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Abstract 

Mechanistic modeling in biology allows to investigate, based on first principles, if putative 
hypotheses are compatible with observations and to drive further experimental works. Along this 
line, polymer modeling has been instrumental in 3D genomics to better understand the impact of 
key mechanisms on the spatial genome organization. Here, I describe how polymer-based 
models can be practically used to study the role of epigenome in chromosome folding. I illustrate 
this methodology in the context of Drosophila epigenome folding. 
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1. Introduction 

Compartmentalization is a ubiquitous feature of cellular function. In the nucleus, early 

observations revealed a non-random spatial organization of the genome within chromosome 

territories and a large-scale segregation between transcriptionally active -euchromatic- and 

silenced -heterochromatic- parts of the genome. Recent advances in genome-wide mapping and 

imaging techniques have strikingly improved the resolution at which genome folding can be 

analyzed. It has unveiled a multi-scale spatial organization with increasing evidence that 3D 

genome folding may result from and participate in genome function [1].  Analyses of genome-

wide chromosome contact data by Hi-C technology [2] have demonstrated that the genome of 

higher eukaryotes is partitioned into hundreds of kbp-long domains, called topologically 

associating domains (TADs) [3,4] where local contacts are enriched compared to interactions with 

neighboring domains. These TADs are usually associated with transcriptional or epigenetic 

regulation: promoter-enhancer interactions mainly occur within the same TAD [5] and 

homogeneous chromatin domains (in particular constitutively repressed chromatin) tend to fold 

into single TADs [6,7]. At the Mbp-scale, contact maps display a cell-type specific checker-board 

like pattern [6,8,9] with a complex pattern of long-range contacts between TADs. In particular 

TADs are organized into (spatial) (A/B, active vs repressive) compartments associated to 

epigenomic regulation.  

Investigations of the model organism Drosophila melanogaster have been instrumental in 

understanding the building blocks of genome folding. Briefly, for this organism, the 3 largest 

chromosomes (chr2, chr3 and chrX) are organized into separate territories in the well-known 

polarized Rabl-like organization [10] similar to yeast (all centromeres at one pole of the nucleus 

and telomeres pointing towards the other pole). In Drosophila and more generally in dipteran, 

homologous chromosomes are tightly paired at the molecular level in somatic cells and occupy 

the same territory [11,12]. Hi-C experiments in late embryos revealed the existence of 



epigenetically-associated TADs that interact at larger scales to form segregated compartments 

[6]. Recently, Hi-C along fly embryogenesis have shown the dynamical, progressive formation of 

TADs and of their higher-order organization driven by transcriptional re-activation and epigenome 

restoration [13,14]. 

  

While our current understanding of the 3D chromosome organization is becoming more and more 

quantitative, the underlying physical or biochemical mechanisms driving such peculiar folding 

remain unclear and several processes have been shown to play major roles in organizing 

chromosomes [15]. In the past decade, in addition to many seminal experimental works, polymer-

physics modeling has been instrumental in studying these processes [16]. In particular, we 

developed several polymer-based approaches to better understand the relation between 

epigenomic regulation and 3D chromosome organization [17] mostly in the context of fly 3D 

genomics.  

In this chapter, I describe in detail the theoretical framework and its numerical implementation 

that we developed along the years to study epigenome folding and their application to Drosophila 

nuclear organization. I focus on the methodological part of our work and refer the reader to the 

original publications for a detailed description of the physical and biological implications.  

2. Methods 

2.1 Coarse-grained polymer model for chromosome  

Simulating the precise dynamics of long polymer chains (chromosome size ranging typically from 

few Mbp to hundreds Mbp in higher eukaryotes) during prolonged time period (orders of hours for 

typical cell cycles) remains a critical numerical challenge. A standard strategy to reduce 

computation time is to develop coarse-grained models [18] where fine-scale individual entities like 



atoms, base-pairs or nucleosomes are grouped together into larger monomers, hence decreasing 

the complexity of the system and the degrees of freedom. This reduction of complexity should not 

be however at the expense of a complete modification of the physical properties of the system.  

