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Summary 
 
In order to simplify the numerical solution of the time-dependent or time-independent Schrödinger 
equations associated with the atomic and molecular motions, the use of well-adapted coordinates is 
essential. Usually, this set of curvilinear coordinates leads to a Hamiltonian operator as separable as 
possible. Although their corresponding kinetic energy operator (KEO) expressions can be derived 
analytically for small systems or special kinds of coordinates, a numerical and exact approach allows to 
compute them in terms of sophisticated curvilinear coordinates. Furthermore, the numerical approach 
enables to easily define reduced dimensionality or constrained models. 
We present here a recent implementation of this numerical approach that allows nested coordinates 
transformations and therefore leading to a large flexibility in the definition of the curvilinear coordinates. 
Furthermore, this implementation has no-limitations in terms of number of atoms or coordinate 
transformations. The quantum dynamics of the cis-trans photoisomerization of part of the retinal 
chromophore illustrates the building of the coordinates and KEO part of a 3D-model. 
 

1. Introduction 
 
From the general point of view of quantum mechanics any set of coordinates can be used to construct the 
Hamiltonian operator and, in particular, Cartesian coordinates, in which case the kinetic energy operator 
(KEO) has a simple form. Although the expression of the potential energy surfaces can be involved, its 
complexity can be overcome easily. On the one hand, for fitted force-fields, the Cartesian coordinates are 
transformed into geometrical parameters (distances, angles, etc.) required to calculate the potential.[1] This 
transformation disappears completely with direct-dynamics or ab initio dynamics, with or without 
quantum effects, for which the potential is easily calculated on-the-fly in terms of Cartesian coordinates.[2,3] 
On the other hand, standard quantum simulations of atomic motion in molecules (with time dependent or 
independent approaches) are usually performed by means of well-chosen coordinates, such as normal 
modes or curvilinear coordinates. There are several reasons for this choice:  
 

- To analyze experimental data of a spectrum or a chemical (physical) process: The analysis of particular 
motions along some coordinates (distances, angles, etc.) is simpler if the dynamics is performed 
directly using these coordinates. Of course, one can always transform the coordinates used for the 
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dynamics into those required for the analysis as done in classical molecular dynamics. However, since 
the wavepacket representing the quantum mechanical state of the system is delocalized, the coordinate 
transformation has to be applied for all grid points and at each time step. Therefore, this operation 
could be more time consuming than performing a coordinate transformation only once for the 
Hamiltonian or, more precisely, for the KEO. 
 
- To use an effective model: In this case, the effective model is often a reduced dimensionality model with 
a well-chosen set of coordinates. For instance, models with a single torsional angle can be used to 
describe a hindered rotation of two fragments. Most of the times, the parameters of the model are 
adjusted based on experimental data. This approach has been intensively used in the quantum 
treatment of atomic motion in ro-vibrational spectroscopy of isolated molecules.[4–6] 
 
- To reduce the basis set or grid sizes: Most of the times, the multidimensional basis set is expressed as a 
direct-product of 1D-basis sets or grids (or low dimensional basis sets). Therefore, to reduce the size of 
the full basis, the correlation or the coupling between coordinates must be as small as possible. In a 
way, it is equivalent to finding coordinates that give an almost separable Hamiltonian.[7] Indeed, a 
well-chosen set of curvilinear coordinates reduces the coupling between modes, even though one must 
find a balance between the kinetic and the potential couplings. It is important to note, that when the 
multidimensional basis set is not expressed as a direct-product but as a sum of localized 
multidimensional functions (such as “moving” gaussians), one can work efficiently in Cartesian 
coordinates as done with DD-vMCG[8] (direct dynamics variational multi-configuration Gaussian 
wavepacket), multiple spawning approaches[9,10] and other similar approaches. 
 

Unfortunately, the analytical expression of the KEO can be derived relatively easily only for some kinds of 
coordinates such as Jacobi or polyspherical coordinates.[7,11–16] For more sophisticated coordinates, the 
analytical derivation of the KEO can be cumbersome, in particular for molecular systems with 
constraints.[4,17] Therefore, some authors have proposed to derive the KEO numerically.[18–24] 
 
In the next section, we will present the general strategy to obtain KEO in terms of any set of curvilinear 
coordinates with or without constraints. Then, we will show how to adapt this procedure to get a numerical 
but exact KEO with several nested coordinate transformations. This work can be considered as an overview 
of some of our previous studies on numerical KEO,[22,25,26] where a more detailed presentation of the 
coordinate transformations is given. As an illustration, the cis-trans photo-isomerization process of the 2-
cis-penta-2,4-dieniminium cation (PSB3), which is a minimal model for the retinal chromophore of 
Rhodopsin, will be simulated with a quantum dynamics propagation scheme using a 3D-reduced 
dimensionality model.[27,28] 
 

2. Coordinates and kinetic energy operator 
 
2a) General expressions 
 
Let a molecular system be composed of N atoms, each denoted Al, of mass, ml, and in the laboratory (L) 
frame, its Cartesian coordinates being 𝑿""⃗ !" = [𝑥!" 𝑦!" 𝑧!"]. These Cartesian atomic coordinates can be 
projected onto the body-fixed (BF) or molecular frame. The relation between the BF Cartesian coordinates, 
𝑿""⃗ #$" , and the L coordinates is given below (see also fig 1): 
 

𝑿""⃗ !" = 𝑿""⃗ !%&' +𝓡(𝛉)𝑿""⃗ #$"  Eq. 1 
 
where 𝑿""⃗ !%&' is the molecular center-of-mass (COM) and 𝓡(𝛉) is the Euler rotation matrix associated to the 
three Euler angles, 𝛉 = [𝛼, 𝛽, 𝛾], or two angles in the case of a diatomic molecule. For a given molecular 
system, this expression enables us to split the motion of a molecule into a deformation part (𝑿""⃗ #$" ), a rotation 
part (𝛉) and the COM motion (𝑿""⃗ !%&').[29,30] Furthermore, the total angular momentum can be easily 
expressed in terms of the three Euler angles[29,30] and, when the molecule is isolated, the COM can be 
separated out. 
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The way the BF frame is attached to the molecule is crucial. (i) One can use two vectors, 𝑹""⃗ ( and 𝑹""⃗ ), so that 
the vector 𝑹""⃗ ( is along the z-axis in the BF frame and (𝛽, 𝛼) are associated to the two spherical angles of this 
vector in the L frame. The vector 𝑹""⃗ ) lies in the xz-BF plane, and 𝛾, the third Euler angle, completes the 3D-
rotation of the BF frame with respect to the laboratory frame. These two vectors can be defined as atomic 
vectors (𝐴(𝐴)""""""""""⃗ , and 𝐴(𝐴*""""""""""⃗  or 𝐴)𝐴*""""""""""⃗ ) as in a z-matrix or as vectors between atoms or center-of-mass as in Jacobi 
or polyspherical coordinates.[11–13] Fig. 1 shows an illustration of the orientation a triatomic molecule in 
the different frames. (ii) One can use an Eckart frame[31–36], and in this case all atomic vectors are involved 
in the definition of the Euler rotation matrix. This enables one to separate more efficiently the vibrational 
from the rotational motions, although in general the analytical expression of 𝓡(𝛉) is unknown. (iii) One can 
use a more unusual embedding in which the z-axis of the BF frame bisects or trisects several vectors.[37]  

