
HAL Id: hal-03800459
https://hal.science/hal-03800459

Submitted on 6 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topological aspects of periodic and aperiodic photonic
crystals

Emmanuel Rousseau, Emmanuel Kling, Didier Felbacq

To cite this version:
Emmanuel Rousseau, Emmanuel Kling, Didier Felbacq. Topological aspects of periodic and
aperiodic photonic crystals. SPIE Nanoscience + Engineering, Aug 2022, San Diego, France.
�10.1117/12.2632277�. �hal-03800459�

https://hal.science/hal-03800459
https://hal.archives-ouvertes.fr


Topological aspects of periodic and aperiodic photonic
crystals

Emmanuel Rousseau1, Emmanuel Kling2,Didier Felbacq1

1L2C, Univ. Montpellier, 34095 Montpellier, France
2SAFRAN Electronics and Defense, 91344 Massy, France

ABSTRACT

Topological properties of Bloch modes have been demonstrated in purely dielectric photonic crystals at high
symmetry points where a hidden time reversal-like symmetry can be exhibited. So far, the topological properties
that have been shown are essentially due to these symmetries. For one dimensional structure, we define a
topological invariant that can be extended to lossy or aperiodic structures. .

1. INTRODUCTION

This study takes place within the field of topological metamaterials.1,2 The existence of edge states in one
dimensional structures, e.g. stratified media, can be characterized by a topological invariant, when the structures
have inversion symmetry. This is linked to the Zak phase.3,4 The topological invariant can be expressed in terms
of the poles and zeros of a meromorphic function. This allows to extend the notion to media with losses and
also aperiodic media. The extension to higher dimensional structures is sketched. Numerical examples for one
dimensional structures are given.

2. TOPOLOGICAL INVARIANTS OF PERIODIC STRUCTURE IN ONE
DIMENSION

A non-trivial Berry phase can be associated to, say, a stratified medium, provided that the permittivity function
presents an inversion symmetry.3,4 Let us denote the permittivity by ε(x). The medium under study is periodic
with period d: ε(x) = ε(x+ d). We assume that there is an origin such that ε(x) = ε(−x).

The determination of the field inside the medium is made by specifying the value of the field and its derivative
at any given point x0:

U(x0) = (u(x0; k), u′(x0; k)). (1)

From this, the value at any other point is obtained by means of the resolvent R(x, x0):

U(x) = R(x, x0)U(x0). (2)

The Bloch waves are given by5,6, 8, 9

u(x; k)eikx, k ∈ [0, 2π[. (3)

they are obtained as the eigenvectors of the so-called monodromy matrix

M(ω) = R(x0 + d, x0). (4)

This leads directly to a generalization of Bloch waves to lossy media. Indeed, we do not have to assume that ε
is real. In fact we can define the so-called Bloch variety in the following way:

B = {(µ, ω) ∈ C, such that there exists an eigenvector U of M(ω) with eigenvalue µ} (5)
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The relevant quantity is in fact the vector space generated by U(x0) which defines a point in the projective
space CP 1.

Therefore, once the origin is chosen, we obtain a function from the Brillouin zone to CP 1

k ∈ S1 −→ χ̃(k) = [u(x0; k) : u′(x0; k)] ∈ CP 1. (6)

Two charts can be chosen to represent χ̃ as a function with values in C: χ+(k) = u(x0; k)/u′(x0; k) and χ−(k) =
u′(x0; k)/u(x0; k). Any complex bundle over S1 is trivial. A non-trivial topology is found if a supplementary

Figure 1. An example of stratified medium with inversion symmetry centers.

condition of inversion symmetry is imposed, see fig. 1. Because of the symmetry V (x) = V (−x), the two Bloch
eigenvectors (U ,V) are related by

V = σzU , (7)

where σz is the usual Pauli matrix. Denoting z = eik, k ∈ S1, it holds that

χ[U ](z) = −χ[U ](1/z) = −χ[V](z) (8)

