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Arp2/3 complex is an actin filament nucleation and branching machinery conserved in all 10 

eukaryotes from yeast to human. Arp2/3 complex branched networks generate pushing forces 11 

that drive cellular processes ranging from membrane remodeling to cell and organelle motility. 12 

Several molecules regulate these processes by directly inhibiting or activating Arp2/3 complex 13 

and by stabilizing or disassembling branched networks. Here, we review recent advances in our 14 

understanding of Arp2/3 complex regulation, including high-resolution cryo-electron 15 

microscopy structures that illuminate the mechanisms of Arp2/3 complex activation and branch 16 

formation, and novel cellular pathways of branch formation, stabilization, and debranching. We 17 

also identify major gaps in our understanding of Arp2/3 complex inhibition and branch 18 

stabilization and disassembly. 19 
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Arp2/3 complex and nucleation-promoting factors (NPFs) 23 

The actin cytoskeleton is a dynamic system of hundreds of proteins that helps maintain cell 24 

shape and polarity and provides forces and directionality for a myriad of motile functions in cells. 25 

At the core of this system is actin, the most abundant protein in the cytosol of eukaryotic cells. 26 

Actin is in constant flux between monomeric and filamentous forms to produce networks with 27 

distinct architectures. One such architecture is that consisting of branched actin networks (also 28 

called dendritic networks), resulting from the filament nucleation and branching activities of 29 

Arp2/3 complex. Activated by proteins known as nucleation-promoting factors (NPFs), Arp2/3 30 

complex binds to the side of a pre-existing (mother) filament and nucleates the formation of a 31 

new (branch) filament that grows at a ~70° angle relative to the mother filament.  32 

The 7-subunit Arp2/3 complex comprises two actin-related proteins, Arp2 and Arp3, and 33 

five scaffolding subunits, ArpC1 to ArpC5. The Arps (Arp2 and Arp3) act as a pseudo-actin 34 

dimer during nucleation, whereas the scaffolding subunits hold the Arps together and mediate 35 

key interactions with the mother filament in the branch [1]. In the basal state, Arp2/3 complex is 36 

inactive, with the Arps splayed apart [2]. During activation, the NPFs perform three main 37 

functions: a) they trigger a conformational change that repositions the Arps into a filament-like 38 

(short-pitch) conformation [3], b) they recruit actin subunits to the barbed end of the Arps to 39 

form the initial polymerization nucleus [4-6], and c) they promote binding of the complex to the 40 

side of the mother filament [7]. Wiskott-Aldrich Syndrome Protein (WASP)-family NPFs, also 41 

called class-I NPFs, are generally unrelated, but all share C-terminal proline (Pro)-rich and 42 

WH2/Central/Acidic (WCA) domains (Fig. 1a). Recent work shows that the Pro-rich regions 43 

play an essential role by mediating the recruitment of profilin-actin to feed the growth of newly 44 

nucleated filaments via NPFs clustered on membranes (reviewed in [8]). The WCA region is 45 
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necessary and sufficient to activate Arp2/3 complex in vitro and comprises one to three WASP-46 

homology 2 (WH2 or W) domains that bind actin [4], and Central (C) and Acidic (A) domains 47 

that bind to two distinct sites on Arp2/3 complex [9, 10]. 48 

The variable N-terminal domains of NPFs are typically involved in localization and 49 

integration of upstream signaling, giving rise to a certain division of roles among NPFs, which 50 

tend to fulfil specialized functions at specific subcellular locations (Fig. 1d). The NPF literature 51 

is vast and not a focus of this review (reviewed in [11]). Only some of their better-documented or 52 

recently-established functions are listed here. Thus, N-WASP is primarily implicated in 53 

endocytosis, whereas WAVE (isoforms 1-3) forms part of a pentameric complex called the 54 

WAVE regulatory complex (WRC) that is implicated in the formation of cell protrusions and cell 55 

migration (reviewed in [12]). WASH, which forms part of a similar pentameric complex, 56 

together with WHAMM and JMY are primarily implicated in remodeling of intracellular 57 

membranes, including endosomes, ER, Golgi, and autophagosomes [13-15]. However, such a 58 

division of roles among NPFs is an oversimplification. For example, N-WASP can substitute for 59 

WAVE in the generation of membrane protrusions [16].  60 

 61 

Branched actin networks generate pushing forces at diverse subcellular locations 62 