 
Fig 1: Illustration of the body-fixed frame orientation with respect to the laboratory frame for a triatomic molecule 
(A1-A2-A3) defined with the help of a z-matrix. The space-fixed (SF) frame is an intermediate frame parallel to the LF 
frame but centered on the center-of-mass. 

 
Generally, the BF Cartesian coordinates are expressed as functions of n-internal curvilinear coordinates, 𝑸, 
with 𝑛 = 3𝑁 − 6	(or 𝑛 = 1 for a diatomic molecule). Usually, the 𝑸s are atomic distances or vector norms 
(for Jacobi like coordinates), valence angles (range ]0, p[) and dihedral angles (2p periodic). However, more 
sophisticated coordinates can be used (see below). In this framework, we can define 3𝑁-curvilinear 
coordinates, q, which include the n-internal curvilinear coordinates, the Euler angles and the three 
coordinates associated with the molecular center-of-mass:  
 

𝒒 = >𝑸, 𝛉, 𝑿""⃗ !%&'? Eq. 2 
 
One of the major difficulties in the use of curvilinear coordinates is the potentially cumbersome analytical 
expression of the kinetic energy operator,𝑻A. 
Fortunately, for some particular kinds of curvilinear coordinates, such as Jacobi or polyspherical 
coordinates, one can find analytical expressions for molecular systems of any size. In those types of 
coordinates, it is assumed that the BF frame is attached to two vectors only (𝑹""⃗ ( and 𝑹""⃗ )). For polyspherical 
coordinates (which include Jacobi or Radau coordinates ...), the KEO analytical expression is always 
expressed as a sum of products of one-dimensional functions or operators. This feature is numerically very 
interesting in quantum dynamics because the KEO action on a wave function or a wavepacket does not 
require a multidimensional grid explicitly. Therefore, those coordinates are heavily used in many 
applications or approaches such as the multi-configurational time-dependent Hartree (MCTDH) method 
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[7,13,38], the Vibrational Configuration Interaction (VCI) or Vibrational Coupled Cluster (VCC) 
methods.[39] Furthermore, some of the authors were able to develop a numerical code, TANA,[14,15,40] to 
get analytical expressions for molecular systems of any size with a lot of freedom in the selection of the 
vector parametrization and the sub-systems (local body fixed frames). 
 
For other embeddings or other sets of coordinates, the analytical expressions are more involved. It is therefore that, in 
the literature, they have been obtained for small molecular systems only. The KEO, 𝑻A+, is related to the mass-
weighted Laplacian associated to the 3N coordinates 𝒒 and with a Euclidean (E) volume element (𝑑𝜏+), 𝑻A+ 
reads: 
 

𝑻A+ = −ℏ!

)
- ./(𝒒)"#

3
34$

./(𝒒)56$%(𝒒)
3
34%

&'

$,%)#
 

𝑑𝜏+ = 𝐽E(𝒒)𝑑𝑞(⋯𝑑𝑞*7																						 
Eq. 3 

 
where, 𝐽E(𝒒) and 𝐺I 89 are, respectively the Jacobian of the coordinate transformation from the curvilinear to 
the Cartesian coordinates and the contravariant components of the metric tensor associated to the 
coordinates 𝑞8 and 𝑞9.  
 
When the separation in terms of internal coordinates, Euler angles and position of the center-of-mass is 
considered (Eq. 2), the metric tensor, 𝑮K, can be factorized into a product of three matrices:[29,30,41] 
 

𝑮K(𝒒) = L
𝟏:×:

𝛀(𝛉)<,>(
𝟏*×*

O ∙ 𝑮(𝑸) ∙ L
𝟏:×:

𝛀(𝛉)>(
𝟏*×*

O Eq. 4 

 

The matrix-vector product between (−𝑖ℏ)𝛀(𝛉)>( and L
𝜕?
𝜕@
𝜕A
O gives the three components of the total angular 

momentum operator L
𝐽TB
𝐽TC
𝐽TD
O. 

 
From the factorization of the metric tensor (Eq. 4), the Jacobian can be factorized as a product of deformation 
part, 𝐽(𝑸), a rotational part, 𝑠𝑖𝑛(𝛽), and a constant for the translation part. Furthermore, the KEO can be 
expressed in terms of 𝑮(𝑸), the components of the total angular, the 3

3E$
, and the kinetic energy operator of 

the center-of-mass. For instance, the deformation part of the KEO or more precisely its expression at J=0 is 
given by: 
 

𝑻AFGH+ = −ℏ!

)
- .(𝑸)"#

3
3E$

.(𝑸)5$%(𝑸)
3
3E%

*

$,%)#
 

𝑑𝜏FGH+ = 𝐽(𝑸)𝑑𝑄(⋯𝑑𝑄:																								 
Eq. 5 

 
The KEO relations (Eq. 3 and Eq. 5) look similar, but in the latter expression the double sum runs over the 
n-internal coordinates, 𝑸, and 𝑮(𝑸) depends only on the internal coordinates. 
There are several ways to get the expression of 𝑮. One can start with 𝑸(𝑿""⃗ #$" ), which gives directly the 
deformation part, however, in this case, 𝑮 is expressed as a function of 𝑿""⃗ #$"  instead of 𝑸. Otherwise, using 
the expression 𝑿""⃗ #$" (𝐐), one calculates the covariant components, 𝑔89, of the metric tensor, rather than 𝑮, but 
directly as function of 𝑸: 
 

