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Abstract—As today’s networking systems utilises more virtu-
alisation, efficient auto-scaling of resources becomes increasingly
critical for controlling both the performance and energy con-
sumption. In this paper, we study the techniques to learn the
optimal auto-scaling policies in a distributed network when parts
of the system dynamics are unknown. Reinforcement Learning
methods have been applied to solve auto-scaling problems.
However they can run into computational and convergence issues
as the problem scale grows. On the other hand, distributed
networks have relational structures with local dependencies
between physical and virtual resources. We can exploit these
structures to overcome the convergence issues by using a factored
representation of the system.

We consider a distributed network in the form of a tandem
queue composed of two nodes. The objective of the auto-
scaling problem is to find policies that have a good trade-off
between quality of service (QoS) and operating costs. We develop
a factored Reinforcement Learning algorithm, named FMDP
online, to find the optimal auto-scaling policies. We evaluate our
algorithm with a simulated environment. We compare it with
existing Reinforcement Learning methods and show its relevance
in terms of policy efficiency and convergence speed.

Index Terms—Factored MDP, Reinforcement Learning, Auto-
scaling, Queuing Systems, N tier architecture

I. INTRODUCTION

With the proliferation of new services (e-health, vehicular
networks, video streaming,...) network operators face two main
challenges : QoS (Quality of Service) guarantee and control
of operating costs, such as energy consumption. Resource
auto-scaling [1] technique is a very efficient solution for
adapting resource to a varying service demand by activating
and deactivating virtual resources according to the workload
[2]. This enables the control of both the performance and
operating costs.

Markov Decision Process (MDP) has been widely used to
model resource management problems including auto-scaling
problems. Different algorithms exist to find the optimal man-
agement policy, when the underlying transition probabilities
are known [21]. When the system’s statistics is not known,
Reinforcement Learning (RL) techniques can be employed

to learn the optimal policy. Many recent papers present RL
solutions for networking problems: [8] for auto-scaling in
cloud, [11] for 5G network slicing with RL and [13], [18]
for slicing with Deep RL, to quote just a few. Although
MDP/RL methods hold great promise for learning adaptive
control policies, they can still suffer from slow convergence
caused by ‘curse of dimensionality’. There is a great interest to
study techniques that limit the dimensionality while offering
more guarantees of accuracy and greater explainability.

In this paper we propose FMDP online, a factored RL
algorithm that can overcome these issues by expressing the
problem in a compact form. This provides the learning agent
with the relational structure of the environment. Indeed, we
believe that in distributed network environments such as 5G
slicing architectures or queuing networks, there exist local
dependencies between physical nodes. Events in a physical
node have direct impacts only on its neighbours and affect
other nodes indirectly in most cases. In this context Factored
MDP [3] framework takes advantage of local dependencies
structure in the environment, accelerates convergence and
overcomes the so-called ‘curse of dimensionality’ in MDP
solutions. We use the Factored MDP framework to model the
auto-scaling problem in a tandem queue with two nodes. The
objective of the auto-scaling problem is to find policies that
have a good trade-off between quality of service and operating
costs and minimise the total discounted costs.

Main contributions: We propose a factored represen-
tation of a tandem queuing system and devise a factored
Reinforcement Learning method; we evaluate it and show a
gain comparing to existing model-free and model-based RL
methods, in terms of policy efficiency and convergence speed.
Although we focus on auto-scaling techniques in this work,
we strongly believe that factored approaches are applicable in
large distributed networks (5G slicing, etc).

Paper structure: We briefly present the related works and
background methodologies in sections II and III, respectively.
We describe in section IV the multi-tier architecture modelled
as a tandem queue and the auto-scaling problem modelled



as a Markov Decision Process. We describe the factored
representation of the tandem queue environment and factored
Reinforcement Learning method in V. We show experimental
results and comparison between assessed algorithms in section
VI. Finally we discuss our results in the conclusion and
provide comments about further research issues.

II. RELATED WORKS

Our work is related to a number of research topics: Queuing
Models and Markov Decision Process in resource manage-
ment, Reinforcement Learning solution for cloud resource
allocation and factorisation in Reinforcement Learning.