Branched actin networks are present along the cell cortex and near most membranous 63 

organelles in the cell (Fig. 1d). These networks exert forces during processes such as cell 64 

motility, vesicular trafficking, and membrane scission. At the cortex, the pushing forces of 65 

branched actin networks are counterbalanced by pulling forces from myosin motors on linear 66 

actin filaments. This balance of forces is particularly evident at adherens junctions in epithelial 67 

cells, where Arp2/3 complex-dependent protrusive forces push the membranes of neighboring 68 
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cells to maintain cadherin-mediated cell-cell adhesions [17]. If the Arp2/3 complex is inhibited, 69 

myosin pulls the membranes of neighboring cells away from one another, resulting in the 70 

formation of membrane bulges [18]. Imbalances in this “tug-of-war” between protrusive and 71 

contractile forces results in defects in tissue mechanics and morphology, as observed during 72 

epithelial folding in development [19] and the sprouting of blood vessels [20]. The forces exerted 73 

by branched networks are also used to counteract membrane tension and separate transport 74 

intermediates from the plasma membrane during clathrin-mediated endocytosis [21] and from 75 

endosomes along the endocytic pathway [22]. Actin pushing forces with the help of BAR 76 

domain proteins constrict the neck of clathrin-coated endocytic vesicles [23, 24] and elongate 77 

endocytic invaginations [25, 26].  78 

Lately, branched actin networks have been shown to push and squeeze the nucleus to 79 

help cells migrate through constricted spaces [27] and to direct the movement of nuclei from the 80 

center to the periphery of skeletal muscle myofibers during myogenesis [28]. Arp2/3 complex 81 

also has functions inside the nucleus, where it was recently shown to facilitate DNA repair and 82 

promote homology-directed recombination by moving and clustering double-strand DNA breaks 83 

[29, 30]. In symmetrically dividing cells, a meshwork of actin filaments maintains the uniform 84 

distribution of mitochondria around the mitotic spindle and shuffles mitochondria to ensure their 85 

equal and random inheritance by daughter cells [31]. Mitochondria were propelled through the 86 

cell by Arp2/3 complex-dependent actin comet tails, similar to those associated with the 87 

movement of intracellular pathogens. 88 

 89 

Molecular mechanism of branched network formation and stabilization 90 
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The role of NPFs in Arp2/3 complex activation was discovered in 1998 [32, 33] and for 91 

the following 10 years, it was thought that activation resulted from NPF binding to a single site 92 

on Arp2/3 complex. A breakthrough occurred in 2008, when it was discovered that activation 93 

proceeded through binding of the Central-Acidic (CA) region of NPFs to two distinct sites on 94 

Arp2/3 complex [9]. Several studies subsequently confirmed this finding, and models of CA-95 

bound Arp2/3 complex were proposed [5, 6, 34, 35]. While these models all captured the 96 

generally accepted idea that one NPF binds to Arp2-ArpC1 whereas the other binds to Arp3, they 97 

differed in important ways; they disagreed about the precise interactions of each NPFs, their 98 

order of binding and role in activation, and the importance of actin binding to NPFs for 99 

activation. 100 

Recent cryo-electron microscopy (cryo-EM) structures of Arp2/3 complex substantially 101 

advance our understanding of the mechanisms of nucleation and branch formation [1, 10, 36, 37]. 102 

The first of these structures was that of human Arp2/3 complex with the CA region of N-WASP 103 

bound determined at 3.8-Å resolution [10]. This structure showed the precise binding paths of 104 

NPFs on Arp2-ArpC1 and Arp3 (Fig. 2a). The ability to recombinantly express human Arp2/3 105 

complex using a novel insect cell expression system further allowed for mutagenesis and 106 

crosslinking studies that resulted in several new findings: a) actin binding to the W domains of 107 

NPFs favors the transition of the Arps toward a filament-like short-pitch conformation, b) actin-108 

NPF binding to Arp2-ArpC1 precedes binding to Arp3 and is sufficient to shift the equilibrium 109 

toward the short-pitch conformation, with no additional gain from binding to Arp3, c) while the 110 

short-pitch transition is part of the activation pathway, it is insufficient to fully activate 111 

mammalian Arp2/3 complex, which also requires NPF-mediated delivery of actin to the barbed 112 

end of both Arps. As we discuss below, the latter finding is crucial to understand the difference 113 
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between actual NPFs that contain monomeric actin-binding sites and other molecules that 114 

regulate Arp2/3 complex. The scaled-up expression of human Arp2/3 complex in Sf9 cells also 115 

enabled the determination of the 4.2-Å resolution cryo-EM structures of the most and least active 116 

isoform variants of Arp2/3 complex, containing respectively subunits ArpC1B and ArpC5L vs. 117 