𝒈 = L
𝑺J×J 𝑪J×*𝒕 𝟎
𝑪*×J 𝑰*×* 𝟎
𝟎 𝟎 𝑴*×*

O Eq. 6 
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where, 𝑺J×J, 𝑪*×J, 𝑰*×* and 𝑴*×* are, respectively, the deformation, the Coriolis, the inertia, and the 
translational parts of the metric tensor. The expressions of those matrices are functions of 𝑿""⃗ #$" (𝐐) and their 

derivatives (3𝑿
MM⃗ +,
- (𝐐)
3E$

) with respect to the internal coordinates, 𝑄8 (see below in the next section for their 
expressions). 
Then, the expression of 𝑮 is simply the inverse of 𝒈. Furthermore, the deformation part of the Jacobian, 
𝐽(𝑸), can be obtained from 𝒈 as well: 

𝑮 = 𝒈>𝟏 
𝐽(𝑸) = _det(𝒈) 

Eq. 7 

 
The expression of the deformation KEO (Eq. 5) can be used directly, however, most of the times, the 
Euclidean volume element is not adapted to the basis set used to solve the Schrödinger equation. Therefore, 
one uses a volume element, 𝑑𝜏FGH

Q = 𝜌(𝑸)𝑑𝑄(⋯𝑑𝑄:, so that the multidimensional basis set is orthonormal. 
The expression of the KEO must be accordingly adapted to this new volume element:[29,30] 
 

𝑻AFGH
Q = d

𝐽(𝒒)
𝜌(𝒒)𝑻

AFGH+ d
𝜌(𝒒)
𝐽(𝒒)																																																																									 

= −ℏ!

)
- Q(𝑸)"#

3
3E$

Q(𝑸)5$%(𝑸)
3
3E%

*

$,%)#
+ 𝑉GR(𝒒)																										 

= −ℏ!

)
- 5$%

3!

3E$3E%

*

$,%)#
− ℏ!

)
- S

3T:(Q)
3E$

5$%U
35$%

3E$
V
3
3E%

*

$,%)#
+ 𝑉GR(𝒒) 

 
𝑑𝜏Q = 𝜌(𝑸)𝑑𝑄(⋯𝑑𝑄:																																																																												 

Eq. 8 

 
In the previous expression, 𝑉GR(𝒒) is a scalar term, part of the KEO. It is often called extra-potential[30] or 
pseudo-potential term.[19,20] It is worth noting, that with this new volume element, the scalar operators 
(such as the potential or the dipole moments) remain unchanged. 
 
One of the major interests in the use of curvilinear coordinates is the possibility to a define reduced 
dimensionality model for which only a subset of coordinates (the active ones) are present in the dynamics, 
while the other coordinates (the inactive ones) are neglected. Clearly, the number of active coordinates (n), 
is smaller than 3N-6. Those kinds of models have been used intensively in ro-vibrational spectroscopy of 
floppy molecular systems to calculate or analyze spectra. Usually, the definition of the potential is not a 
problem. However, one has to derive the KEO with extreme care to avoid non-Hermitian issues. For 
instance, in the third line of Eq. 8, one cannot neglect terms associated to the inactive coordinates. Instead, 
one has to define a reduced dimensionality metric tensor, 𝑮𝑹𝑫, and plug it into Eq. 8 in which n is the 
number of active coordinates. There are several ways to define the 𝑮𝑹𝑫 from:  

(i) a mathematically constrained model.[17–20,22,26,42,43] The constraints have to be implemented 
rigorously in the Cartesian coordinates. Then, the covariant components of the reduced dimensionality 
metric tensor, 𝒈𝑹𝑫, can be obtained from the usual expressions, and 𝑮𝑹𝑫 is just the inverse of 𝒈𝑹𝑫. 
Usually, the overall rotation is included in the active part of the metric tensor. Several types of constraints 
can be defined: (a) rigid constraints, where inactive coordinates are held fixed, or (b) flexible constraints, 
where inactive coordinates are defined as functions of the active coordinates. 
(ii) a submatrix of 𝑮.[26,44] In this case, one can calculate only the exact contravariant metric components 
associated to the active coordinates. For instance, in the well-known book by Wilson-Decius and 
Cross,[45] one can find tabulated contravariant metric components associated to usual coordinates 
(distances, valence angles, dihedral angles). However, when the coordinates are more involved, the full 
metric tensor has to be computed and 𝑮𝑹𝑫 has to be extracted from it.  
(iii) ad hoc expressions. For instance, the diagonal contravariant component associated to a torsional 
degree of freedom can be defined as the inverse of a moment of inertia. 

 
Several comments regarding the reduced dimensionality metric tensor are in order:  

(i) Other approximations could be considered for 𝑮𝑹𝑫, such as using a constant expression or a diagonal 
expression or both of them. [28,46] 
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(ii) For a molecular system, the usual KEO deformation part is obtained at J=0 (zero total angular 
momentum). So, formally, the overall rotation is included in the model. 
(iii) In most of the studies, the center-of-mass (COM) motion is not included in the model. Indeed, for 
isolated molecule, the wave function can be factorized rigorously into a COM contribution and a 
rovibronic one. However, when the molecular system is coupled to an external field or an environment 
(a cavity, a surface …), the COM motion can be added easily to the model.[47–49] 
(iv) Compared to the constrained approach, the one using the submatrix of 𝑮 gives the smoothest 
𝑮𝑹𝑫[26] and the simplest analytical expression. For instance, when polyspherical coordinates are used, 
the metric tensor components are expressed as a sum of products of one-dimensional functions. This 
feature is lost with the constrained approach. 
(iv) The constrained approach seems to be the most rigorous one, since it gives the correct mathematical 
constrained metric tensor. However, from a physical or chemical point of view, a molecular system is 
never strictly constrained (for instance, a distance in a molecule cannot be held fixed) and the "best" 
reduced dimensional model is not necessary the mathematically constrained model. 
(vi) The constrained approach and the approach with a submatrix of 𝑮 are related.[17,25,42] Indeed, the 
constrained approach is equivalent to extracting the active covariant components, 𝒈𝒂𝒂, from the exact one, 
𝒈𝒆𝒙𝒂𝒄𝒕. Then 𝑮𝑹𝑫

(𝒊)  is just the inverse of 𝒈𝒂𝒂 (upper part of fig. 2). For the second approach, with a submatrix 
of 𝑮, 𝑮𝑹𝑫

(𝒊𝒊) is extracted from 𝑮𝒆𝒙𝒂𝒄𝒕 (lower part of fig. 2). Using block matrix inversion, one can add a 
correction to 𝑮𝑹𝑫

(𝒊𝒊) to recover 𝑮𝑹𝑫
(𝒊) .[50] This equivalence works only with rigid constraints (i.e., without 

flexible constraints). However, the flexible constraints can be transformed into rigid constraints by the 
use of flexible coordinates.[51] 
 

 
Fig 2: Scheme to obtain the reduced dimensionality metric tensors. 