Recently, we developed a coarse-graining (CG) strategy for polymers that conserves the 

topological regime and thus preserves thes large-scale structural and dynamical properties [19]. 

Indeed, chromosomes being confined, very long polymers, their characteristics are very different 

from simple isolated short chains [20]. In particular, their dynamics strongly depend on the ratio 

between their contour length L and the so-called entanglement length Le [21] that measures the 

degree of topological constraints acting on the polymers. (L/Le)<<1 (respectively >>1) implies 

weak (resp. strong) effects on the chain behavior. In the following, I describe this CG procedure 

applied to chromosome modeling.  

 

Generically, let’s first consider a reference fine-scale (FS) model describing the chromatin fiber 

(Fig. 1A): a chromosome is modeled as a semi-flexible self-avoiding chain composed of N 

monomers, each monomer being of size 𝜎 (in nm) and containing 𝜈 bp. The local rigidity of the 

fiber is characterized by the Kuhn length lk (in nm) that defined the length below which the fiber 

can be considered as stiff, and the molecular crowding is quantified by the volumic base-pair 

density 𝜌 (in bp/nm3). For example, in the standard 30-nm fiber model 𝜎 = 30nm, 𝜈 = 3kbp and lk 

=300 nm [22]. Recent investigations based on in vitro dynamics of yeast-like chromatin lead more 

to 𝜎 ∼ 20nm, 𝜈 = 1kbp and lk =100 nm [23]. 𝜌 is equal to the ratio between the genome size and 

the average volume of nuclei. It is therefore more species or cell-type dependent and typically 

varies between 0.005 bp/nm3 for haploid yeast to 0.015 bp/nm3 in typical mammalian nuclei. 

We aim now to coarse-grain this model into a polymer chain for which we note N’, 𝜎′,  lk’ and 𝜌′ 

the corresponding parameters. The total genomic content being invariant (𝑁𝜈 = 𝑁′𝜈′), each CG 

monomer corresponds to 𝑁/𝑁′ = 𝜈′/𝜈 FS monomers. To preserve the correct dynamics when 



coarse-graining, we impose the bp density to be conserved (𝜌 = 𝜌′) and (L/Le)=(L’/Le’) with 𝐿 =

𝑁𝜎 (idem for L’) and 𝐿. = 𝑙0 1
23
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that constrains the CG parameters.  In [19], we showed that any CG models verifying this relation 

predicts the correct structural and dynamical FS properties as long as the corresponding volumic 

fraction (the fraction of the available volume occupied by the chain) 𝜙′ ≡ 𝜌𝜔′/𝜈′ is not too high 

(typically less than half of the maximum packing ratio of the system) with 𝜔′ ∼ 𝜎′D the volume 

occupied by 1 CG monomer. We also remarked that higher 𝜈′ and 𝜙′ values lead to better 

numerical efficiencies.  

 

While this CG strategy is general, when applied to a specific system, the question is how to 

choose the optimal coarse-graining parameters to maximize the numerical efficiency at a given 

desired resolution (see also the Note 3.1)? In the CG model, the spatial resolution is given by 𝑙0′ 

and the base-pair resolution by (𝜈′𝑙0′/𝜎′). Therefore, the choice of parameters should be 

motivated by the maximization of  𝜈′ and 𝜙′  constrained to the typical experimental resolution of 

the system under study. For example, for 𝜌=0.015 bp/nm3 (mammalian nuclei) and a desired 

resolution of 10kbp (typical of HiC maps), if monomers are modeled as spheres (𝜔′ = 𝜋𝜎′D/6), 

then choosing 𝜈′=4.1kbp, 𝜎′ = 58nm and 𝑙0′ = 142nm allows to maximize 𝜙′ up to ~37% 

(maximum packing ratio for spheres=74%) while satisfying the relation (1) and keeping a targeted 

resolution of 10kbp. 



2.2 Block copolymer model for epigenome folding 

Once parameters of the desired CG “null” model have been selected, one can then complement 

the model with various physical or biochemical interactions in order to investigate the impact of 

putative mechanisms on 3D chromosome organization. In this section, I describe how to 

implement and model the role of epigenome in chromatin folding and illustrate this for Drosophila.  