ArpC1A and ArpC5 [37]. This study, however, did not reveal substantial differences in structure 118 

between variants, suggesting that their different activities may result from different energetic 119 

barriers for activation. For instance, it has long been known that Saccharomyces cerevisiae 120 

Arp2/3 complex has substantial background activity in the absence of NPFs, consistent with a 121 

lower activation barrier [38]. 122 

An essential component of the Arp2/3 complex nucleation reaction is the mother filament 123 

[33]. While bona fide WASP-family NPFs all contain actin monomer and profilin-actin binding 124 

sites (Fig. 1a) that play essential roles in nucleation [10] and elongation [8], respectively, other 125 

Arp2/3 complex regulators either bind to the mother filament or bypass the need for the mother 126 

filament during nucleation. These include cortactin [39] and WISH/DIP/SPIN90 (WDS)-family 127 

proteins [40]. These molecules are sometimes referred to as class-II NPFs, although their 128 

function does not appear to be Arp2/3 complex activation. Indeed, on their own cortactin and 129 

WDS-family proteins activate mammalian Arp2/3 complex only weakly [39, 40], requiring high, 130 

micromolar concentrations, whereas nanomolar concentrations of WASP-family NPFs produce 131 

very high polymerization rates [33]. It is also generally accepted that cortactin’s major 132 

biochemical activity is the stabilization of Arp2/3 complex branch junctions [39], and unlike 133 

WASP-family NPFs that dissociate after nucleation [41], cortactin binds stably to these junctions 134 

and may also accelerate the release of NPFs [42]. Moreover, contrary to WASP-family NPFs that 135 

tend to have specialized roles and localization, cortactin is found rather ubiquitously in 136 
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association with branched networks (reviewed in [43]). These properties allow cortactin to fulfil 137 

countless roles in cells by promoting the formation and stabilization of actin branched networks.  138 

Although it has been proposed that WDS-family proteins (Fig. 1) act as bona fide NPFs, 139 

capable of activating Arp2/3 complex while avoiding the need for the mother filament, actin 140 

monomer binding and delivery to the Arps, and profilin-actin delivery to the newly formed 141 

branch [40], their actual role and mechanism in branched network formation is only beginning to 142 

emerge. Like cortactin [40], but unlike NPFs [41], WDS-family proteins remain bound to Arp2/3 143 

complex at the pointed end of newly formed filaments, making them single-turnover regulators 144 

[44]. Recent evidence offers a more nuanced role for these proteins, showing that yeast Dip1 145 

works synergistically with Wsp1 (yeast WASP) to activate Arp2/3 complex during endocytosis, 146 

without the need for preexisting filaments [45]. Of note, Wsp1 was required for both initiation 147 

and propagation of endocytic actin networks, consistent with its role as the NPF in this process, 148 

whereas Dip1 may have served as a substitute for mother filaments to kick-start endocytosis. 149 

Another recent study in mammalian cells showed that SPIN90 (mammalian ortholog of Dip1) 150 

synergizes with both Arp2/3 complex and the formin mDia1 to nucleate fast-growing filaments 151 

leading to an increase in the density of linear actin arrays at the cell cortex [46]. A recent 3.9-Å 152 

resolution cryo-EM structure of Dip1-bound yeast Arp2/3 complex at the pointed end of the 153 

filament revealed the active conformation of Arp2/3 complex (Fig. 2b) [36]. The transition 154 

toward the activated stated was ascribed to the presence of Dip1 in the reconstruction, but this 155 

conclusion is questionable. First, Arp2/3 complex has been long known to also act as a pointed 156 

end-capping protein [47], and a previous EM reconstruction already showed Arp2/3 complex at 157 

the pointed end in the absence of NPFs [48]. Although the lower resolution of this study 158 

precluded a precise description of the structure of Arp2/3 complex at the pointed end, the authors 159 
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concluded that the Arps were realigned into a filament-like conformation, consistent with the 160 

addition of actin subunits at the barbed end of the Arps. Second, the Dip1-bound structure was 161 

determined in the presence of 1 µM Wsp1 WCA, presumably used to shift the equilibrium 162 

toward the active conformation, although this was not discussed. Third, Dip1, a globular protein 163 

consisting of 374 amino acids, was mostly disordered in the structure (only 132 amino acids 164 

were observed, G235-E366), suggesting that it is weakly bound to Arp2/3 complex and thus 165 

unlikely to be the source of the conformational change. Fourth, a previous crystal structure 166 

showed Arp2/3 complex in the inactive conformation when bound to SPIN90 [49], suggesting 167 

that on their own WDS-family proteins are unable to trigger the activating transition. The cryo-168 