A. Queuing Models and Markov Decision Process for Re-
source Management

Resource management in queuing models is frequently used
to represent the auto-scaling techniques involving activations
and deactivations of virtual resources. A server farm repre-
sented by multi-server queuing systems [16] is one existing
model. The research on optimal auto-scaling policies has led
to a large body of relevant literature and a wide variety of
solution methods. Dynamic control and especially Markov
Decision Process appear to be the most direct method. Nu-
merous works have been devoted to compute optimal policy
in multi-server queue models with MDP (see [22] and refer-
ences therein). However, Markov Decision Process framework
requires a complete knowledge of the model (queuing statistics
such as arrival or service distributions etc.) which might not
be available in real systems.

B. Reinforcement Learning for Resource Allocation

A very comprehensive survey about Reinforcement Learn-
ing techniques for auto-scaling in the cloud can be found
in [8]. Many works for RL application on cloud resource
allocation problems are discussed and different taxonomies
about the resolution techniques, the criteria to optimise as well
as the type of problem are presented.

A model-free Reinforcement Learning technique with Q-
Learning for autonomic resource allocation in the cloud was
proposed by Dutreilh and al. in [7]. In this work an agent
has to control the number of resources and optimise a cost
function that takes into account virtual machines costs and
SLA. Moreover, [9] proposes Q-learning to derive auto-scaling
policies in the cloud to minimise delays and number of
activated resources.

In [8] only two methods are classified as model-based tech-
niques. These two works estimate the transition probabilities
and solve the problem with MDP algorithms. However the
representation of planning problems as MDPs often cause
issues as the size of the state spaces grows large. In general,
the state space of planning problems can be described in
terms of a set of domain features. The state spaces grow
exponentially in the number of features and result in the
so-called Bellman’s “curse of dimensionality”. In order to
resolve this difficulty, both the specification of an MDP—in
particular, the specification of system dynamics and a reward

function—and the computational methods used to solve MDPs
must be reworked. This leads to the our focus in the next
section: the factored representation of MDPs and the factored
Reinforcement Learning.

C. Factored Reinforcement Learning

Factored MDP framework provides the learning agent with
local dependencies between state variables, expressed with
Dynamic Bayesian Networks (DBNs). The aim of factored
representation is to represent more compactly the environ-
ment dynamics. This brings several benefits: smaller memory
implementation for large-scale systems and higher speed of
convergence.

Since the seminal work of Boutilier [3], several studies have
devised factored MDP/RL algorithms. We give an overview of
existing factored Reinforcement Learning approaches. Most of
the works consider graphical representations of trees [14] or
a DBN [6]. These two objects allow to represent relations
between state variables and conditional probabilities in a
compact form. However these works often show applications
with binary feature variables in the state space. In this setting,
[15] extends the current framework with multi-valued feature
variables.

On the other hand some works have been investigating fac-
tored form of classic MDP algorithms. This includes factored
policy iteration [12] and factored value iteration [20]. For
model-based Reinforcement Learning techniques, Kearns and
al. present in [10] a factored implementation of the E3 MDP-
online algorithm. Still, the very few number of applications
with factored solutions in the literature call for further research
in this topic and for comparison with existing model-free
and model-based algorithms. To the best of our knowledge,
there hasn’t been works that apply factored RL approaches
on networking systems. This is the focus of our work in this
paper.

III. BACKGROUND

A. Reinforcement Learning

Reinforcement Learning [19] involves an agent taking ac-
tions in an environment to maximise some cumulative reward
by trials and errors. Markov Decision Process [17] is the
theoretical model behind this framework. It allows to describe
the interactions between the agent and its environment in terms
of states, actions, and rewards.

The state space S represents how the agent perceive the
environment. The action space A is the set of available
decisions of the agent. We denote by R(s, a) the reward
obtained after taking action a in state s. The environment
behaves stochastically and P (s′|(s, a)) denotes the probability
to move in state s′ after taking action a in state s.

The aim of the agent is to maximise the total reward
received during an episode. For this aim, the agent needs to
determine the best policy π. The return of an episode of length



T is defined as the expected sum of the discounted rewards
when following a policy π:

V π(s) = Eπ
( T∑
k=0

γtR(sk, π(sk)) | s0 = s
)
.

We also define the action-value function (also called Q-
function):

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s′|(s, a))V π(s′) .