 

As demonstrated by us and others [8,25–27], epigenomic information is tightly associated with 

3D chromatin organization in particular at the compartment level where genomic regions sharing 

the same epigenomic content tend to cluster in space in the nucleus (Fig.1B). Moreover, there 

exists an increasing number of biochemical evidence showing that key chromatin-binding proteins 

or complexes (like HP1, PRC1 but also RNA polymerase), associated to specific epigenomic 

patterns, have the intrinsic capacity to oligomerize or phase-separate [28–33]. This suggests that 

epigenome, via such interactions, may actively contribute to shape the 3D nuclear organization.  

At the unidimensional level, many (dozens) epigenomic features like post-translational 

modifications of histone tails, DNA methylation, chromatin-binding proteins have been measured 

along the genome. Statistical analyses of these different profiles have demonstrated that some of 

these markers are strongly correlated and that the local epigenomic content can be actually 

summarized by a handful (4 to 10) of different chromatin states [27,34–38]. In Drosophila, Filion 

et al [34] inferred few different types (Fig.1C): two euchromatic states associated with actively 

transcribed regions that, for simplicity, we usually merge into one single active state, one state 

associated with constitutive heterochromatin and enriched in H3K9me2/3 histone marks and HP1 

proteins, one state associated with facultative heterochromatin and enriched in H3K27me3 

histone marks and Polycomb-group (PcG) protein complexes (PRC1/2), and  another 

heterochromatic state, the so-called black or null or quiescent chromatin, a prevalent form of 



repressive chromatin not particularly enriched in known epigenomic markers. These different 

states segment the genome into contiguous chromatin domains of various sizes (Fig.1B).  

Based on this genome partitioning, we developed a block copolymer model of epigenome folding 

(Fig.2A) [39]. Practically, we considered a CG null model with 10kbp-beads and assigned to each 

bead i its corresponding epigenomic state e(i) among the 4 considered types (active, HP1-like, 

PcG-like and black), consecutive beads belonging to the same chromatin domain forming one 

uniform block. To account for the interaction capacity of chromatin-binding proteins associated 

with these states, we assumed that monomers sharing the same state e can interact specifically 

with an energy Ue,e if they are in close spatial proximity. For simplicity, we did not consider cross-

state interactions (Ue,e’ =0 if 𝑒 ≠ 𝑒′) and assumed that the strengths of interactions are identical 

for every chromatin type (𝑈.,. = 𝑈.@,.@ ≡ 𝑈 ∀𝑒, 𝑒′, see also the Note 3.3). Therefore, the dynamics 

of the chain is driven by the bending rigidity and excluded volume contributions of the null model 

plus epigenomic-mediated short-range interactions.   

2.3 Lattice model and numerical simulations 

To investigate the dynamical behavior of epigenome folding, we implemented the block copolymer 

on a lattice. More precisely, the CG polymeric chain is modeled as a self-avoiding walk on a face 

centered cubic (fcc) lattice of size SxSxS (Fig.2B) which has a high coordination number (=12). 

To account for the effect of contour length fluctuations on chain dynamics [40,41], particularly 

relevant in dense systems, we allow at maximum two monomers to be on the same lattice node 

if and only if they are consecutive along the chain [42]. Otherwise, due to excluded volume, two 

monomers cannot overlap on the same site.  

The polymer stiffness of the CG model is accounted via a standard Kremer-Grest potential 

𝐻P.QR = (𝜅/2)∑ (1 − 𝑐𝑜𝑠𝜃Z)[@\2
Z]2 , where 𝜃Z is the angle between bond vectors i and (i+1) (see 



Fig.2B) and 𝜅 is the bending energy that is connected to  𝑙0′ and 𝜎′ in our fcc lattice framework 

via the relation [19] 
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For example, in Drosophila (𝜌~0.009 bp/nm3), we used to work with a CG null model defined as 

𝜈′=10kbp, 𝜎′ = 115nm and 𝑙0′ = 274nm at 𝜙′ ∼ 1 (the maximum packing ratio of this lattice model 

is 2) for a bp-resolution of 23kbp [19,42]. In this case, relation (2) leads to 𝜅 = 1.5𝑘i𝑇. Molecular 

crowding and confinement are approximated by using periodic boundary conditions, the size of 

the box S being chosen such that the lattice volumic fraction 𝑁′/(4𝑆D) is equal to the targeted 𝜙′ 

value.   