EM structure is nonetheless informative in that it reveals the structural changes that take place 169 

during Arp2/3 complex binding to the pointed end. The Arps are realigned into a filament-like 170 

conformation, as previously suggested [48], and their outer and inner domains (referring to the 171 

position of these domains in the filament, Fig. 1a) are rotated with respect to one another to 172 

produce a flatter conformation analogous to that of actin subunits in the filament.   173 

A recent breakthrough was the determination of the structure of the Arp2/3 complex 174 

branch junction in cells using cryo-electron tomography (cryo-ET) [1]. While the technical 175 

difficulties of this study limited the resolution to 9-Å, the main-chain backbone of all the 176 

subunits of Arp2/3 complex, eight subunits of the mother filament and three subunits of the 177 

branch filament were unambiguously defined. The transition of the Arps toward the short pitch 178 

conformation is brought about by a ~19° rotation around an axis that coincides with that of the 179 

coiled coil formed by ArpC2 and ArpC4, similar to what was observed when Arp2/3 complex 180 

was bound at the pointed end [36]. This rotation divides Arp2/3 complex into two subcomplexes, 181 

one comprising Arp2 (Arp2-ArpC1-ArpC4-ArpC5) and one comprising Arp3 (Arp3-ArpC2-182 
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ArpC3). The rotation creates binding sites for the first two subunits of the branch filament at the 183 

barbed ends of the Arps. On the opposite side, five subunits of Arp2/3 complex (Arp3, ArpC1, 184 

ArpC3, ArpC2, ArpC4) contact five subunits of the mother filament, without this resulting in any 185 

substantial change in the structure of the mother filament. As previously suggested [36, 48], the 186 

conformation of Arp2/3 complex is very similar in the branch and at the pointed end, with some 187 

differences. Notably, ArpC3 is positioned differently in the branch, allowing it to make contacts 188 

with Arp3, Arp2 and the mother filament that help stabilize the short-pitch conformation and the 189 

branch junction. Although the contact surface of Dip1 on Arp2/3 complex overlaps only with 190 

one of the five subunits of the mother filament that interact with Arp2/3 complex (compare Figs. 191 

2 b and c), it is now easy to see how Dip1 can compete with and possibly substitute for the 192 

mother filament in certain cellular contexts. 193 

Another twist on the source of mother filaments at cellular locations where these may be 194 

lacking is a recent study that established dynactin as a seed for mother filament formation and 195 

Arp2/3 complex activation on endosomes [50]. The dynactin complex, better known for its role 196 

as a general scaffold of the dynein motor, is built around an actin-like minifilament comprising 197 

eight actin-related protein-1 (Arp1) subunits and one β-actin subunit, and capped at the barbed 198 

end by the capping protein (CP) αβ heterodimer and at the pointed end by four subunits (Arp11, 199 

p62, p25 and p27) [51]. The pentameric WASH complex, the NPF present on endosomes, has 200 

evolved the necessary attributes to convert dynactin into a seed for the mother filament while 201 

simultaneously activating Arp2/3 complex. One of the subunits of the WASH complex, FAM21, 202 

contains a capping protein interaction (CPI) motif that binds CPαβ and uncaps dynactin. Once 203 

uncapped the dynactin minifilament elongates from the barbed end through the addition of actin 204 

subunits to form the mother filament. Then, another subunit of the WASH complex (WASH) 205 
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recruits and activates Arp2/3 complex on the side of the dynactin-formed filament. This study 206 

adds meaning to intriguing observations, such as the role of the actin minifilament in dynactin, 207 

the role of some of the subunits of the WASH complex and the role of the CPI motif in FAM21.  208 

 209 

Mechanosensation, reinforcement and disassembly of branched actin networks 210 

 In recent years, it has become increasingly clear that the actin cytoskeleton not only 211 

generates forces but also senses extracellular forces [52-54], which in turn triggers actin network 212 

remodeling and several cellular and tissue processes [55-57]. Branched actin networks placed 213 

under mechanical load in vitro are strengthened through a force feedback mechanism that 214 

increases their density, pushing power, and mechanical efficiency [52]. For actin filaments 215 

buckling under load, Arp2/3 complex branching occurs preferentially on the convex than the 216 

concave side of the bend, which may be one way in which the density of branched networks is 217 

biased by force [58]. Increased debranching has also been observed under load [59], indicating 218 

that both branching and debranching can be affected by force.  Similar observations have been 219 

made in cells, where dendritic actin networks adapt to mechanical load by transitioning toward a 220 

configuration dominated by filaments growing perpendicularly to the plasma membrane [55]. In 221 

another example in vivo, mechanical load was shown to trigger the formation of Rac1- and 222 

