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Abstract

Vision and Language Pretraining has become the prevalent approach for tackling
multimodal downstream tasks. The current trend is to move towards ever larger models
and pretraining datasets. This computational headlong rush does not seem reasonable
in the long term to move toward sustainable solutions, and de facto excludes academic
laboratories with limited resources. In this work, we propose a new framework, dubbed
ViCHA, that efficiently exploits the input data to boost the learning by: (a) a new hier-
archical cross-modal alignment loss, (b) new self-supervised scheme based on masked
image modeling, (c) leveraging image-level annotations, called Visual Concepts, obtained
with existing foundation models such as CLIP to boost the performance of the image
encoder. Although pretrained on four times less data, our ViCHA strategy outperforms
other approaches on several downstream tasks such as Image-Text Retrieval, VQA, Vi-
sual Reasoning, Visual Entailment and Visual Grounding. The code is available here:
https://github.com/mshukor/ViCHA.

1 Introduction
Vision and Language Pretraining (VLP) [11, 21] consists of training a vision and language
model with simple pretraining tasks, like image-text alignment or masked language modelling,
usually on large datasets. It is becoming the prominent paradigm to solve multimodal vision-
language tasks (e.g. VQA [4], NLVR2 [68]), outperforming other task-customised approaches
[7, 31]. The representation learned by these models have shown to be useful also for unimodal
tasks, paving the way for more general or foundational models [55, 65, 86, 87].

Due to the abundance of image-text pairs data on the internet [10, 17, 60], scaling
these models has gained a lot of attention. The current most efficient approaches are those
beyond 1B parameters [1, 86] and trained on hundred of millions to several billions examples
[30, 55, 77]. This race for bigger models/data, is most often done to the detriment of the
quality of learning strategies, which becomes more and more difficult to control. We argue
that a lot of improvements can be done by designing more efficient learning schemes. For
example, while Dosovitskiy et al. [19] train Vision Transformers with a huge pre-training
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Figure 1: Illustration of our ViCHA approach; during pretraining (left) and finetuning (right).

dataset, Touvron et al. [71] obtained state-of-the art results using the same architecture with
bag of learning recipes, without pre-training.

To this end, we propose a new VLP strategy with carefully designed training procedures
and losses dedicated to efficiently align both modalities. Specifically, we adopt an early
fusion architecture, but instead of having only one alignment loss on top of the dual encoders,
we also align both representations at several layers. This hierarchical alignment strategy
is extended with a multimodal fusion decoder in order to capture more complex Vision-
Language interaction. We also exploit more efficiently the input data with Masked Image
Modeling, based on the recently proposed Masked Auto Encoder (MAE) [26]. Moreover,
we leverage image-level annotations (i.e., objects and high level concepts describing the
image) using existing foundation models (i.e, CLIP [55]) due their generalization ability and
low computational cost at inference time. Thus departing from classical use of such models
(i.e., initialization and finetuning), and leveraging them without any retraining. We complete
our scheme with a CLIP-based filtering technique. An illustration of our approach, called
ViCHA for Efficient Vision-Language Pretraining with Visual Concepts and Hierarchical
Alignment, is presented in Fig. 1. We will show the effectiveness of our approach on classical
downstream tasks used for VLP evaluation while drastically limiting the size of the training
datasets, contrary to other methods.

2 Related Work
Vision and Language Pretraining (VLP): VLP methods can be categorized into 3 main
categories based on their model architectures. First, dual stream approaches have two separate
encoders for images and texts (e.g. CLIP [55], ALIGN [30]) that are usually trained using a
contrastive loss [51] on a global similarity between their output embeddings. These models
are efficient during inference, but can not exploit finegrained cross modal interaction that is
useful for multimodal tasks (e.g., VQA). Several attempts based on self supervision [41, 50],
teacher-student distillation [3, 75] or finegrained interaction [82] have been proposed to
alleviate the massive amount of data usually used for training (e.g., CLIP 400M). Second,
unified approaches try to simplify the model and adopt one transformer that can process
the two modalities [73, 74]. These approaches are simpler, but still under perform other
approaches with modality specific modules. Third, most of the work concentrated recently on
hybrid approaches due to their success on multimodal tasks, where the models have separate
encoders as well as a multimodal module that can exploit the cross-modal interaction more
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effectively. Early methods have relied on object detection models to extract image regions and
tags [12, 35, 37, 48, 66, 89], however, the visual representation is limited by the performance
of the pretrained object detector, which is expensive to scale on large annotated datasets,
besides being slow at inference time. To remedy this, many methods have proposed to replace
the object detector with vision transformers [20, 32, 80] or CNNs [29, 77]. These models are
usually trained with image-text matching (ITM [12]) or masked language modeling (MLM
[18]) losses, and recently with image text contrastive (ITC) to align the vision and language
representation before feeding them to the fusion module [22, 36, 81].