Epigenomic-mediated interactions were modeled by a specific contact Hamiltonian 𝐻.aZ =

𝑈∑ 𝛥.(Z),.(m)𝛿Z,mZ,m  with 𝑈 ≡ 𝑈.,. the strength of interaction, 𝛥.(Z),.(m) = 1 if monomers i and j have 

the same chromatin state (ie, e(i)=e(j)) (𝛥.(Z),.(m) = 0, otherwise), and 𝛿Z,m = 1 if i and j are in 3D 

contact (ie if they occupy nearest-neighbor lattice sites) (𝛿Z,m = 0, otherwise).  

 

Due to topological constraints, the large-scale organization of long polymers like chromosomes 

keeps a partial memory of the initial arrangement over long timescales [20,43]. Therefore, initial 

configurations should be carefully designed such that the polymer topology (presence or absence 

of knots) and the large-scales are consistent with biological observations. For Drosophila, we 

consider unknotted chromosomes in a Rabl-like configuration that we generate using the 

hedgehog algorithm [19,44] (Fig.2C):  starting from a central, rod-like scaffold, configurations are 

iteratively grown by randomly inserting monomers at nearest-neighbor sites common to two 

already placed consecutive monomers.  

The dynamics of the chain (Fig.2D) is then simulated using a kinetic Monte-Carlo (KMC) 

algorithm. Namely, one Monte-Carlo step (MCS) consists of N’ trial moves where a monomer is 

randomly picked and a random trial new position is chosen among the nearest-neighbor (NN) 



lattice sites (Fig.2B). The move is accepted: (i) based on a Metropolis criterion, ie with a probability 

equal to 𝑚𝑖𝑛(1, 𝑒𝑥𝑝(−[𝐻stsQ.u − 𝐻stst9R]/(𝑘i𝑇))) with 𝐻sts = 𝐻P.QR + 𝐻.aZ  the total energy of the 

system and old and new refer respectively to the current and the trial conformations; (ii) and if the 

move does not break the chain connectivity (consecutive monomers along the chain should 

occupy the same or NN sites) and if the excluded volume criterion is still verified (two non-

consecutive monomers cannot occupy the same site).  

Time mapping between the simulation and real times is made by computing from the simulations 

the time evolution of the root-mean-squared displacement (𝑅𝑀𝑆𝐷(𝜏) ≡ {< (𝑟(𝑡 + 𝜏) − 𝑟(𝑡))= > 

with 𝑟(𝑡) the position at time t) which represents the average spatial displacement of a monomer 

after a given time lag 𝜏 and by comparing it to experimental measurements, where typically 

𝑅𝑀𝑆𝐷._a(𝜏)[𝜇𝑚] ≈ 0.1𝜏2/e with 𝜏 in sec [23]. For example, with the CG parameters given above 

for Drosophila, 1 MCS~20 msec [19].  

 

The advantage of simulating polymers on lattice using KMC compared to standard off-lattice 

Molecular Dynamics approaches (see also the Note 3.2) is that, at the expense of discretizing the 

space, the implementation is very simple leading to numerically very efficient algorithms while still 

capturing the main generic features of polymer dynamics [45]. For example, simulating one 

trajectory of a 20Mbp-long chromosome (with the CG parameters given above) during 30 min of 

real time requires less than 30 CPU sec on a 3.2GHz CPU.  

2.4 Comparison with experiments 

Based on this simulation framework, we can then investigate the structural and dynamical 

properties of the block copolymer model. In this section, I focus on the methodologies we used to 

compare predictions to Hi-C data.  