We have Vπ(s) = arg maxaQπ(s, a) and π∗ = arg maxπ Vπ .
We define the true model M = {P,R} as the dynamics of

the environment. In Reinforcement Learning scenarios, such
model is unknown and learning is needed to overcome this
lack of information. Thus two frameworks exist: model-free
learning in which agent updates its policy or value function
directly from experience; and model-based learning in which
agent tries to approximate the model M̃ = {P̃ , R̃} for offline
planning.

B. Factored MDP framework
Factored MDP (fMDP) [3] is a feature-based represen-

tation of MDP framework. Formally, the environment state
can be characterised by a finite set of random variables
s = {s1, . . . , sN}, each with a finite domain V al(si). It
uses dynamic Bayesian networks (DBNs) to represent the
transition probabilities associated with a specific action a. The
Bayesian network nodes correspond to local state variables si
and is partitioned into two sets: the state of the system before
the action is performed, si and the state after the action is
executed, s′i. Edges between these two set of nodes repre-
sent direct probabilistic influence among the corresponding
variables under the action a. For a DBN under action a we
can extract the conditional probability distributions (CPDs)
of each variable si at time t + 1, denoted Pi(s

′
i|Pa(si), a),

where Pa(si) represents the parents variables of si at time t.
To express the global conditional distribution P (s′|s, a) as a
product of local conditional probabilities, we need to ensure
there are no synchronic arcs at time t+ 1.

Proposition 1 ( [15]). If ∀s′i, s′j ∈ S ′, s′i ⊥⊥ s′j |S, then

P (s′|s, a) =
∏
i

Pi(s
′
i|Pa(si), a)

C. MDP resolution
We consider dynamic programming methods when the

system’s dynamics is known, i.e. when the agent has access
to P and R.

1) Value Iteration: The Value Iteration algorithm [17] uses
the Bellman equations to update the value function V . It starts
with V0 and updates at iteration t the value function V (s) for
all state s with backprojection formula under matricial form:

Vt+1 ← maxa(ra + γP aVt)

The Bellman operator T is a max-norm contraction such
that:

T V := maxa(ra + γP aV ) and Vt+1 = T Vt

2) Approximate Value Iteration with Linear Approximation:
The Value Iteration algorithm also exist for linear approxi-
mation of the value function. Consider the value function V
to be a linear combination of K basis functions hk where
K << |S|. We define H the |S| ×K basis function matrix.
By substituting Vt by Hwt, we can rewrite Bellman equations:

Hwt+1 ← maxa(ra + γP aHwt)

However the right-hand-side (r.h.s.) might not be contained in
the image space of H. Hence, we need to project the r.h.s. on
the image space with a projector G:

wt+1 ← G [maxa(ra + γP aHwt)]

3) Factored Value Iteration: Factored Value Iteration [20]
presents a factored version of the Value Iteration with con-
vergence guarantees. We first have linear decomposition of
reward function and value function.

R(s, a) =

J∑
j=1

Rj(s[Zj ], a) , V (s) =

K∑
k=1

hk(s[Ck]) · wk

where Zj ⊆ S and Ck ⊆ S are sets of local variables. Here
s[Zj ] and s[Ck] corresponds respectively to the values of local
variables in Zj and Ck for state s.

The idea of factored value iteration is to replace Bellman’s
equation with a factored version, by considering factored local
transitions Pi and linear value function approximation. Recall

that Vt+1 =
K∑
k=1

hk(s[Ck]) · wt+1
k .

Vt+1 =Gmaxa

[
J∑
j=1

Rj(s[Zj ], a)

]
+

γ

K∑
k=1

∑
s′[Ck]∈S[Ck]

(∏
i∈Ck

Pi(s
′
i|Pa(si), a)

)
hk(s′[Ck])wtk

By considering the backprojection matrix B such that:

Bas,k =
∑

y[Ck]∈S[Ck]

(∏
i∈Ck

Pi(yi|x[Γi], a)
)
hk(y[Ck])

in matricial computation we can update the weights of the
value function by:

wt+1 = Gmaxa
[
ra + γBawt

]
where G is the matrix form of projection operator G.
Also the authors [20] propose in their work a sampling

method to work on a subset of the original state space Ŝ ⊆ S
where |Ŝ| = poly(N).

D. RL resolution

When the agent does not have access to P andR, we require
RL algorithms. We recall standard RL algorithms that will be
used for comparison with our proposal.