Multilevel Alignment: Using multiscale representation extracted from different stages
of the model have shown to be successful for vision tasks, in particular, some work in
representation learning have proposed to do contrastive learning [53] or mutual information
maximization [5] between features extracted at different scales, or between local and global
features [28]. In the context of VLP, Li et al. [42] propose a multilevel semantic alignment
by aligning local and global representations. Gao et al. [24] propose an intra and cross level
alignment based on features extracted from cropped images and image regions on one side,
and the caption and its summarization on the other side. Li et al. [34] use both single and
dual stream encoders to align the two modalities at multiple levels. Our approach use simpler
strategy to align the features of both modalities at different transformer blocks.

Object tags: Several works have explicitly used high level concepts for vision-language
tasks (e.g. for image captioning and VQA [79, 84]). In the context of VLP, the concepts are
usually extracted from an off-the-shelf object detectors [58] which are fed to the multimodal
transformer, alongside region features and text tokens [91]. Other than using object detectors,
some approaches extract the concepts from the captions using Scene Graph Parser [2]. These
concepts are used in several ways; predicting these concepts [47, 70, 85], using them as a
bridge between non aligned image and text data [38], adopting a more efficient masking
strategies [15] or leveraging them for fine-grained alignment [78]. In particular, OSCAR
[40] uses the object tags to ease the alignment process by considering them as anchors for
masked tokens prediction and contrastive learning. The concepts extracted from pretrained
object detection models are limited to the training classes, in addition, scene graph parser are
noisy and there is no guaranty that all the concepts in the caption are extracted. Our approach
leverages a more general model to capture a large set of diverse concepts and using them to
enhance the visual representation.

Leveraging Foundational Models: In recent years the focus have been shifted from task-
customized models to more general or foundational models [55, 65, 87]. The motivation is to
have a holistic model that can be later used or adapted to many downstream tasks. Due to
their generalization capabilities, models such as CLIP [55], have been successfully leveraged
in many tasks and domains, such as image editing [14], generation [57], segmentation [76],
captioning [67], food retrieval [64], explainability [59] and beyond. In the context of VLP,
these models are used as initialization [62] and recently, for dataset filtering [60]. In this work,
we leveraged CLIP for the extraction of VCs and data selection/filtering.

3 ViCHA framework
Illustrated in Figure 2, our scheme presents Vision and Text encoders with three original
components: a Visual Concepts Module to enrich the image encoder with relevant VCs, a new
cross-modal interaction to align visual and langage feature representations at multiple levels,
and a self-supervised component based on the recently proposed Masked Auto Encoder.
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Figure 2: ViCHA framework: our Vision-Language transformer model consists of the vision encoder
(left) and the text encoder (right), both aligned through our Hierarchical Image-Text Contrastive block
(H-ITC). Importantly, the input visual tokens are completed through the Visual Concepts Module
providing extra visual semantic tokens. Finally, a multimodal decoder (top right) allows to learn
complex multimodal relationship thanks to MLM and ITM objectives. We also introduce a unimodal
Masked Image Modeling (U-MIM) on top of the vision encoder.

Notations: Given a dataset of image-text pairs {Ii,Ti}K
i , each image Ii is associated with

several Visual Concepts (VCs) {C1
i , ...,C

P
i } extracted using CLIP and exploited by our vision

encoder Ev. The VCs are projected to the image patches embedding space using a Visual
Concept Encoder Evc. Ev is a vision transformer that takes the image and the concepts as
input and extracts the image tokens alongside a special class token {vcls,v1, ...,vM}. Similarly,
the text transformer encoder Et takes the text or image caption T and extracts the text tokens
{tcls, t1, ..., tN}. The class tokens are aligned using a hierarchical contrastive loss before
feeding the image and text tokens to a multimodal transformer decoder Evl that takes the text
tokens as query and the image ones as keys and values.

3.1 Enhancing Visual Representation with Visual Concepts
We propose to enhance the visual representation by explicitly injecting visual concepts. These
concepts are extracted for each image, projected using a visual concepts encoder Evc and then
concatenated to the patch tokens before feeding them to the vision transformer Ev.