Arp2/3 complex-dependent cell protrusions to perform the phagocytic clearance of apoptotic 223 

cells by the surface epithelium of zebrafish and mouse embryos [57]. Cell cycle progression 224 

through the G1/S transition also depends on mechanical inputs, such as substratum rigidity and 225 

epithelial cell density [56]. These inputs are mechanotransduced via the Rac1-WAVE-Arp2/3 226 

complex pathway and depend specifically on Arp2/3 complex subunit ArpC1B, which is the 227 

predominant isoform in branch junctions at the cell cortex. Indeed, three of the Arp2/3 complex 228 
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subunits (Arp3, ArpC1, and ArpC5) have different isoforms, resulting in Arp2/3 complexes with 229 

different properties. Thus, it was recently established that ArpC1B-containing Arp2/3 complexes 230 

at the cortex display higher nucleation and branching activities and are more resistant to coronin-231 

mediated branch disassembly than complexes containing ArpC1A [56, 60]. 232 

 The positive feedback loop for branched network assembly and reinforcement is likely 233 

stopped by Arp2/3 complex inhibitors such as Arpin at the cell cortex and other inhibitors at 234 

other subcellular locations [61, 62]. Branched networks then need to be disassembled, which 235 

primarily involves the coordinated action of cofilin-family members, with the nucleotide state on 236 

actin and Arp2/3 complex acting as a molecular clock to signal disassembly (Figs. 1b and 3). A 237 

characteristic feature of members of the cofilin family is to bind ADP-actin monomers and 238 

filaments with higher affinity than ATP-actin monomers and filaments. This property allows 239 

cofilin to specifically target older, ADP-actin segments of the filament for disassembly (Fig. 3). 240 

Like with most actin-binding proteins, however, properly aligning biochemical and cell 241 

biological data requires that proteins be analyzed at physiologically meaningful concentrations. 242 

Case in point, cofilin; at saturating (equimolar) occupancy, cofilin stabilizes the actin filament by 243 

forming additional contacts between subunits [63]. At low concentrations, however, clusters of 244 

just two to three cofilin molecules efficiently sever filaments [64] by inducing structural 245 

perturbations at the boundary between cofilin-bound and unbound subunits [63]. Recent studies 246 

reveal that cofilin-mediated depolymerization can be further accelerated by novel mechanisms, 247 

including functional synergy between cofilin and cyclase-associated-protein [65, 66] and actin 248 

oxidation by MICAL [67, 68]. MICAL also oxidizes Arp2/3 complex subunit Arp3B, 249 

accelerating the disassembly of branched networks enriched with this Arp3 isoform [69].  250 
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Although glial maturation factor (GMF) has been described as an inhibitor of Arp2/3 251 

complex [70, 71], this view is controversial. GMF belongs to the cofilin family of proteins. Like 252 

cofilin, GMF binds with higher affinity to ADP-Arp2/3 complex than ATP-Arp2/3 complex [72]. 253 

GMF’s low affinity for ATP-Arp2/3 complex prevents competition with NPFs during nucleation, 254 

whereas its preference for ADP-Arp2/3 complex is consistent with its role in branch disassembly. 255 

Indeed, a new study reveals that older ADP-Arp2/3 complex branches are more sensitive to 256 

mechanical force and GMF-mediated debranching [59]. There is also disagreement about the 257 

mechanism of interaction of GMF with Arp2/3 complex. Both isothermal titration calorimetry 258 

[72] and x-ray crystallography [73] reveal a single binding site for GMF on Arp2/3 complex. The 259 

crystal structure shows GMF bound to the hydrophobic cleft at the barbed end of Arp2, which is 260 

strikingly similar to the interactions of other cofilin-family members with actin [68]. However, a 261 

secondary binding site on Arp3 has been proposed based on low-resolution EM of negatively 262 

stained samples [71], and therefore the precise mechanism of GMF-mediated branch disassembly 263 

remains incompletely characterized. 264 

 265 

Arp2/3 complex inhibition 266 

Like with most cellular processes, Arp2/3 complex inhibition is as important as activation. 267 

Several inhibitors of Arp2/3 complex have been proposed, including coronins [74], Arpin [61], 268 