 
This approach, with or without constraints, is completely general and it has been used in the past to get 
analytical expressions of the KEO for some small molecular systems; it has been used intensively within a 
numerical scheme, where the numerical values of the metric tensor (or similar expression) and the Jacobian 
are calculated at given geometries (i.e. on a grid). 
 
2b) Numerical approach 
 
The approach to numerically calculate the KEO, or the elements of the metric tensor, has been known for 
many years.[18–24] It relies on the numerical calculations of the BF Cartesian coordinates, 𝑿""⃗ #$" (𝑸), and their 

derivatives, 3𝑿
MM⃗ +,
- (𝑸)
3E$

. Most of the times, those derivatives are obtained by means of a finite difference scheme. 
However, in our approach, we are using an Automatic Differentiation (AD) scheme,[22,52–54] so that the 
derivatives, up to the third order, are calculated exactly. Our approach has been developed twenty years 
ago[22] and resorts to the forward mode and to the use of an extension of the dual number approach to get 
high order derivatives.[52,53] Note that, in Ref. [22], even though the scheme Automatic Differentiation was 
employed, this exact wording was not used to identify the method. 

Matrix 
inversion 

correction 

.67895 =
.88 .8%
.%8 .%%

-67895 =
-88 -8%
-%8 -%%

.:; = .88 -:;(%) = .88-(

-:;
(%%) = -88

−-8% + -%%-( + -%8
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Therefore, one can use sophisticated coordinate transformations without losing accuracy. For instance, in our 
program TNUM,[22,40] it is particularly easy to use several coordinates transformations between the active 
coordinates, 𝑸 or 𝑸𝒂𝒄𝒕, and the BF Cartesian coordinates, 𝑿""⃗ #$" (𝑸), (see the fig. 3 as a general illustration).  

 
Fig 3: Illustration of the coordinate transformations in TNUM, from the active coordinates, 𝑸 ≡ 𝑸𝒂𝒄𝒕, to the body 

fixed Cartesian coordinates. Each transformation, 𝑻𝒓<, is represented, by a pink arrow and a green label. The 
different coordinates, 𝑸𝒂𝒄𝒕, 𝑸𝒅𝒚𝒏, 𝑸𝒕, 𝑸𝒑𝒓𝒊𝒎, 𝑿𝑭, 𝑿𝑩𝑭 are represented by blue boxes. 

In our implementation, for a given transformation, 𝐓𝐫<, the coordinates 𝑸𝒕 are transformed into the 
coordinates 𝑸𝒕>𝟏, and the required derivatives with respect to 𝑸𝒂𝒄𝒕 are obtained through the chain rule. 
High order derivatives are easily obtained as well. 
 

j

𝑄<>(f = 𝑇𝑟<f(𝑸𝒕)													
𝜕𝑄<>(f

𝜕𝑄gh<8 =m
𝜕𝑄<

9

𝜕𝑄gh<8 ∙
𝜕𝑇𝑟<f

𝜕𝑄<
9

:

9

 Eq. 9 

 
In Eq. 9, the derivatives 3ij.

/

3E.
%  of the transformation, 𝐓𝐫<, are known from its definition and the derivatives 

3E.
%

3E01.
$  are known from the previous transformation, 𝐓𝐫<U(. Those expressions are completely general, but 

some special transformations need to be discussed in more detail: 
 

• The active transformation: this transformation is essential when constraints (rigid or flexible) are used 
(𝑛	 < 	3𝑁 − 6). In this case, one needs a relation between the 3𝑁 − 6 coordinates, 𝑸𝒅𝒚𝒏, which 
describe the system, and the n-active coordinates, 𝑸𝒂𝒄𝒕, used in the dynamics. Three main cases 
have to be considered to simplify Eq. 9: 
(i) When the coordinate 𝑄FC:f  is an active coordinate and corresponds to 𝑄gh<

9 , then the relations in 
Eq. 9 simplify as: 

j
𝑄FC:f = 𝑄gh<

9

𝜕𝑄FC:f

𝜕𝑄gh<8 = 𝛿8,9 				
 Eq. 10 

 (ii) When the coordinate 𝑄FC:f  is inactive and equal to a constant value, 𝑄FC:kf , all derivatives are 
zero. 
(iii) When 𝑄FC:f  is inactive and equal to a function of the active coordinates (flexible constraints), 
then the relations in Eq. 9 simplify as: 

j
𝑄FC:f = 𝑄HTGBf (𝑸𝒂𝒄𝒕)
𝜕𝑄FC:f

𝜕𝑄gh<8 =
𝜕𝑄HTGBf

𝜕𝑄gh<8 											
 Eq. 11 
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coordinates : z-
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polyspherical ...
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In terms of the AD approach, this first step is the seed of the AD procedure and, more precisely, the 
active coordinates are the n-independent variables among the 3N-6 ones and the remaining 
variables, the inactive coordinates, are the dependent variables. 
 

• The linear transformation: this transformation is particularly simple and the coordinates 𝑸𝒕>𝟏 are 
expressed as linear combinations of the coordinates 𝑸𝒕. Then, the relations in Eq. 9 simplify as: 

⎩
⎪
⎨

⎪
⎧ 𝑄<>(f =m𝑀(𝑘, 𝑗) ∙ 𝑄<

9

9

		

𝜕𝑄<>(f

𝜕𝑄gh<8 =m𝑀(𝑘, 𝑗) ∙
𝜕𝑄<

9

𝜕𝑄gh<8
9

 Eq. 12 

Formally, the full matrix M must be defined. However, it is possible to define a few linear 
combinations and, then, M is automatically computed. Moreover, it is often easier to define the 
inverse relation (with 𝑴>(), with 𝑸𝒕 as functions of 𝑸𝒕>𝟏, or the symmetrized coordinates as 
functions of the unsymmetrized ones. 
With this transformation, we can easily define symmetrized coordinates, curvilinear normal modes 
and coordinates associated to concerted motions.  
 