1) Model-free Q-Learning: The agent does not have any
model of the dynamics and updates its state-value function Q
by interactions with the environment. For a given observation
of the system s it chooses an action a with an ε-greedy policy
then observes new state s′ and reward r. It updates Q from
its experience < s, a, r, s′ > with the Q-learning update:
Q(s, a)← Q(s, a) + α[r(s, a) + γmaxa′Q(s′, a′)−Q(s, a)].

2) Dyna-Q or buffer replay RL: Dyna architectures [19]
aims to improve model-free methods by adding a supplemen-
tary planning phase where the agent can update more often
its state-value function from experiences. It stores experiences
in a replay memory Di = {< s, a, r, s′ >1, < s, a, r, s′ >2

, · · · , < s, a, r, s′ >i} where the agent can select tuples to
additionally update Q.

3) State-transitional model-based RL: In state-transitional
model-based methods, the agent learns a standard approxi-
mated model of the environment dynamics P̃, R̃. It updates the
dynamics and reward functions/tables with the buffer memory
Di and uses a planning method on the model learned so far to
decide the actions. Planning can be done in two different ways
here: using dynamic programming algorithms such as Value
Iteration [17] or using its model to generate new samples and
update in a model-free fashion.

IV. MULTI-TIER MODEL

This section presents the behaviour of our three-tier archi-
tecture model. We describe the queuing system as well as the
transition probabilities and the costs.

A. Model Description

We concentrate on a small segment of a multi-tier network
with two physical nodes in tandem (Figure 1). Each node is
represented by a multi server queue (or a buffer, where jobs
wait for a service) and servers (or Virtual Machines: VMs)
which can be activated or deactivated by a controller. We
assume that each node i has a finite capacity Bi, i.e. the
maximum number of requests either waiting for a service
or in service. We define Ki the maximum number of usable
VMs in node i. We must have at least one machine activated;
Ki ≥ 1. All virtual machines (VMs) in a given node are
homogeneous, and the service rates can be modelled by an
exponential distribution with rate µi for node i (i = 1, 2).

Fig. 1: Tandem queue representation of the three-tier architec-
ture

We suppose that requests arrive in the system only in node
1 and the arrivals follow a Poisson process with parameter λ.
When a request arrives in node 1 and finds B1 customers in
node 1, it is lost. Otherwise, it waits in the queue until a server
becomes free. After being served in node 1 the request enters
in node 2, unless the second queue is full in which case the
request is lost. Once the request finishes its service in node 2,
it leaves the system.

At each transition epoch, a single controller manages the
number of activated VM in each node and can decide to turn
on or turn off virtual machines or to do nothing. Only one
VM can be deactivated or activated in each node each time.

B. Semi Markov Decision Process Description

1) System’s dynamics: The system state includes the cur-
rent number of requests in node 1 and node 2, denoted by m1

and m2 respectively, as well as the number of active servers in
node 1 and node 2, denoted by k1 and k2 respectively. Thus,
the state space is defined by S with s = (m1,m2, k1, k2) ∈ S
such that 0 ≤ m1 ≤ B1, 0 ≤ m2 ≤ B2, 1 ≤ k1 ≤ K1, and
1 ≤ k2 ≤ K2.

We denote by ai the action available in node i (with i ∈
{1, 2}). It can take three values: 1 if we activate one VM;
−1 if we deactivate one VM; and 0 if the number is left
unchanged. Any action taken by the controller is the couple
of actions in each of the nodes. Hence, the action space is A
where a = (a1, a2) ∈ A with ai ∈ {−1,0,1}.

We describe now the transitions. We consider here that the
controller can observe the system just after any change in
the state and reacts. The actions are instantaneous. When the
number of active servers is ki at node i and we take the action
ai, the number of active servers changes to N(ki + ai) =
min{max{1, ki+ai},Ki} After an action, the system evolves
until the next transition occurs.

So, at state s = (m1,m2, k1, k2), after triggering action
a = (a1, a2), the possible transitions are:
An arrival in queue 1: we move, with rate λ, to:

s′1 =
(
min(m1 + 1, B1),m2, N(k1 + a1), N(k2 + a2)

)
.

A departure from queue 1 (and consequently an arrival in
queue 2): we move, with rate µ1 min(m1, N(k1 + a1)) to:

s′2 =
(
max(m1−1, 0),min(m2+1, B2), N(k1+a1), N(k2+a2)

)
.