 



For a given parameter set, to estimate the corresponding in silico Hi-C map with good statistics, 

we run many (~ 500-1,000) independent trajectories, each corresponding to ~20h of real time, 

the typical cell cycle length in fly. Along one trajectory, at regular time interval (typically every 10 

min), we store individual configurations. For each snapshot, we estimate an in silico single-cell 

Hi-C map by identifying the pairs of monomers whose relative distance is less than a given 

threshold 𝑟�. 𝑟� represents the ‘chemical resolution of Hi-C data’, ie the typical maximal spatial 

distance captured by Hi-C experiments. Its actual experimental value is not known and is certainly 

locus- and Hi-C-protocol-dependent, but typical values may lie between 150 and 250 nm. These 

single-cell maps can then be combined to obtain Hi-C maps for synchronized (averaged over a 

given time window along the cell cycle) or unsynchronized (averaged over all the snapshots) 

populations of cells.  

In our application to epigenome folding in Drosophila, we vary the value of 𝑈, the strength of 

epigenomic interactions which is the only free remaining parameter of the model. For every value, 

we compute the corresponding unsynchronized Hi-C maps (Fig.3A) [19]. For weak 𝑈 values, we 

observe that the system behaves as the CG null model. As 𝑈 becomes stronger, blocks (ie the 

epigenomic domains) self-compact leading to the formation of TADs and long-range contacts 

between TADs of the same state appear leading to the creation of nuclear - micro-phased - 

compartments.  

 

In order to compare predictions and experiments, one should first define the range where the 

developed model is expected to describe quantitatively the real system. The lower bound of this 

range is limited by the actual resolution of the model given by (𝜈′𝑙0′/𝜎′) (=23kbp in our case). The 

upper bound depends on how well the large-scale organization was implemented in the initial 

configurations since the system will maintain a partial memory of this along the simulations. 

Without any strong knowledge or in absence of a systematic study of the impact of the large-scale 



initial structure, it is better to limit the upper bound to ~5 Mbp, this scale reaching a metastable 

state, largely independent of the initial state, typically after a few hours of real time [19].  

Once this range has been defined, several comparative scores can be computed. For example, 

one can simply estimate as a function of 𝑈 the global Spearman correlation between the entries 

of the simulated and experimental Hi-C matrices (only keeping the entries between regions whose 

genomic distances lie in the range of comparison) for different 𝑟� values (Fig.3B). Other indicators 

(eventually depending on the epigenomic state) may be estimated like, for example, correlation 

scores on the so-called expected decay plot (that characterizes the average contact frequency 

between loci separated by a given genomic distance) or on the ‘observed/expected’ matrices 

(obtained by dividing each entry of the original Hi-C map by the expected (average) value at the 

corresponding genomic distance). In our case, many measures suggest that Hi-C experiments in 

late embryos are compatible with 𝑈 ≈ −0.1𝑘i𝑇 and 𝑟� ∼ 200 − 250nm. The obtained scores are 

high, suggesting that epigenomic-driven interactions are main players of the chromosome 

organization in Drosophila. Interestingly, this corresponds to a situation where the system is still 

very dynamic [19]: interactions within and between TADs are stochastic and transient, leading to 

a plastic nuclear organization. However, there still exist many discrepancies between the 

predictions and the data suggesting missing ingredients that will drive further researches (see the 

Notes 3.3 and 3.4).  

3. Notes 

3.1 Regarding coarse-graining, our strategy allows to preserve the physical properties of 

the system by conserving the correct entanglement regime. However simpler 

strategies are often used in the field to make CG models: for example, by modeling 

chromatin as a simple flexible chain (𝑙0′ = 𝜎′) or by neglecting confinement and 

simulating isolated chains. Another strategy used to reduce the computation time is to 



limit the study to only a small portion of the polymer. If not done properly, all these 

different strategies may modify the ratio (L/Le) and therefore may modify the underlying 

physics of the null model [19].   

3.2 Lattice modeling is a very efficient and powerful tool to simulate polymeric chains in 

various contexts. However, a main limitation of this implementation is that it is 

applicable as long as the involved energies (𝑈 or 𝜅 for example) are not too high. 

