validated using in 
vivo genetic reporters (fig. S37). In addition, snRNA-seq offers a more immediate picture of changes in transcript 
expression as cells progress, which may be important for dynamic cell types differentiating in adult stem cell 
lineages.   

The list of cell type-specific marker genes, in particular TFs, provides a blueprint for generating cell type-
specific reporters and expression drivers for studying new aspects of cellular function. However, cell type-specific 
markers in one tissue may be expressed in more cell types in other tissues. The FCA dataset presents the first 
opportunity to distinguish marker genes on different levels of specificity.  

Our analysis also presents several technical novelties, including the use of Nextflow pipelines improving 
reproducibility (VSN, https://github.com/vib-singlecell-nf), the availability of raw and processed datasets for users 
to explore, and the development of a crowd-annotation platform with voting, comments and references via SCope 
(https://flycellatlas.org/scope). These elements may inspire future atlassing projects. Indeed, FCA data together 
with atlases from other species will allow cross-species studies. Furthermore, Tabula Drosophilae is fully linked to 
existing Drosophila databases by a common vocabulary, benefitting its use and integration in future projects. 
Finally, all the FCA data are freely available for further analysis via multiple portals and can be downloaded for 
custom analysis using other single cell tools (fig. S1) (all links can be found on https://www.flycellatlas.org).   
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FIGURE LEGENDS:   
Figure 1. Overview of the Fly Cell Atlas  
(A) Experimental platform of snRNA-seq using 10x Genomics and Smart-seq2 (SS2). 
(B) Data analysis pipeline and data visualization using SCope (19) and ASAP (20). 
(C) Two versions of 10x datasets have been generated: Relaxed and Stringent. tSNE colors based on gene 
expression: grh (epithelia, red), Mhc (muscle, green) and Syt1 (neuron, blue). Red arrow denotes an artefactual 
cluster with co-expression of all three markers in the Relaxed dataset.  
(D)  tSNE visualization of cells from the Stringent 10x dataset and Smart-seq2 (SS2) cells. 10x cells are from 
individual tissues. Integrated data is colored by tissue (left) and platform (right).  
(E) Tissue-level comparison of the number of detected genes between 10x and Smart-seq2 platforms (see Methods). 
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(F) Number of cells for each tissue by 10x and Smart-seq2. Male and female cells are indicated. Mixed cells are 
from pilot experiments where flies were not sexed. Different batches are separated by vertical white lines. 
(G) All 10x cells from the Stringent dataset clustered together; cells are colored by tissue type. Tissue names and 
colors indexed in F.  
 
Figure 2: Cell type annotation for dissected tissues 
(A) Illustration of 15 individual tissues. 12 sequenced separately from males and females, 3 sex-specific. Fat body, 
oenocyte, and tracheal nuclei were labeled using a tissue-specific GAL4 driving UAS-nuclearGFP. 
(B) tSNE plot with annotations for body wall from the Stringent 10x dataset. *1, epidermal cells of the abdominal 
posterior compartment. *2, epidermal cells specialized in antimicrobial response.  
(C) UMAP plot with annotations for the testis from the Relaxed 10x dataset.  
(D) tSNE plots of the other 13 tissues from the Stringent 10x dataset. Detailed annotations are in fig. S6–S18. 
(E) Number of unique annotations for each tissue. Fractions of annotated cells over all analyzed cells from the 
Relaxed dataset are indicated in red.   
 
Figure 3: Whole-head and whole-body sequencing leads to full coverage of the entire fly  
(A) tSNE of the whole-head sample with 81 annotated clusters. See fig. S22 for full cell types. Many cells in the 
middle (gray) are unannotated, most of which are central brain neurons.  
(B) tSNE of the whole-body sample with 33 annotated clusters, many of which can be further divided into sub-
clusters. Cells in gray are unannotated. See fig. S23 for full cell types.  
(C) (left) tSNE of the entire dataset colored by standardized tissue enrichment, leading to the identification of head- 
and body-specific clusters. (right) Bar plots showing tissue composition (head, body, or dissected tissues) for 
different clusters at Leiden resolution 50. 
(D) Examples of head- and body-specific clusters.  
(E) Integration of a brain scRNA-seq dataset with the head snRNA-seq for label transfer. Outlined are example 
clusters revealed by the head snRNA-seq dataset but not by the brain scRNA-seq datasets, including epithelial cells 
(EPI), photoreceptors (PRs), olfactory receptor neurons (ORNs), and muscle cells (MUS). 
(F) Subclustering analysis reveals types of photoreceptors, including inner and outer photoreceptors, with the inner 
photoreceptors further splitting into R7 and R8 types, and mushroom body Kenyon cells, forming three distinct KC 
types: α/β, α’/β’ and γ. 
 