A departure from queue 2: we move, with rate
µ2 min(m2, N(k2 + a2)), to:

s′3 = (m1,max(m2 − 1, 0), N(k1 + a1), N(k2 + a2)) .

We define the transition rate of state-action pair (s, a) by

Λ(s, a)=λ+µ1 min{m1, N(k1+a1)}+µ2 min{m2, N(k2+a2)} .

2) System’s costs: We consider a continuous time dis-
counted model [17] with the discount factor γ. We define the
costs that represent the trade-off between quality of services
(QoS) and energy consumption. There are instantaneous costs
that are charged once an action is taken: the activation cost of



a VM in node i, CAi
, the deactivation cost in node i, CDi

and
the cost of rejecting a request in node i, CRi when the buffer
is full and there is an arrival. There are accumulated costs that
accumulate over time: the cost per time unit of using a VM
in node i, CSi

and the cost per time unit of holding a request
in node i, CHi

. Formally, after taking decision a = (a1, a2)
in state s = (m1,m2, k1, k2), the accumulated cost ci at node
i equals:

ci(s, a) = Ni(ki + ai) · CSi
+mi · CHi

and the instantaneous cost at node i is equal to:

hi(s, a) = CAi
· 1{ai=1} + CDi

· 1{ai=−1}

+
λ

Λ(s, a) + γ
CRi1{mi=Bi} if i = 1;

hi(s, a) = CAi
· 1{ai=1} + CDi

· 1{ai=−1}

+
min{m1, N(k1 + a1)} · µ1

Λ(s, a) + γ
CRi

1{mi=Bi}

if i = 2 .

3) Objective function: We define a Markov Deterministic
stationary policy π as a mapping π : S → A. Based on the
discounted model in [17], we define the stage cost function R
as:

R(s, a)=
1

Λ(s, a)+γ
[c1(s, a) + c2(s, a) + h1(s, a)+h2(s, a)] .

We search the best policy π to minimise the expected dis-
counted reward. The objective function is

V ∗(s) = min
π

Eπ

[ ∞∑
k=0

exp−γtk R(sk, π(sk)) | s0 = s

]
,

(1)
where tk is the epoch and sk is the state of the kth transition.

4) Uniformisation: Most Reinforcement Learning models
deal with discrete time scenario. In order to handle this control
model with an RL approach we uniformise the continuous time
model, following the process of [17]. We refer to uniformised
objects by symbols augmented with a bar −. We define the
uniformisation rate as Λ̄ = λ+K1 · µ1 +K2 · µ2.

Λ̄× P̄ (s′|s, a) =



λ if s′ = s′1
µ1 min{m1, N(k1 + a1)} if s′ = s′2
µ2 min{m2, N(k2 + a2)} if s′ = s′3(
Λ̄− Λ(s, a)

)
when s′ = s

0 otherwise .

For the stage costs they are now given in the discounted
model by:

R̄(s, a) =
Λ(s, a) + γ

Λ̄ + γ
R(s, a) .

Then the Bellman Equation of such a model is:

V ∗(s) = min
a∈A

(
R̄(s, a) +

Λ̄

Λ̄ + γ

∑
s′

P̄ (s′|(s, a))V ∗(s′)
)
.

Note that this equation is never solved in R.L. methods but we
solve it in our numerical experiments to assess the accuracy
of the algorithms. Indeed its solution is the theoretical optimal
value.

C. Simulated SMDP environment for RL agent

We are dealing with a RL model therefore the uniformised
model of Section IV is not known but only experienced by the
controller. Indeed, the controller does not have any information
about queuing statistics (arrival rate, etc.), therefore does not
know the dynamics of the system. The environment has state
space S and action space A similarly to the SMDP model.
When the agent interacts with the environment, the SMDP
model is simulated. It will behave by returning a state, sampled
according to the transition probabilities P̄ , and return the costs
R̄(s, a).

V. FACTORED-TRANSITIONAL MODEL-BASED RL

In this section we first present the factored representation of
the tandem queue environment regarding state space, dynamics
and reward. Next we give the methodology of our factored
Reinforcement Learning method and its parameterisation.