The motivation behind VCs is two-fold; VCs (a) might guide the vision encoder to
focus on important objects/aspects of the image, (b) facilitate the alignment with the textual
modality, first, because the visual tokens are already fused with the textual tokens of the
VCs, second, it is easier to align the caption/text with the VCs tokens than the image tokens,
especially at the beginning of the training.

Also we can see this technique from a visual prompt perspective. Text prompts are
usually used with large language models to steer their output based on a given task/input
[8, 44, 63, 83]. We derive the analogy between these prompts and the prepend of VCs, as they
may also guide the model to focus on different aspects of the image during training.

Next, we detail how we extract, project and incorporate the VCs in our framework;
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Visual Concepts Extraction: Different from other approaches (e.g., OSCAR [40]) that
extract these concepts (i.e., object tags) using pretrained object detectors, we use an off-the-
shelf foundational model to extract more diverse, larger and semantically meaningful set of
visual concepts. We show in section 4, that this approach helps to capture high level and
global concepts describing the scenes, which are hard to obtain with other approaches (e.g.
object detectors). The extraction of the visual concepts is done as follows;

1. Concepts extraction: we extract the objects using Scene Graph Parsers [61] from all
the captions of a given dataset. We use only simple text filters (transform to lower case
and select objects repeated more than once). However, more complicated filters might
improve the results even further.

2. Concepts and image embeddings: We use a pretrained CLIP (ViT-B/16) model to obtain
the embeddings of all the images and the extracted concepts.

3. Concepts selection: for each image, we compute its cosine similarity with all the
embedded concepts and select the top k similar concepts.

Visual Concepts Encoder (Evc): To encode Visual Concepts, we use a small text encoder
Evc and then concatenate the output token embeddings with the image patch tokens before
feeding Ev.
Visual Concepts Augmentation (VCA): Here we propose a simple yet effective VCs aug-
mentation technique. Having a set of concepts extracted for each image, instead of considering
all the concepts at once, we sample randomly a fraction of these concepts (i.e., pvc%) at each
iteration step. The benefit of VCA is three-fold; (1) it may prevent the model from overfitting
on specific concepts and potentially disregard the image or other concepts during training,
(2) the model sees different combinations of concepts, which helps to have more diversity.
(3) the model is exposed to more information during finetuning or test, as it will see all the
concepts at once.

3.2 Training scheme

We pretrain the model using several objectives; Hierarchical Image-Text Contrastive Learning
(H-ITC), ITM, MLM and Masked Image Modeling (MIM).
Hierarchical Image-Text Contrastive Learning (H-ITC) Here we propose to exploit the
hierarhical representations capture by the vision and language encoders. CNN based vision
encoders learn hierarchical representations, starting from local features to more abstract
ones at later stages [88]. Vision transformers have also been shown to display some level of
hierarchy in learned representations [19, 56].

On the text side, recent works show that the attention heads specialize in particular part-
of-speech tags, which differs across heads and layers [72] and reflect different aspects of the
syntax [13], while the concepts learned by BERT differ significantly across layers and evolve
into representing a linguistic hierarchy [16].

Motivated by this, and different from other work [22, 36, 81] that align the two modalities
only at the last layer, we propose to align them at different layers of the vision and text
transformers. We argue that doing the alignment at early stages facilitates the process at the
subsequent layers, while allowing to align the representation at different semantic levels.

There is an asymmetry between the visual and textual information, as the image contains
more diverse and detailed information while the caption usually contains more abstract one,
thus we align the textual features only with the visual ones from the last layers of Ev.
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Method
# Pre-train VQA NLVR2 SNLI-VE

Images test-dev test-std dev test-P val test

ViLBERT [48] 3M 70.55 70.92 - - - -
l2-in-1 [49] 3M 73.15 - - 78.87 - 76.95
ERNIE-ViL [85] 3.8M 73.18 73.36 - - - -
ImageBERT [54] 6M - - - - - -
Unicoder-VL [35] 3.8M - - - - - -
UNITER [12] 4M 72.70 72.91 77.18 77.85 78.59 78.28
OSCAR [40] 4M 73.16 73.44 78.07 78.36 - -
VILLA [23] 4M 73.59 73.67 78.39 79.30 79.47 79.03
UNIMOB[39] 4M+1.7M 73.79 74.02 - - 80.00 79.10

ViLT [32] 4M 70.94 - 75.24 76.21 - -
ALBEF [36] 4M 74.54 74.70 80.24 80.50 80.14 80.30

ALBEF∗ 1.1M 72.51 72.69 75.72 76.31 78.08 78.02
ViCHA 1.1M 73.55 73.52 77.27 77.08 78.96 78.22

ViCHA† 800K 73.23 - 78.14 77.00 79.02 78.65

Table 1: Comparison with SOTA; we report the accuracy on VQA, NLVR2 and VE. ViCHA outperforms other
approaches trained on much more data (∼ 4M images) and SOTA trained on the same setup (ALBEF∗). Our model
trained on the filtered dataset (ViCHA†) is very competitive while using much less data (∼ 800K images). Results on
4M images are in the supp.