• The primitive transformation: This transformation allows one to get the Cartesian coordinates, 𝑿""⃗ $" , in 
an intermediate frame from the so-called primitive coordinates, 𝑸𝒑𝒓𝒊𝒎. For instance, when the 
primitive coordinates are defined with the help of a z-matrix (other options are possible) and for a 
triatomic system (see fig, 1), 𝑿""⃗ $"  are defined as follows:  

⎩
⎪
⎨

⎪
⎧ 𝑿""⃗ $( = w

0
0
0
y

𝜕𝑿""⃗ $(

𝜕𝑄gh<8 = w
0
0
0
y					

																																																										

⎩
⎪
⎨

⎪
⎧ 𝑿""⃗ $) = 𝑄Rj8l( w

0
0
1
y

𝜕𝑿""⃗ $)

𝜕𝑄gh<8 =
𝜕𝑄Rj8l(

𝜕𝑄gh<8 w
0
0
1
y					

 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑿""⃗ $* = 𝑿""⃗ $) − 𝑄Rj8l) L
𝑠𝑖𝑛(𝑄Rj8l* )

0
𝑐𝑜𝑠(𝑄Rj8l* )

O																																																															

𝜕𝑿""⃗ $*

𝜕𝑄gh<8 =
𝜕𝑿""⃗ $)

𝜕𝑄gh<8 −
𝜕𝑄Rj8l)

𝜕𝑄gh<8 L
𝑠𝑖𝑛(𝑄Rj8l* )

0
𝑐𝑜𝑠(𝑄Rj8l* )

O−𝑄Rj8l) ∙
𝜕𝑄Rj8l*

𝜕𝑄gh<8 L
𝑐𝑜𝑠(𝑄Rj8l* )

0
−𝑠𝑖𝑛(𝑄Rj8l* )

O

 

 

Eq. 13 

For larger molecular system, the expressions are more involved but they can be obtained without 
difficulty. 
 

• The Cartesian transformation: the main purpose of this transformation is to translate the previous 
Cartesian coordinates with respect to the center-of-mass to get the Cartesian coordinates in the BF 
frame. Furthermore, it enables one to take into account the rotational Eckart conditions.[36] 

 
The advantage of the approach presented above is its flexibility. Indeed, there is no built-in limitation in 
terms of number of atoms or coordinates, and number of coordinate transformations.[40]  
So far, only 𝑿""⃗ #$" (𝑸) and its derivatives have been computed numerically and exactly for a given value of 𝑸. 
As for the Cartesian coordinates, the metric tensor, its derivatives, the Jacobian and the extra-potential term, 
they can also be computed numerically and exactly. The main part of the algorithm is presented in fig 4. 
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Fig 4: Illustration of TNUM implementation. 

 

3. Application to reduced dimensionality photo-isomerization. 
 

Recently, some of the authors have studied the cis-trans photoisomerization of PSB3 (see fig. 5), which is a 
minimal model of a retinal chromophore of Rhodopsin.[28] Fig. 5 provides a schematic representation of 
PSB3, where the colours indicate the active coordinates that define our model (see description below). 

 

 
Fig 5: PSB3 scheme and the corresponding z-matrix. The primitive coordinates highlighted in color are the three 

coordinates used in the model. 

One of the main aspects of this study was the comparison of several quantum-classical methods with an 
exact quantum calculation for the cis-trans isomerization dynamics upon a photo-excitation. Therefore, it 
was important to use a model compatible for all approaches. The potential has been obtained by Marsili et 
al.[27] and it consists of a two-states potential developed along three coordinates. Those coordinates, the 
torsion along the central double bond (Tors, depicted in blue in fig. 5), the bond-length-alternation 
stretching (BLA, represented in red in fig. 5), and the hydrogen-out-of-plane wagging of the central bond 
(HOOP, in green in fig. 5) capture the main features of the cis-trans photoisomerization. The quasi diabatic 
potential was fitted using points at XMCQDPT2//CASSCF/6-31G* ab initio level[27] and was adjusted for 
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the study reported in Ref. [28]. The three coordinates were defined with the help of four transformations 
(see fig. 6 as an illustration): 
(i) A transformation of the primitive coordinates, 𝑸𝒑𝒓𝒊𝒎, from or to Cartesian coordinates, 𝑿𝑭, in the z-matrix 
frame. 
(ii) Linear combinations of the primitive coordinates to form the 𝑸𝒍𝒊𝒏. This transformation helps to define 
the three main coordinates (BLA, Tors and HOOP). 
(iii) A 1D-transformation to obtain 𝑸𝟏𝑫, namely a shift of the 𝑄T8:*  coordinate, so that the HOOP value is zero 
for the cis geometry (the reference geometry in our study). 
(iv) Definition of the active coordinates, 𝑸𝒂𝒄𝒕, from 𝑸𝟏𝑫 or 𝑸𝒅𝒚𝒏. Rigid constraints are imposed at the 
reference cis geometry of the ground electronic state. 

 
Fig 6: PSB3 TNUM coordinates transformations (pink arrows and green boxes) with the five sets of coordinates (blue 

and yellow boxes): (i) 𝑿𝑭: The Cartesian coordinates in the z-matrix frame where the first three atoms (C1, C2 and 
C3) are in the xz plan and C1-C2 are along the z-axis. (ii) 𝑸𝒑𝒓𝒊𝒎: the primitive or z-matrix coordinates. The ones 
involve in the definitions of active coordinates are highlighted in color. (iii) 𝑸𝒍𝒊𝒏: the three linear combinations of 

𝑸𝒑𝒓𝒊𝒎 helping to define the three main coordinates (BLA, Tors and HOOP). (iv) 𝑸𝟏𝑫: The coordinates obtained after 
a 1D-transformation from 𝑸𝒍𝒊𝒏. Here, it is just a shift of the 𝑄T8:* , so that the HOOP value is zero at the cis-

configuration. 𝑸𝟏𝑫 are also the dynamical coordinates 𝑸𝒅𝒚𝒏. (v) 𝑸𝒂𝒄𝒕: the three active coordinates are selected from 
the 3N-6 𝑸𝒅𝒚𝒏 coordinates. The other coordinates, the inactive ones, are constrained to their values at the cis-

configuration. 

 
Rigid constraints are imposed for this study, although other type of constraints could have been used. For 
instance, in a model with flexible constraints, the inactive coordinates are functions of the active coordinates, 
𝑄HTGBf (𝑸𝒂𝒄𝒕) and they can be adapted to symmetry modifications along the active coordinates. In the majority 
of the studies that employed this flexible model,[17,18,20,26] it has been used in combination with the 
adiabatic approximation, i.e., with a single electronic potential energy surface, and the 𝑄HTGBf (𝑸𝒂𝒄𝒕) functions 
have been obtained from a geometry optimization along 𝑸𝒂𝒄𝒕. The drawback is that, even when several 
electronic states are involved, as is the case for the PSB3 system, the geometry optimization has to be 
performed with one electronic state. The choice of such state is clearly arbitrary. Therefore, rigid constraints 
are preferred.[50] 
 
 
The present implementation of the quantum-classical methods in G-CTMQC[55] requires that the 
contravariant metric tensor is diagonal and constant, so that the KEO and the volume element are given by: 
 

Cartesian 
coordinates

Primitive coordinates, 
(z-matrix):

C!
C" C! "#$%&!