A. Factored model representation

Understanding structural properties of the tandem queue
system is key to help the agent learn faster the auto-scaling
policy. We model the tandem queue environment with a
factored approach to bring this knowledge to the learning
agent. If we currently try to use factorisation on the current
state space representation, then we will have dependencies
within the state at time t + 1, which will violate Proposition
1. In the tandem queue system the actions a does not affect
the structure of the Bayesian network. Yet all the DBNs in
our environment have the same relational structure. We define
relations between state variables and build a dictionary of
child-parent variables, displayed in Table I.

Child variables at time t+1 Parents variables at time t
m1 m1, k1
m2 m1, k1,m2, k2
k1 k1
k2 k2

TABLE I: Child-parent architecture

In the current MDP model of tandem queue, the con-
ditional independence assumption (Proposition 1) is vio-
lated, rending the factored decomposition impossible. In
other words, the factored form of the probability distribution

P (s′|s, a) =
N∏
i=1

Pi(s
′
i|Pa(si), a) is not possible because

the two events, departure from node 1 (m1 → m1 − 1)
and arrival in node 2 (m2 → m2 + 1), are the same,
thus interdependent at time t + 1. In details, p(s′|s, a) 6=
p(m′1|m1, k1, a)p(m′2|m2, k2)p(k′1|k1, a)p(k′2|k2, a) when a
customer goes from node 1 to node 2. Hence we did slight
modification of the MDP model to build the factored model.



Fig. 2: Dynamic Bayesian Networks (l.h.s. for initial state
space ; r.h.s. for augmented factored state space)

1) Augmented state space: To overcome the violated as-
sumption, we extended the state space to break the dependency
between the variables m1 and m2 at time t+ 1. This is done
while considering variables m1 and m2 at previous time step
t− 1, denoted mp

1, mp
2 and the current variable m1 at time t.

We now consider the state at time t: s = (mp
1,m1,m

p
2, k1, k2).

We draw the DBN associated to the new representation of the
state space in Figure 2.

2) Factored system’s dynamics: We define the factored
transition probabilities Pi for each local state variable si. First
we have deterministic local transitions for servers variables k1
and k2 since these values only depend on the agent’s decision
a. Therefore, we will move from local states k1 to N(k1+a1)
and from k2 to N(k2 + a2) with probability 1.

We have the same factored transition for local variable mp
1

since mp
1 at time t + 1 simply retrieves the value of local

variable m1 at time t. Therefore, the randomness in the system
is only integrated in the factored transitions of local variables
m1 and mp

2, which will represent possible events (arrival in
node 1, departure from node 1 to node 2 and departure from
node 2).

Now the full probability distribution can be written under
the factored form.

P (s|s′, a) = P (mp′

1 |Pa(mp
1), a) · P (m′1|Pa(m1), a) ·

P (mp′

2 |Pa(mp
2), a) · P (k′2|Pa(k2), a) ·

P (k′1|Pa(k1), a)

3) Factored system’s costs: The reward function is also
linearly decomposed. We decide to represent two features,
one for each node i. We have R(s, a) = R1(m1, k1, k2, a) +
R2(m1,m2, k1, k2) where:

R1(m1, k1, k2) = (m1CH1
+ (k1 + a1)CS1

)/Λ̄

+CR1λ
Λ(s, a) + γ

Λ̄ + γ

+CA1

Λ(s, a) + γ

Λ̄ + γ
1(a1=1)

+CD1

Λ(s, a) + γ

Λ̄ + γ
1(a1=−1)

R2(m1,m2, k1, k2) = (m2CH2
+ (k2 + a2)CS2

)/Λ̄

+CR2k1µ1
Λ(s, a) + γ

Λ̄ + γ

+CA2

Λ(s, a) + γ

Λ̄ + γ
1(a2=1)

+CD2

Λ(s, a) + γ

Λ̄ + γ
1(a2=−1)

B. Factored MDP online algorithm

1) Methodology: As opposed to state-transitional model-
based methods, we now assume that the agent has a sup-
plementary knowledge. It understands the relational structure
of the environment: how state variables are related to each
other. The dynamics are now represented by DBNs and local
conditional distributions Pi(s′i|Pa(si), a). However the agent
does not know the statistics and needs to interact with the
environment to learn these statistics for planning. We assume
that the reward function is known and only dynamics Pi
have to be updated. We devise FMDP online (Algorithm 1)
that uses methodologies from MDP online algorithms and the
Factored Value Iteration (FVI) [20] for the planning phase.