Specifically, at layer i, we compute the image-to-text and text-to-image similarities and
then apply a Softmax with a learned temperature parameter τ:

pi
i2t =

exp(s(I,T )i/τ)

∑
Q
m=1 exp(s(I,Tm)i/τ)

, pi
t2i =

exp(s(T, I)i/τ)

∑
Q
m=1 exp(s(T, Im)i/τ)

, (1)

Tm and Im are the negative text and image examples. s(·, ·)i is the cosine similarity and is
obtained after linearly projecting and normalizing the class tokens at layer i into a shared
latent space:

s(I,T )i = gvi(vi
cls)

T g′ti(t
i
cls), s(T, I)i = gti(t i

cls)
T g′vi(v

i
cls), (2)

where gti() and gvi() are the linear projection layers at layer i. We maintain two queues of
size Q that store the normalized features from the momentum models g′li() and g′vi(). We
didn’t see a significant improvement when using queues for the other layers, thus we use the
queues only for the last layer for simplicity (on select in-batch negative examples for other
layers). We then compute the cross entropy loss between ppp and the one-hot ground truth and
sum across all layers.
Image-Text Matching (ITM) ITM loss is applied on top of the multimodal trasformer
decoder for more finegrained fusion. It is a binary cross entropy loss, where the model tries
to classify if the image-text pairs are positive or negative. The image and its corresponding
caption are considered as positive pairs while the other examples in the batch are considered
as negative. We sample a hard text and hard image from the batch based on the global cosine
similarity on top of the dual encoders [36].
Masked Language Modeling (MLM) MLM consists of predicting a masked token given
other contextual tokens. In our work, the model has also access to the visual tokens, which
helps to learn a cross modal representation. Following BERT [18], we mask 15% of the
tokens and replace them with [MASK] token, random token or we keep them unchanged with
probabilities of 80%, 10% and 10% respectively. The task is a classification loss where the
model should predict the token id from a list of vocabulary.
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Method
# Pre-train Flickr30K (1K test set) MSCOCO (5K test set)

Images TR IR TR IR
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ViLBERT [48] 3M - - - 58.2 84.9 91.5 - - - - - -
l2-in-1 [49] 3M - - - 67.90 - - - - - 68.00 - -
ERNIE-ViL [85] 3.8M 86.7 97.80 99.00 74.44 92.72 95.54 - - - - - -
ImageBERT [54] 6M 87.0 97.6 99.2 73.1 92.6 96.0 66.4 89.8 94.4 50.5 78.7 87.1
Unicoder-VL [35] 3.8M - - - - - - 62.3 87.1 92.8 46.7 76.0 85.3
UNITER [12] 4M 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
OSCAR [40] 4M - - - - - - 70.0 91.1 95.5 54.0 80.8 88.5
VILLA [23] 4M 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
UNIMOB[39] 4M+1.7M 89.7 98.4 99.1 74.7 93.4 96.1 - - - - - -

ViLT [32] 4M 83.5 96.7 98.6 64.4 88.7 93.8 61.5 86.3 92.7 42.7 72.9 83.1
ALBEF [36] 4M 94.3 99.4 99.8 82.8 96.7 98.4 73.1 91.4 96.0 56.8 81.5 89.2

ALBEF∗ 1.1M 88.1 97.8 99.0 73.6 92.0 95.6 71.2 91.3 95.6 54.2 80.7 88.6
ViCHA 1.1M 91.7 98.7 99.5 77.2 94.2 96.8 73.6 92.4 96.2 56.8 82.2 89.5

ViCHA† 800K 90.0 98.4 99.8 77.4 94.3 96.7 73.3 92.1 96.2 55.8 81.8 89.1

Table 2: Comparison with SOTA; we report R@K for finetuning on Image-Text Retrieval. ViCHA outperforms
other approaches trained on much more data (∼ 4M images) and SOTA trained on the same setup (ALBEF∗). Our
model trained on the filtered dataset (ViCHA†) is very competitive while using much less data (∼ 800K images).
Results on 4M images are in the supp.