C' C" "#$%&" C! "#$%&'

C( C' "#$%&( C" "#$%&) C! "#$%&*

C) C( "#$%&+ C' "#$%&, C" "#$%&-

#* C) "#$%&!. C( "#$%&!! C' "#$%&!"

H+ C( "#$%&!' C' "#$%&!( C) "#$%&!)

H, C' "#$%&!* C( "#$%&!+ C" "#$%&!,

⋮

3 active coordinates: 
!,-., !/012, !3445

CD6%"'#*CD"!≡CD#$!%&' CD(≡CD)*%+

!FGH !TPK !NOPQ

Active and inactive (rigid) coordinates defined 
as linear combinations of primitive ones:

"/01 = "2345 = "#$%&" + "#$%&6

2 −
"#$%&5 + "#$%&7 + &>?$@(A

3
&B1?C = &D%E+ = &>?$@F

&D%EG = −"#$%&58 − "#$%&59

"R

shift of !789: : 
&HIIJ = &D%EG + 6V

CD(;

!MW ≡ !IJK



 11 

𝑻AFGH = −ℏ!

)
S5+23,+23

3!

3E+23!
U54567,4567

3!

3E4567!
U5899:,899:

3!

3E899:!
V 

𝑑𝜏 = 𝑑𝑄#!n ∙ 𝑑𝑄iojp ∙ 𝑑𝑄q&&r																																																						 
Eq. 14 

 
However, this constraint can be lifted for the exact quantum study, as, in fact, the metric tensor is neither 
constant nor diagonal. The constrained metric tensor along the Tors coordinate (see fig. 7) shows that, as 
function of the Tors coordinate, the variation amplitude of each component is relatively small. Furthermore, 
all components are symmetric with respect to the trans geometry (𝑇𝑜𝑟𝑠 = 180°), except 𝐺#!n,iojp and 
𝐺#!n,q&&r which are anti-symmetric (see the right panel of fig. 7). 
 

  
Fig 7: Metric tensor components along the Tors for the constrained metric tensor, 𝑮𝑹𝑫

(𝒊) . 

 

  
Fig 8: Metric tensor components, 𝑮𝑹𝑫

(𝒊𝒊), along the Tors from the contravariant components of the exact metric tensor. 

 
In the present study, two metric tensors are compared: the constrained metric tensor (𝑮𝑹𝑫

(𝒊) , see fig. 7) and 
the metric tensor obtained directly from the exact contravariant components of the metric tensor, 𝑮𝑹𝑫

(𝒊𝒊) (see 
fig. 8). The comparison shows, as expected, that 𝑮𝑹𝑫

(𝒊𝒊) presents less oscillations than 𝑮𝑹𝑫
(𝒊)  (see also reference 

[26]), although the amplitude of 𝐺q&&r,q&&r and 𝐺iojp,iojp are larger for 𝑮𝑹𝑫
(𝒊𝒊) than for 𝑮𝑹𝑫

(𝒊) . From a 
computational point of view, the numerical calculation of the KEO (including the extra-potential term) 
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obtained from exact metric tensor (𝑮𝑹𝑫
(𝒊𝒊)) is more time consuming than the constrained one, because the exact 

metric tensor in full dimensionality has to be computed. In fact, for the PSB3 molecule, the KEO calculation 
on the grid of 𝑮𝑹𝑫

(𝒊)  is about 1800 time faster than the calculation of 𝑮𝑹𝑫
(𝒊𝒊). 

 
The analysis of the variations of the metric tensor components allows us to propose:[28] (i) a constant metric 
tensor, 𝑮𝑪𝒐𝒏𝒔𝒕, which is obtained from an average of the constrained metric tensor, 𝑮𝑹𝑫

(𝒊) , over 45 geometries, 
and it includes only the symmetric components, whose values are given in Table 1; (ii) a diagonal constant 
metric tensor, 𝑮𝑫𝒊𝒂𝒈>𝑪𝒐𝒏𝒔𝒕, in which 𝐺iojp,q&&r is set to zero. 
 

Contravariant 
components 

Value in a.u. 

𝐺#!n,#!n 7.981 × 10-5 
𝐺iojp,iojp 2.599 × 10-5 
𝐺q&&r,q&&r 40.375 × 10-5 
𝐺iojp,q&&r 4.025 × 10-5 

Table 1: Non-zero values of the averaged constant metric tensor components. 

 
To further assess the influence of those approximations, exact quantum dynamics simulations have been 
performed with the three metric tensors, namely 𝑮𝑫𝒊𝒂𝒈>𝑪𝒐𝒏𝒔𝒕, the constrained metric tensor 𝑮𝑹𝑫

(𝒊) , and the one 
extracted from the exact metric tensor, 𝑮𝑹𝑫

(𝒊𝒊). 
 
The quantum dynamics calculations have been performed with the Chebyshev propagation scheme[56,57] 
implemented in ELVIBROT fortran code[40] with time step of 1 fs and for 500 fs propagation duration. It is 
important to note, that the split operator scheme[58] cannot be used for the present study. When the metric 
tensor is a function of all the active coordinates, one has to use a general scheme such as Chebyshev 
scheme,[56] Short Iterative Lanczos[57] and even a Taylor expansion.[59] The propagation is performed in 
the diabatic representation, and in each electronic state the wavepacket is expanded in a 3D-direct product 
grid or basis set. The primitive basis sets associated with the coordinates, 𝑄#!n, 𝑄iojp and 𝑄q&&r, are, 
respectively, a Harmonic oscillator (HO) basis set, a Fourier series and another HO. The number of basis 
functions, 𝑛𝑏, and the number of grid points, 𝑛𝑞, and the HO parameters are given in Table 2 (see also Ref. 
[28]). The (not-normalized) expression of the HO basis functions is 𝐻l(𝑆𝑐(𝑄 − 𝑄k))𝐸𝑥𝑝>−#

!
(wh(E>E;))!?, where 

𝐻l are Hermite polynomials. The initial wavepacket starts in the second diabatic state at the cis 
configuration and it is expressed as product of three 1D-gaussians (𝑔(𝑄) = 𝐸𝑥𝑝(−(𝑄 − 𝑄h))/∆𝑄)) (not-
normalized expression). The parameters, 𝑄h and ∆𝑄, have been derived from the quadratic expansion of the 
cis ground state potential and the cis-metric tensor (see table 2 and also Ref. [28]). 
 