GMF [70], gadkin [75], and protein interacting with C kinase (PICK1) [76]. However, while our 269 

understanding of nucleation mechanisms has advanced substantially, inhibitory mechanisms are 270 

poorly understood, and some of the existing evidence is controversial.  271 

 The first proposed and most extensively studied Arp2/3 complex inhibitor is coronin [74], 272 

a protein found at sites of dynamic actin assembly in eukaryotes from yeast to mammals [77, 78]. 273 



 13

Budding yeast has a single coronin (Crn1), whereas mammals have seven coronins subdivided 274 

into three types: type-1 (coronins 1A, 1B, 1C and 6), type-2 (coronins 2A and 2B); and type-3 275 

(coronin 7) (Fig. 1c). All coronins have a 7-bladed WD40 β-propeller domain, immediately 276 

followed by a 40-amino acid conserved sequence that packs tightly against the β-propeller and is 277 

required for its structural stability [79]. All type 1 and 2 coronins have a C-terminal coiled-coil 278 

domain that mediates trimerization [80-82], but are distinguished from one another by the so-279 

called “Unique” region that separates the β-propeller and coiled-coil domains and varies 280 

significantly in length and sequence. Coronin 7 is substantially different in that it has two β-281 

propeller domains and a C-terminal CA region similar to that of NPFs but lacks the coiled-coil 282 

domain.  283 

While coronins differ enough in sequence as to anticipate functional and mechanistic 284 

differences among them [78], most studies have focused on type-1 mammalian coronins and 285 

yeast Crn1, which more closely resemble one another. Some functions, however, are likely 286 

conserved among all coronins, such as F-actin binding mediated by the most highly conserved β-287 

propeller domain and shown for both yeast [83] and type-1 mammalian coronins [84]. Coronins 288 

bind with higher affinity to ATP/ADP•Pi- than ADP-actin filaments [84]. The β-propeller 289 

domain has been also implicated in plasma membrane binding [81].  290 

Direct binding and inhibition of Arp2/3 complex has been reported for yeast [74, 82] and 291 

mammalian [85, 86] coronins, although the role and mechanism of inhibition is debated. Studies 292 

on Crn1, including low-resolution negative stain EM, support a model in which the trimeric 293 

coiled coil domain unravels and Crn1 binds as a monomer via its C-terminal sequence to subunit 294 

ArpC2 of Arp2/3 complex [71, 74]. Another study, however, found that low concentrations of 295 

Crn1 do not inhibit but activate Arp2/3 complex [82]. These authors identified an Arp2/3 296 
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complex-binding site within a CA sequence, analogous to that of NPFs, located within the 297 

Unique region of yeast Crn1. They mapped the binding site of this sequence to subunit Arp2 and 298 

showed that Crn1 can activate Arp2/3 complex synergistically with NPFs. They also observed 299 

Arp2/3 complex inhibition, but only at high Crn1 concentrations and saturating binding to the 300 

mother filament, suggesting that inhibition results from competition with Arp2/3 complex for 301 

binding to the mother filament. While this model is appealing, particularly because it does not 302 

invoke the structurally unlikely event of coiled coil unraveling, it cannot be extended to 303 

mammalian coronins, which lack a CA sequence within their Unique region. Moreover, this 304 

mechanism of inhibition is indirect, analogous to competitive inhibition of Arp2/3 complex by 305 

tropomyosin [87], and does not qualify coronin as a direct inhibitor of Arp2/3 complex. So, the 306 

question remains, are mammalian coronins actual inhibitors of Arp2/3 complex?  307 

Most of the data available is consistent with a role for type-1 coronins as branched 308 

network destabilizers (Fig. 3). Thus, type-1 coronins destabilize actin filament branches in vitro 309 

and in cells by inducing dissociation of Arp2/3 complex from the sides of actin filaments and by 310 

competing with branch stabilization by cortactin [88]. Type-1 coronins specifically promote 311 

disassembly of Arp2/3 complex networks containing subunit isoforms ArpC1A and ArpC5, 312 

whereas cortactin preferentially stabilizes networks containing isoforms ArpC1B and ArpC5L 313 