Figure 4: Cross-tissue analyses of common cell classes  
(A) Overview of the different main cell classes identified throughout the fly cell atlas. Som. pre., somatic precursor 
cells; male repr.,  male reproductive system; fem. repr., female reproductive system; male germ., male germline 
cells; fem. germ., female germline cells.  
(B) tSNE plots showing marker expression four common cell classess: grh for epithelial cells, Syt1 for neurons, 
Mhc for muscle cells, and Hml for hemocytes.  
(C) Composition of whole head and body samples, showing a shift from neurons to epithelial and muscle cells. 
Composition of the entire fly cell atlas shows enrichment for rarer cell classes compared to the whole-body sample. 
The bar plot shows the number of cells. 
(D) Cross-tissue analysis of hemocytes reveals different cell states of plasmatocytes. Annotations marked as blue 
are hemocytes containing markers of different cell types, including lymph gland posterior signaling center (LGP), 
muscle (MUS), antenna (ANT), neurons (NEU), photoreceptor (PR), male accessory glands (MAG), glia (G), male 
testis and spermatocyte (MS), olfactory-binding proteins (OBP), and heat-shock proteins (Hsp). Other abbreviations 
show top marker gene(s) in red. Plasmatocytes and crystal cells are indicated. On the right are genes showing 
compartmentalized expression patterns within the plasmatocyte cluster.  
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(E) Cross-tissue analysis of muscle cells reveals subdivision of the visceral muscle cells based on neuropeptide 
receptors. Annotations marked as blue are muscle cells containing markers of different cell types, including neuron 
(NEU) and male testis and spermatocyte (MS). Muscle cells from three body parts are indicated: head muscle 
(HEAD), body muscle (BODY), and testis muscle (TESTIS). Other annotated muscle types include indirect flight 
muscle (IFM), ovarian sheath muscle (OSM), abdominal visceral muscle (ABD), dpy expressing muscle (DPY), 
visceral muscle of the midgut AstC-R2 (VMM-A), visceral muscle of the crop MsR1 (VMC-M), visceral muscle of 
the midgut Dh31-R (VMM-D), and visceral muscle CCAP-R (VM-C). Pdfr expressed in all visceral muscle cells, 
including the ovarian sheath muscle; other four receptor genes (AstC-R2, MsR1, Dh31-R, CCAP-R) expressed in 
different gut visceral muscle types. 
 
Figure 5: Transcription factor (TF) pleiotropy versus cell-type specificity  
(A) Heatmap showing the expression of key marker genes and unique TF profiles for each of the annotated cell 
types. TFs were selected based on tau score. Cell types were grouped based on hierarchical terms: CNS neurons 
(N), sensory organ cells (S), epithelial cells (E), muscle cells (M), glia (G), fat cells (F), oenocytes (O), hemocytes 
(H), (fe)male reproductive system and germline (MR, MG, FR, FG), excretory system (X), tracheal cell (T), gland 
(L), cardial cell (C), somatic precursor cell (P). 
(B) A network analysis of TFs and cell classes based on similarity of ontology terms, reveals unique and shared 
TFs across the individual tissues.  
(C) Heatmap showing the expression of unique TFs per cell class. Factors from the literature are highlighted.   
(D) Glass is uniquely expressed in photoreceptors and cone cells in the head.  
(E) Overview of the Glass regulon of 444 target genes, highlighting known photoreceptor marker genes.  
(F) Gene expression comparison across broad cell types.  Only sets with more than 10 genes are shown. The left 
bar graph shows the number of uniquely expressed genes for each tissue. The top bar graph shows the gene age in 
branches, ranging from the common ancestor to Drosophila melanogaster-specific genes (http://gentree.ioz.ac.cn). 
See fig. S34 for tissue-based comparison. 
 
Figure 6. Sex-biased expression and trajectory analysis of testis cell lineages 
(A) Simplified sex determination pathway. Sex chromosome karyotype (XX) activates Sex-lethal (Sxl) which 
regulates transformer (Tra), resulting in a female Dsx isoform (DsxF).  In XY (or X0) flies, Sxl and Tra are inactive 
(light gray) and the male-specific DsxM is produced.  
(B)  Dsx expression and female- and male-biased expression projected on tSNE plots of all female (left column) 
and male (right column) cells except reproductive tissue cells (Table S4). The top two plots showing Dsx expression. 
The bottom two plots showing female- and male-biased expression, measured as the percentage of genes in the 
cluster showing biased expression in favor of the respective sex (Table S5).  These percentage values were computed 
for each annotated cluster and those cluster-level values were projected on the individual cells in the corresponding 
clusters. For all four tSNE plots, values outside the scale in the heatmap key are represented by the closest extreme 
color (denoted by > and < signs in the scale).  
(C) Scatter plot of female- and male-bias values across non-reproductive cell clusters defined as % sex-biased genes 
(at least 2-fold change with FDR < 0.05 on Wilcoxon test and BH correction) in the cluster (Table S5). Data point 
size shows the number of cells per cluster (key). Selected clusters are labeled, with those from excretory cells 
highlighted (brown). MT, Malpighian tubule. 
(D) Box plots showing the relationship between dsx gene expression and sex-biased expression (Table S5). Clusters 
(B) were partitioned into the set of clusters with Dsx expression (dsx+) or not (no/low) using dsx expression in germ 
cells as an expression cut-off. Sex-, female-, and male-biased expression in the two groups were plotted. Each box 
shows hinges at first and third quartiles and median in the middle. The upper whisker extends from the upper hinge 
to the largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance 
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between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * 
IQR of the hinge. Outliers are not shown. Wilcoxon test p values shown. 
(E–G) Trajectory of testis subsets. We used slingshot to infer a possibly branching trajectory for spermatogonia-
spermatocytes (E), spermatids (F), and early cyst cells (G). Shown are the trajectories on a UMAP (top) and the 
expression patterns of the strongest differentially expressed genes, together with the smoothed proportions of 
annotated cells and average number of unique molecular identifiers (UMIs) along the trajectory (bottom). 
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There is a repeat for figure 2-6, please ignore the later fig 2-6.  sorry. 



27 



28 



29 



30 

 