Indeed, discretization of the space implies that only a limited number of local moves 

are possible and that moves occur at the lattice resolution. This can be critical when 

energies are strong and when expected typical moves are only very small. In this case, 

one should better opt for off-lattice modeling like Molecular Dynamics.  

3.3 While the correlation between the predicted epigenome folding of Drosophila and Hi-

C experiments is remarkably high, discrepancies exist suggesting room for 

improvement of the model. One possibility is by allowing 𝑈 to depend on the 

epigenomic state or by considering cross-epigenomic state interactions. For example, 

we recently showed that neglecting self-attraction between active regions may 

improve our description of the internal folding of active TADs [17]. Similarly, assuming 

that active monomers are repulsive (𝑈��sZ�. > 0, ie have an effective bigger diameter, 

putatively mediated by transcription), HP1-like and Polycomb-like beads are self-

attracting (𝑈�a2,𝑈��� < 0) and black bead are neutral (𝑈P9��0 = 0) improves 

significantly the correlation with Hi-C data (Carrivain et al, under submission). Another 

possibility is to implement other mechanisms that might be of importance for shaping 

Drosophila nuclear organization. A main ingredient could be homologous pairing 

(maternal and paternal chromosomes are tightly paired [12,46]). While the underlying 

mechanism is still unknown, we recently showed that accounting for pairing by forcing 

homologous loci to occupy NN lattice sites may improve the description of intra-TAD 



contacts [47]. Other possible important mechanisms that we did not explore yet include 

interactions with the nuclear lamina [48,49], formation of the nucleolus, or polymer 

loop extrusion mechanism [50,51] via cohesin or condensin II  [46] [52].  

3.4 The formalism of block copolymer used to study epigenome folding is not unique to 

Drosophila and after our seminal work in 2014 [39], us and other groups have used 

the same type of approach to model the impact of epigenomic-mediated interactions 

in mammals [53–55] (Sati et al, Mol. Cell, in press) but also in plant (Di Stefano et al, 

under submission).  
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Figure legends 

 

Figure 1. (A) Coarse-grained model: monomers of the fine-scale model (black circles) are lumped 

into bigger monomers (red circles). (B) Comparison between Hi-C experimental data of 

Drosophila chromosome 3R (from [6]) and 3 different partitionings of the genome into chromatin 

domains (from [27,34,36]). White lines in the bottom right represent the segmentation of the Hi-C 

map into TADs inferred by IC-Finder [25]. (C) Repartition of the different epigenomic state inferred 

by Filion et al [34] at the genome scale in Drosophila. 
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Figure 2. (A) Block copolymer model for epigenome folding with specific, short-range interactions 

between genomic loci sharing the same chromatin state. (B) 2D projection of a 3D fcc lattice (grey 

dashed lines). The solid line with full circles is a possible conformation of a polymeric chain. Semi-

circular arcs indicate double-occupancy of consecutive monomers along the chain. Green 

(respectively red) arrows illustrate allowed (resp. forbidden) local moves. (C) The hedgehog 

algorithm to construct the initial configuration. Starting from a rod-like chain (left) containing few 

monomers, the structure is iteratively built by randomly choosing a link (green oval) and by 
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inserting a new monomer at a site closed to the two already placed monomers of the link (right) 

such that the new configuration still verifies lattice rules (excluded volume and connectivity). This 

step is repeated until the entire chain is grown (bottom). (D) Two examples of 3D configurations 

for a block copolymer model simulated for 𝑈 = −0.1𝑘i𝑇. Colors refer to the epigenomic state of 

the beads (same color code as in Fig.1B).  

 

Figure 3. (A) Predicted Hi-C maps (triangular part on top right) for unsynchronized cells for 

different values of the strength of epigenomic interactions U (𝑟� = 200nm) and Hi-C experiments 

for late embryos from [6] (triangular part on bottom left). On the top, we showed the epigenomic 

state given by Filion et al [34] (same color code as in Fig.1B). (B) Spearman correlation computed 

between the entries of the predicted and experimental Hi-C maps. Predicted Hi-C maps were 

computed for different radius of contact 𝑟�. We limit the computation to entries between loci 

separated by a genomic distance larger than 30kbp and lower than 5Mbp.  
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