Coordinates 
Primitive basis Wavepacket 

type 𝑛𝑏 𝑛𝑞 𝑄k Sc 𝑄h ∆𝑄 

𝑄#!n HO 20 32 0.1725 9.157 0.1725 0.1544 

𝑄iojp Fourier 128 136   0. 0.1833 

𝑄q&&r HO 24 60 0. 3.482 0. 0.4061 

Table 2: Primitive basis set definitions and 1D-gaussian parameters of the initial wavepacket. 

 
Fig. 9 shows a comparison of the populations (full and restricted to the trans domain, i.e., when |𝑇𝑜𝑟𝑠| ∈
[𝜋/2, 𝜋]) of the 𝑆k adiabatic state for different metric tensor models. As already shown in reference [28] the 
populations with the 𝑮𝑫𝒊𝒂𝒈>𝑪𝒐𝒏𝒔𝒕 and 𝑮𝑹𝑫

(𝒊)  give similar results. This is an expected result, since the diagonal 
constant metric tensor is obtained from an average operation of the constrained metric tensor. All models 
present the same trend for the 𝑆(-to-𝑆k population transfer. After about a 30 fs delay from the initial 
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photoexcitation, a fast transfer occurs, and then the 𝑆k population increases slowly. However, the 
population transfer to the 𝑆k trans isomer is two times less efficient with the model 𝑮𝑹𝑫

(𝒊𝒊) than with the others.  
 

  
Fig 9: Population in the 𝑆0 adiabatic state for several metric tensors. Left pane full population, right panel 

population around the trans isomer. 

 
This feature is due to the trapping of the wavepacket around the cis configuration on the 𝑆( state which is 
stronger for the 𝑮𝑹𝑫

(𝒊𝒊) model than for the 𝑮𝑹𝑫
(𝒊)  one. Indeed, at the end of the dynamics (500 fs), the reduced 

density in 𝑆( along the torsional angle presents a peak at around 0° (cis configuration) which is two times 
higher for the 𝑮𝑹𝑫

(𝒊𝒊) model than for the 𝑮𝑹𝑫
(𝒊)  model (see fig. 10). Furthermore, the reduced density in 𝑆k is 

almost completely delocalized (see fig. 10). Therefore, the population transfer from 𝑆(-to-𝑆k around the trans 
configuration (when |𝑇𝑜𝑟𝑠| ∈ [𝜋/2, 𝜋]) is about half of the total population transfer (see fig. 9).  
 

  
Fig 10: Reduced density along the torsional angle on the 𝑆k and the 𝑆(states at the end of the dynamics (500 fs). Left 

panel 𝑮𝑹𝑫
(𝒊)  model. Right panel 𝑮𝑹𝑫

(𝒊𝒊) model. 

 
The previous illustration shows the difficulty in the selection of the right reduced dimensionality model. 
Although the trend of the population transfer after photoexcitation is similar for the 𝑮𝑹𝑫

(𝒊)  and 𝑮𝑹𝑫
(𝒊𝒊) models, 

the quantitative details are different. Probably, this effect is consequence of the strong kinetic couplings 
between the active and inactive coordinates, since the correction from the 𝑮𝑹𝑫

(𝒊𝒊) model to 𝑮𝑹𝑫
(𝒊)  involves the 

metric tensor components between active and inactive coordinates, 𝒈𝒂𝒊, (see fig 2).[50] From the 
photoisomerization point of view, it means that some coordinates should be explicitly added in the 
dynamics to reduce this coupling. 
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4. Discussion 
 
As mentioned earlier, the numerical implementation of the KEO calculation with generalized coordinates 
is not new.[18–21] However, our implementation in TNUM[22,40] has several advantages: (i) It is exact. The 
derivatives are not calculated with a finite difference scheme, as is often the case in other codes, instead 
they are computed with an Automatic Differentiation scheme.[22] (ii) No limitations. Our implementation 
has no built-in limitations in terms of number of atoms, degrees of freedom or coordinate transformations. 
(iii) Its flexibility. Along with the usual z-matrix or polyspherical coordinates, several nested coordinates 
transformations can be added, and it becomes very easy to test new coordinates. Furthermore, if a 
coordinates transformation is not available, its implementation in TNUM is straightforward. (iv) Easy to 
interface. As a library, TNUM can be interfaced easily with other quantum dynamics codes for different kinds 
of applications, such as collisions,[60,61] spectroscopy (ro-vibrational,[36,62] non-linear optics [63,64]), 
quantum dynamics of photo-induced processes[28,65] or quantum dynamics with laser pulses and optimal 
control.[59,66–69] In the past, it has been interfaced with some “in-house” codes [25,46,60,65,70] and with 
codes developed by various groups.[61,63,71,72] 
 
Curvilinear coordinates along with the corresponding kinetic contributions have been used with semi-
classical dynamics (a single thawed gaussian propagation[25]) or with constrained classical dynamics.[25] 
For the latter, the SHAKE algorithm[73] has not been used, and instead Hamilton’s equations have been 
solved directly in curvilinear coordinates. This possibility to perform classical or quantum-classical 
dynamics with generalized coordinates with TNUM has been seldom used. However, interface with 
quantum-classical dynamics codes using Ehrenfest dynamics[74] or Surface Hopping,[75] and TNUM should 
be straightforward even when constraints are required. An interesting development can be envisaged 
aiming at interfacing TNUM with the Coupled-Trajectory Mixed Quantum-Classical[76] (CT-MQC) 
algorithm and G-CTMQC code[55], even though it is likely that CT-MQC equations need to be (re)derived 
from the exact-factorisation equations by introducing generalised coordinates in the original formulation. 
This feature could be tested easily on the cis-trans photo-isomerization of PSB3, so that the exact reduced 
dimensionality metric tensor could be used without the diagonal and constant approximation. 
 

Additional Information 
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Tables 
 
 

Contravariant 
components 

Value in a.u. 

𝐺#!n,#!n 7.981 × 10-5 
𝐺iojp,iojp 2.599 × 10-5 
𝐺q&&r,q&&r 40.375 × 10-5 
𝐺iojp,q&&r 4.025 × 10-5 

Table 1: Non-zero values of the averaged constant metric tensor components. 

 
 

Coordinates 
Primitive basis Wavepacket 

type 𝑛𝑏 𝑛𝑞 𝑄k Sc 𝑄h ∆𝑄 

𝑄#!n HO 20 32 0.1725 9.157 0.1725 0.1544 

𝑄iojp Fourier 128 136   0. 0.1833 

𝑄q&&r HO 24 60 0. 3.482 0. 0.4061 

Table 2: Primitive basis set definitions and 1D-gaussian parameters of the initial wavepacket. 