[60]. Both yeast [89, 90] and mammalian type-1 [91, 92] coronins have been also shown to 314 

synergize with cofilin and actin-interacting protein 1 (Aip1) to promote actin network 315 

disassembly. Mammalian coronin 7 remains virtually uncharacterized. A recent study of the C. 316 

elegans coronin 7 ortholog POD-1 suggests that it induces filament debranching and plays a role 317 

in cell migration and the establishment of cell polarity [93]. 318 
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Arpin (Figs. 1 and 3) was discovered through a bioinformatics search for proteins 319 

containing a C-terminal A domain analogous to that of NPFs, but experiments in vitro showed 320 

that contrary to NPFs Arpin inhibited Arp2/3 complex [61]. Arpin depletion in cells and in vivo 321 

resulted in more persistent lamellipodial protrusions, whereas injection of purified Arpin 322 

destabilized lamellipodia protrusions [61]. Lamellipodial branched networks drive directional 323 

and persistent cell migration through a Rac1-WAVE-Arp2/3 complex-dependent positive 324 

feedback loop. Arpin also functions under Rac1 control, such that it does not appear to inhibit 325 

Arp2/3 complex globally but rather acts locally to terminate the Rac1-WAVE-Arp2/3 complex 326 

positive feedback loop [61]. It has now become apparent that the relative levels of Arpin and 327 

WAVE critically control the growth and invasion of tumor cells and act as a prognosis factor for 328 

multiple types of cancers [94, 95]. While Arpin is thought to function through direct competition 329 

with WAVE [61], the exact mechanism of inhibition is unknown. A low-resolution negative 330 

stain EM study suggested that two Arpin molecules bind through their A domains to Arp2/3 331 

complex, one to each of the Arps [71]. However, the A domain accounts only partially for the 332 

inhibitory capacity of full-length Arpin, suggesting that other regions of the protein participate in 333 

binding and inhibition of Arp2/3 complex [61].  334 

Gadkin is another proposed inhibitor that contains an A domain (Figs. 1 and 3), which 335 

mediates binding to Arp2/3 complex and competition with NPFs [75]. Yet, in vitro gadkin does 336 

not alter the nucleation activity of Arp2/3 complex. In cells, gadkin depletion leads to partial 337 

redistribution of Arp2/3 complex to the plasma membrane and increased cell migration. Thus, 338 

gadkin appears to function as a negative regulator of Arp2/3 complex by sequestering the 339 

complex at intracellular sites without directly altering its activity [75]. Other inhibitors of Arp2/3 340 

complex have been proposed, including PICK1 [76] and WD repeat-containing protein 63 341 
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(WDR63) [96], but remain mostly uncharacterized. Particularly, PICK1 does not bind or inhibit 342 

Arp2/3 complex in vitro [97]. 343 

Concluding remarks 344 

Recent advances in the cryo-EM field have led to substantial progress in our 345 

understanding of the mechanisms of Arp2/3 complex nucleation and branch formation. We 346 

anticipate this trend will continue in the near future, since many Arp2/3 complex interactors exist, 347 

but their molecular mechanisms remain poorly understood. This concerns specifically the 348 

mechanisms of Arp2/3 complex inhibition by Arpin, branch stabilization by cortactin and branch 349 

destabilization by GMF and coronins, all areas of intense interest that should become major 350 

topics of structural studies in the immediate future. Cryo-ET in cells is a still developing method 351 

that offers great potential, with the promise to observe some of these regulatory pathways in 352 

action at high resolution directly inside cells. Functional studies are also leading to new 353 

understanding of the many ways in which the Arp2/3 complex and branched networks control 354 

cellular processes from the nucleus to the cell cortex as well as undesirable activities such as 355 

pathogen and cancer cell motility. We are also just beginning to understand how the cell uses 356 

positive feedback loops centered on Arp2/3 complex to control processes such as cell-cell 357 

communication, mechanosensation and cancer cell invasion. Owing to the combined power of 358 

novel gene editing, structural, and cell visualization methods the research in the cytoskeleton 359 

field and particularly Arp2/3 complex is undergoing a renaissance.  360 

 361 

  362 
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 581 

 582 

Figure legends 583 

Figure 1. Activators, inhibitors, and other regulators of Arp2/3 complex. (a – c) Domain 584 

diagrams of human NPFs (a), branch stabilizers and destabilizers and mother filament mimics 585 

(b), and Arp2/3 complex inhibitors (c). WASP-homology 2 (WH2), central (C) and acidic (A) 586 

domains are shown in magenta. Proline rich domains (PRDs) are shown in gray. Other domains 587 

specific to each proteins include: WH1, WASP-homology domain 1; CRIB, Cdc42/Rac 588 

interactive binding; AP1G1, adaptor protein-1 gamma-1 interacting domain; NTA, N-terminal 589 

acidic domain; SH3, Src homology 3 domain; ADF-H, actin-depolymerizing factor homology; 590 