The method starts by assuming that the initial system is in
an absorbing state, i.e. we initialise all local CPTs as identity
matrices [4]. This is fair assumption at the beginning since the
agent does not know how the environment behaves. At the end
of episode e, it updates its local CPTs from its experiences.
The update is done by counting occurrences, i.e. :

P (s′i|Pa(si), a) =
n(s′i, Pa(si), a)

n(Pa(si), a)

where n(·) denotes the number of occurrences and tuple
(s′i, Pa(si), a) = (s′[i], s[Pa(si)], a.

Since the agent might not be confident in the approximated
model M̃ during first episodes, we only run FVI algorithm
for a few number of iterations. In practice, we do e planning
iterations to update the weights w of the value function V .

Also for the FVI algorithm we have a linear decomposition
of the value function. Thus we need to define the basis
functions which is very tough to adjust for good results. Last,
we need to choose a projector for the factored Bellman update
to compute the weights w.

2) Feature selection for linear approximation of the value
function: We describe our choices for basis functions and
projection operator. We choose least-squares (L2-)projection
for the projection operator G, according to [20]. Least-squares
fitting is very often applied for projecting value functions. In
this case, the linear weights w are chosen so that it minimises
the least-squares error w = argminw||Hw − v||22.

This corresponds to the linear projection G = H+ (i.e.,
w = H+v) where H+ = HT (HHT )−1 is the Moore-Penrose
pseudoinverse.

For basis functions selection we decided to select several
sub-parts of the reward function. We have chosen 8 basis



functions to combine as much as possible the relations between
the local variables and the impact of each local variables so it
will be integrated in the value function.

Basis H Functions
h1(mp

1) (Ch1
·mp

1)/Λ̄
h2(mp

2) (Ch2
·mp

2)/Λ̄
h3(k1) (Cs1 · k1)/Λ̄
h4(k2) (Cs2 · k2)/Λ̄

h5(mp
1, k1, k2) λCr1 · 1(mp

1=B1)
/Λ̄

h6(mp
1,m

p
2, k1, k2) min(mp

1, k1)µ1Cr2 · 1(mp
2=B2)

/Λ̄

h7(mp
1, k1)

(
(Ch1

·m1)2 + Cs1 · k1
)
/Λ̄

h8(mp
2, k2)

(
(Ch1

·m1)2 + Cs1 · k1
)
/Λ̄

TABLE II: Basis functions selection for factored value itera-
tion

Algorithm 1: Factored MDP online algorithm
Input: Basis functions Hi, Local CPTs Pi = I,

V 0 = Hw0, π0

Output: π∗, V ∗
Data: Statistics unknown, DBNs known

1 for e ∈ Episode do
2 for i ∈ Iterations do
3 Select state s ∈ S
4 Take action a ∈ A with epsilon-greedy policy.
5 Observe s′ and reward r(s, a) and collect tuple

< s, a, r, s′ >

6 for j = 1, .., n do
7 Update local transitions P (s′j |Pa(sj), a)

8 we, πe = Factored Value Iteration planning with
e update iterations

VI. NUMERICAL RESULTS

We present in this section the comparison between our
method and state-of-the-art Reinforcement Learning algo-
rithms on the tandem queue system.

A. Environments and Simulation Parameters

1) Gym environments: OpenAI Gym [5] is a toolkit for de-
veloping and comparing Reinforcement Learning algorithms.
We developed a python simulator in the Gym environment to
simulate the tandem queue model.

2) Cloud parameters: We first describe cloud simulations
parameters. We consider two cloud scenarios of different
scales C1 : {B1 = B2 = 10,K1 = K2 = 3, µ1 = µ2 = 2, λ =
8} and C2 : {B1 = B2 = 15,K1 = K2 = 5, µ1 = µ2 =
2, λ = 15}. For all these scenarios the costs parameters are
the same in the two nodes: {Ca = 1, Cd = 1, Cs = 2, Ch =
2, Cr = 10}.

3) Algorithms comparison: We compare our FMDP online
method with state-of-the-art RL algorithms. We choose one
model-free RL method: Q-Learning, one buffer-based RL
method: Dyna Q and finally the conventional model-based
RL method: MDP online. The MDP online algorithm works

similarly to FMDP online. However it works directly with
the global conditional distribution P (s′|s, a). Therefore it can
suffer from heavy update computations because of the matrix
size in large-scale systems. This is one issue our method
can resolve since it only updates small size matrices (local
conditional probabilities Pi), and does not require excessive
amount of memory for problems in large-scale systems. We
also recall that in the FVI algorithm we can use a sampling
method that considers only a subset S ′ ⊆ S of the whole state
space.