 
 
Figure and table captions 
 
Table 1: Non-zero values of the averaged constant metric tensor components. 

 
Table 2: Primitive basis set definitions and 1D-gaussian parameters of the initial wavepacket. 

 
 
Fig 1: Illustration of the body-fixed frame orientation with respect to the laboratory frame for a triatomic molecule (A1-
A2-A3) defined with the help of a z-matrix. The space-fixed (SF) frame is an intermediate frame parallel to the LF frame 
but centered on the center-of-mass. 

 
Fig 2: Scheme to obtain the reduced dimensionality metric tensors. 

 
Fig 3: Illustration of the coordinate transformations in TNUM, from the active coordinates, 𝑸 ≡ 𝑸𝒂𝒄𝒕, to the body fixed 
Cartesian coordinates. Each transformation, 𝑻𝒓<, is represented, by a pink arrow and a green label. The different 
coordinates, 𝑸𝒂𝒄𝒕, 𝑸𝒅𝒚𝒏, 𝑸𝒕, 𝑸𝒑𝒓𝒊𝒎, 𝑿𝑭, 𝑿𝑩𝑭 are represented by blue boxes. 

 
Fig 4: Illustration of TNUM implementation. 

 
Fig 5: PSB3 scheme and the corresponding z-matrix. The primitive coordinates highlighted in color are the three 
coordinates used in the model. 
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Fig 6: PSB3 TNUM coordinates transformations (pink arrows and green boxes) with the five sets of coordinates (blue 
and yellow boxes): (i) 𝑿𝑭: The Cartesian coordinates in the z-matrix frame where the first three atoms (C1, C2 and C3) 
are in the xz plan and C1-C2 are along the z-axis. (ii) 𝑸𝒑𝒓𝒊𝒎: the primitive or z-matrix coordinates. The ones involve 
in the definitions of active coordinates are highlighted in color. (iii) 𝑸𝒍𝒊𝒏: the three linear combinations of 𝑸𝒑𝒓𝒊𝒎 helping 
to define the three main coordinates (BLA, Tors and HOOP). (iv) 𝑸𝟏𝑫: The coordinates obtained after a 1D-
transformation from 𝑸𝒍𝒊𝒏. Here, it is just a shift of the 𝑄T8:* , so that the HOOP value is zero at the cis-configuration. 
𝑸𝟏𝑫 are also the dynamical coordinates 𝑸𝒅𝒚𝒏. (v) 𝑸𝒂𝒄𝒕: the three active coordinates are selected from the 3N-6 𝑸𝒅𝒚𝒏 
coordinates. The other coordinates, the inactive ones, are constrained to their values at the cis-configuration. 

 
Fig 7: Metric tensor components along the Tors for the constrained metric tensor, 𝑮𝑹𝑫

(𝒊) . 

 
Fig 8: Metric tensor components, 𝑮𝑹𝑫

(𝒊𝒊), along the Tors from the contravariant components of the exact metric tensor. 

 
Fig 9: Population in the 𝑆0 adiabatic state for several metric tensors. Left pane full population, right panel population 
around the trans isomer. 

 
Fig 10: Reduced density along the torsional angle on the 𝑆k and the 𝑆(states at the end of the dynamics (500 fs). Left 
panel 𝑮𝑹𝑫

(𝒊)  model. Right panel 𝑮𝑹𝑫
(𝒊𝒊) model. 
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Figures 
 

 
 
Fig 1: Illustration of the body-fixed frame orientation with respect to the laboratory frame for a triatomic molecule 
(A1-A2-A3) defined with the help of a z-matrix. The space-fixed (SF) frame is an intermediate frame parallel to the LF 
frame but centered on the center-of-mass. 

 

 
Fig 2: Scheme to obtain the reduced dimensionality metric tensors. 
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Fig 3: Illustration of the coordinate transformations in TNUM, from the active coordinates, 𝑸 ≡ 𝑸𝒂𝒄𝒕, to the body 
fixed Cartesian coordinates. Each transformation, 𝑻𝒓<, is represented, by a pink arrow and a green label. The 
different coordinates, 𝑸𝒂𝒄𝒕, 𝑸𝒅𝒚𝒏, 𝑸𝒕, 𝑸𝒑𝒓𝒊𝒎, 𝑿𝑭, 𝑿𝑩𝑭 are represented by blue boxes. 

 

 
Fig 4: Illustration of TNUM implementation. 
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Fig 5: PSB3 scheme and the corresponding z-matrix. The primitive coordinates highlighted in color are the three 
coordinates used in the model. 

 

 
Fig 6: PSB3 TNUM coordinates transformations (pink arrows and green boxes) with the five sets of coordinates (blue 
and yellow boxes): (i) 𝑿𝑭: The Cartesian coordinates in the z-matrix frame where the first three atoms (C1, C2 and 
C3) are in the xz plan and C1-C2 are along the z-axis. (ii) 𝑸𝒑𝒓𝒊𝒎: the primitive or z-matrix coordinates. The ones 
involve in the definitions of active coordinates are highlighted in color. (iii) 𝑸𝒍𝒊𝒏: the three linear combinations of 
𝑸𝒑𝒓𝒊𝒎 helping to define the three main coordinates (BLA, Tors and HOOP). (iv) 𝑸𝟏𝑫: The coordinates obtained after 
a 1D-transformation from 𝑸𝒍𝒊𝒏. Here, it is just a shift of the 𝑄T8:* , so that the HOOP value is zero at the cis-
configuration. 𝑸𝟏𝑫 are also the dynamical coordinates 𝑸𝒅𝒚𝒏. (v) 𝑸𝒂𝒄𝒕: the three active coordinates are selected from 
the 3N-6 𝑸𝒅𝒚𝒏 coordinates. The other coordinates, the inactive ones, are constrained to their values at the cis-
configuration. 
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Fig 7: Metric tensor components along the Tors for the constrained metric tensor, 𝑮𝑹𝑫

(𝒊) . 
 

  
Fig 8: Metric tensor components, 𝑮𝑹𝑫

(𝒊𝒊), along the Tors from the contravariant components of the exact metric tensor. 

 

  
Fig 9: Population in the 𝑆0 adiabatic state for several metric tensors. Left pane full population, right panel 
population around the trans isomer. 
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Fig 10: Reduced density along the torsional angle on the 𝑆k and the 𝑆(states at the end of the dynamics (500 fs). Left 
panel 𝑮𝑹𝑫

(𝒊)  model. Right panel 𝑮𝑹𝑫
(𝒊𝒊) model. 
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