CE, conserved extension; U, Unique region; CC, coiled-coil. The UniProt accession codes of the 591 

human proteins shown are: WAVE2 (Q9Y6W5); WASH (A8K0Z3); N-WASP (O00401); 592 

WHAMM (Q8TF30); JMY (Q8N9B5); Cortactin (Q14247); GMF (O60234); Cofilin (P23528); 593 

SPIN90 (Q9NZQ3); Arpin (Q7Z6K5); Gadkin (Q63HQ0); Coronin 1A (P31146); Coronin 2A 594 

(Q92828); Coronin 7 (P57737). Ribbon diagrams of determined structures of domains of these 595 

proteins are shown along with the PDB accession codes. In the structure of the WH2 domain 596 

bound to actin, the outer (subdomains 1 and 2) and inner (subdomains 3 and 4) domains of actin 597 

are indicated.  (d) Cellular context of NPFs and branch stabilizers (green text) and inhibitors and 598 

branch destabilizers (red text). Question marks indicate Arp2/3 complex regulators yet to be 599 

identified in connection with specific functions or subcellular locations.  600 

Figure 2. Cryo-EM structures of Arp2/3 complex with bound NPFs, at the pointed end and 601 

in the branch. (a) Cryo-EM structure of human Arp2/3 complex with bound NPF N-WASP. 602 

The coloring scheme is given at the bottom of the figure, and the PDB accession codes are listed 603 
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for each structure. The CA region of N-WASP binds to two sites on the complex (close-up 604 

views). In site-1, the C helix binds in the hydrophobic cleft at the barbed end of Arp2 whereas 605 

the A domain interacts with ArpC1. In site-2, both the C helix and the A domain bind to Arp3, 606 

with the C helix interacting in the hydrophobic cleft of Arp3. Albeit NPFs drive the equilibrium 607 

toward activation, the conformation of Arp2/3 complex in this structure is inactive. (b) Cryo-EM 608 

structure of yeast Arp2/3 complex at the pointed end of the actin filament, also showing a 609 

fragment of the armadillo repeat of Dip1 (residues G235-E366, close-up view). The two 610 

orientations shows are the same as in part a. The conformation of Arp2/3 complex in this 611 

structure is active, with the Arp2 subcomplex (Arp2-ArpC1-ArpC4-ArpC5) rotated up ~19° 612 

relative to the Arp3 subcomplex (Arp3-ArpC2-ArpC3), as indicated by the arrow. (c) Cryo-ET 613 

structure of Arp2/3 complex in the branch. This structure contains only main-chain atoms (i.e. it 614 

lacks side chains). To produce a comparable view to those shown in parts a and b, an all-atom 615 

model of Arp2/3 complex was generated by superimposing individual subunits from a high-616 

resolution crystal structure onto the main-chain backbone of these subunits in the cryo-ET 617 

structure. The orientation is the same as in parts a and b, and the conformation of Arp2/3 618 

complex is active, and similar to that at the pointed end (part b). A notable difference is subunit 619 

ArpC3, which in this structure moves substantially to make contacts with Arp2, Arp3 and the 620 

mother filament.  621 

Figure 3. Model of nucleation, stabilization, destabilization, and inhibition of branched 622 

actin networks. Proteins are colored and labeled according to figure 1. Boxed insets show 623 

cartoon diagrams of the proteins and domains. (a) Nucleation is a multi-step process. NPFs 624 

clustered at the membrane, with actin monomers pre-bound to their WH2 domains, recruit 625 

Arp2/3 complex through site-1 (Arp2-ArpC1). This shifts the equilibrium toward the activated 626 
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conformation (indicated by a red arrow), allowing for NPF binding to site-2 (Arp3). The NPFs 627 

deliver actin subunits at the barbed ends of both Arps. The complex then binds to the side of a 628 

pre-existing filament (mother filament), which stabilizes the active conformation, prompts the 629 

release of NPFs, and allows the branch to grow at a ~ 70° angle relative to the mother filament. 630 

Growth of the branch and mother filaments is accelerated by profilin-actin delivery through the 631 

Pro-rich regions of NPFs clustered at the membrane. (b) Proteins like cortactin stabilize the 632 

branched network. Network reinforcement depends on positive feedback loops that converge on 633 

signaling pathways, such as the Rac1-WAVE-Arp2/3 complex pathway. Older networks, 634 

containing ADP-bound actin and Arp2/3 complex, are disassembled by members of the cofilin 635 

family, a process that can be accelerated by other factors (see text). (c) Arp2/3 complex 636 

inhibitors such as Arpin stop positive feedback loops for network reinforcement.  637 
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