4) Simulation and algorithms parameters: We detail here
the simulation and algorithms parameters. Learning phase runs
for 300 episodes of length 10000 iterations. One iteration
corresponds to a transition from state s with action a to state
s′ with reward r. The agent runs epsilon-greedy policy over
the whole learning process, with initial epsilon set to ε = 1.
We decrease epsilon value after each episode with a decay rate
εdec = 0.99. The discount rate is set to γ = 0.9.

B. Comparison Criteria between Algorithms

We compare the different algorithms during the learning
phase. Performance measurements during learning are rep-
resented by a learning curve. We look at running time of
algorithms and the average reward obtained after each episode
to compare the goodness of the RL methods. We note that RL
algorithms should also be assessed offline, e.g. with Monte-
Carlo offline policy evaluation. For this purpose we need to
convert the factored policy of the augmented state space for
fair comparison with the classical policy. This is currently
being investigated as part of further research. Henceforth we
only display the comparison during the learning process.

C. Results

We display the average reward over learning episodes for
first cloud scenario C1 in Figure 3. We observe that our
method FMDP online converges much faster than model-free
Q-Learning and Dyna Q techniques. Its convergence is on par
with the MDP online techniques. The model-based techniques
require much less interactions with the environment to find
optimal solution.

Fig. 3: Average reward per episode over learning episodes in
cloud C1



We display numerical results in Figure 4 for the sec-
ond cloud scenario C2. The learning process lasted for 100
episodes and the epsilon decay rate was smaller εdec = 0.95.
The same conclusions as in scenario C1 are drawn. The
number of iterations required to reach an average reward
of 2.05 is impressively less for model-based RL techniques
compared to model-free.

In Figure 5, we show the comparison of running time be-
tween the MDP online method and our FMDP online method
for the two scenarios. In the first scenario, our method has
a similar running time to the MDP online method, as shown
in 5(a). As the problem scale grows, our method has a lower
running time in the second scenario, as shown in 5(b). This
demonstrates an advantage of factored solution in execution
time with similar policy quality as the problem scale grows.

Fig. 4: Average reward per episode over learning episodes in
cloud C2

(a) Running times in
seconds for scenario C1

(b) Running times in
seconds for scenario C2

Fig. 5: Barplots showing running time of model-based RL
algorithms

Last we consider a large scale cloud scenario B = 50
k = 10 with state space considering 250000 states. In this
setting, it’s not feasible for our computational setup to hold
in memory the representations of the full transition matrix
(25000x25000) and state values. Thus under tabular forms,
only the FMDP online method is feasible, since it only re-
quires lower dimensional arrays to represent local conditional
distributions and uses sampling technique.

VII. DISCUSSION AND CONCLUSION

We present FMDP online, a factored Reinforcement Learn-
ing algorithm for optimal resource management in this work.
We demonstrate that if we integrate local relations between
state variables in the representation of the environment, it

can help to overcome the “curse of dimensionality” issues in
standard RL methods.

We have shown the performance improvement obtained by
the proposed method in a tandem queue system. It presents
a good trade-off between policy quality and computation
time. The model-free techniques such as Q-Learning or Dyna
architectures may require too many iterations to converge.
The model-based algorithms may require fewer iterations to
converge. But they suffer greatly on large-scale systems simply
due to an exponential increase of the state space. Working
with huge matrix representation for the transition probability
leads to long computations for the updates and low confidence
in the approximated dynamics. Moreover as the state space
grows, it may become infeasible to hold the transition matrix in
memory. On the contrary, the factored approach have smaller
size matrices for the local conditional distributions and can
be quickly updated. The sampling technique of factored value
iteration also allows to reduce the complexity by considering
a subset of the whole state space.

Nevertheless this work requires further investigations. The
first one is about evaluating learned policy offline with Monte-
Carlo evaluations where we need to convert factored policy for
fair comparison. Secondly we would like to extend this work
to larger scale network models such as network of queues.
Lastly we plan to evaluate FMDP online on very large scale
cloud scenarios with deep Reinforcement Learning methods.
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