For z = ±1 (at the boundaries of the conduction bands), either χ± is null or it has a pole. The pole corresponds
to an antisymmetric Bloch wave (Berry phase equals to π) and the zero to a symmetric one (Berry phase equals
to 0). The edge modes are characterized by the following result:

Proposition 1. Let M1 and M2 be the monodromy matrix of each photonic crystal. For a Bloch wavevector
k, there exists an eigenvector vector U(k0) defining an edge state provided the following conditions are fulfilled

� The matrices M1(k) and M2(k) have a common gap at the Bloch wavevector k, i.e. |tr(M1)| > 2 and
|tr(M1)| > 2,

� the matrices M1(k0) and M2(k) commute:[M1(k),M2(k)] = 0,

� the associated Bloch functions χ1(k) and χ2(k) have opposite signs.

The advantage of considering the pole structure instead of the integral of the Berry connection over the
Brillouin zone is that the pole structure evolves smoothly under a perturbation of the medium. It is not the case
of the Berry connection as it is destroyed as soon as the medium is no longer periodic. The pole structure allows
to study the edge state even when some randomness is added to the structure.



Figure 2. Two 1D photonic crystals put side by side. The random size of the layers is not shown.

Figure 3. The functions χ for a randomly perturbed medium. It is the same as that in fig. 2 with the width of the layers
modified randomly with at most 1%. An edge mode is indicated by an arrow.

3. EDGE STATES FOR A RANDOM POTENTIAL

We consider two 1D photonic crystals with different topological pole-zero structures (see fig. 2). The band
structure of the each photonic crystal is given in fig. 3.

The pole structures of the corresponding functions χ are given in fig. 4. It can be seen that the band gap
where the edge mode appears corresponds to a different alternance of poles and zeros for each function, thus
showing that the photonic crystals belong to different topological classes.

The alternance of poles and zeros is a topological invariant. Exchanging a pole and a zero necessarily closes
the gap. Poles and zeros still exist when randomness is added in the materials. The pole-zero structure is
represented in fig. 4. The alternance of poles and zeros indicates that the 1D photonic crystals are in different
topological states, despite the disorder.

4. EXTENSION TO 2D STRUCTURES

The poles and zeros structure associated with a Bloch mode in one dimension cannot be extended straightfor-
wardly in 2D, because the space of solutions is not generated by a vector with two components. However, it
seems possible to define topological invariant when relaxing the periodicity condition. Indeed, when edge states
are considered, the structures that are involved are semi-infinite or even finite. Therefore, the topological charac-
teristics of the fields are encoded in the finite medium. A pole structure can be defined by considering the poles
of the scattering matrix of the finite medium. The range of residue of the scattering matrix at the poles gives the



Figure 4. Pole and zero structure of the left and right photonic crystals in the presence of disorder. In the band gap
between 2.5 and 2.55 the pole and zero are switched, which results in different topological classes.

eigenspace associated with the pole. In the thermodynamic limit where the medium tends to infinity, the Bloch
modes are obtained. The associated poles are stable under a deformation, e.g. when introducing disorder into
the structure. In doing so, the part of the modes that are linked with the symmetry of the structure are rapidly
destroyed, but the part linked with the inner resonances of the scatterers is preserved. In fig. 5, the dispersion
curve for a 2D photonic crystal of dielectric rods is shown. The part of the dispersion curves in the vicinity of

Figure 5. Band structure

ω/ω0 = 0.6 is due to the presence of Mie resonances. When disorder is introduced inside the structure, there



Figure 6. Transmission spectrum through the photonic crystal. In blue, the periodic structure, in red the random structure.

is a preservation of certain parts of the conduction bands. The transmission spectra through a 9 × 9 photonic
crystal are given in fig. 6 for a periodic and a completely disordered structure.

5. CONCLUSION

We have provided a reformulation of the Zak phase in terms of meromorphic functions defined on the complex
Brillouin zone. This allowed to define a topological pole-zero structure that can be extended to non-periodic
structures.
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