Masked Image Modeling (MIM): Improving the visual representation have shown to affect
significantly the performance on vision-language tasks [89]. Many work in self supervised
learning (SSL) have been proposed [9, 25], in particular, the methods based on masked image
reconstruction have achieved SOTA results [6, 26]. However, it is not clear how much MIM
is useful for VLP, as recent work show that MIM based on approaches such as BEiT, masked
region regression or classification degrades the performance [20, 27, 32]. Motivated by these
findings, here we propose two approaches to investigate whether MIM could help VLP. The
two methods are based on the recent Masked Auto Encoder (MAE) approach [26], where
we randomly mask the image (e.g., 75%) and pass only the unmasked tokens to Ev, however,
they are different in how they reconstruct the image:
Unimodal MIM (U-MIM): Here we propose to improve the visual representation by recon-
structing the masked tokens given only the unmasked image ones (without access to VCs).
Specifically, we add a small decoder Dv (e.g., 2-layer transformer) that takes the output tokens,
concatenated to the masked ones (v̂vv) and reconstruct the input image as Î. The unimodal
masked image modeling (U-MIM) loss can be written as:

LU−MIM = MSE(I,Dv(v̂vv)). (3)

Multimodal MIM (M-MIM): Here the decoder has access also to the textual tokens, which
helps to provide more informative context to reconstruct the masked tokens. The decoder is
the same as our Evl (shared weights) but is provided with the visual tokens (v̂vv) as queries and
the textual ones (ttt) as keys and values (hence, the queries, keys and values are different when
computing MLM and ITM). The loss can be written as:

LM−MIM = MSE(I,F(Evl(v̂vv, ttt))), (4)

where F is a linear projection. The total loss can be written as (λH−ITC = 0.1 and λMIM = 1):

L= LIT M +LMLM +λH−ITCLH−ITC +λMIMLMIM. (5)

4 Experiments
We follow other works [36] and evaluate the model on four downstream tasks: Image-Text
Retrieval, VQA, NLVR2, Visual Entailment and Visual Grounding. More details about
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Method
# Pre-train Flickr30K (1K test set) MSCOCO (5K test set)

Images TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
ImageBERT [54] 6M 70.7 90.2 94.0 54.3 79.6 87.5 44.0 71.2 80.4 32.3 59.0 70.2
UNITER [12] 4M 80.7 95.7 98.0 66.2 88.4 92.9 - - - - - -
ViLT [32] 4M 73.2 93.6 96.5 55.0 82.5 89.8 56.5 82.6 89.6 40.4 70.0 81.1
ALBEF [36] 4M 90.5 98.8 99.7 76.8 93.7 96.7 68.7 89.5 94.7 50.1 76.4 84.5

CLIP [55] 400M 88.0 98.7 99.4 68.7 90.6 95.2 58.4 81.5 88.1 37.8 62.4 72.2
ALIGN [30] 1.2B 88.6 98.7 99.7 75.7 93.8 96.8 58.6 83.0 89.7 45.6 69.8 78.6

ALBEF∗ 1.1M 81.3 94.9 98.2 64.7 87.2 92.0 59.5 84.4 91.2 38.3 68.0 79.1
ViCHA 1.1M 86.0 97.1 99.0 72.6 91.1 95.0 63.1 86.9 92.7 47.1 73.8 82.8

ViCHA† 800K 85.0 96.8 98.7 71.6 91.0 94.9 - - - - - -

Table 3: Zero-shot Comparison with SOTA on Flickr30K (after fine-tuning ViCHA on COCO) and COCO
(pretrained model only).

downstream tasks, implementation details, comparability and dataset filtering can be found in
the Appendix.
Our setup: We favor low data and compute regimes. Specifically, we pretrain only on 3
public datasets; COCO [43], Visual Genome [33] and SBU [52], which account to ∼ 1.1M
images in total, thus, 4 times lower than other approaches (e.g. 4M images [12, 20, 36]). In
addition, we train for 10 epochs (in contrast to 30 epochs [22, 36, 81]) with relatively small
batch size of 128 (32 per GPU) using 4 GPUs.
Filtered dataset: We go further and apply a CLIP-based filtering technique to reduce the
number of images to ∼ 800k, and train our approach on this dataset (ViCHA†). This dataset
consists of; COCO, 50% of VG captions and 70 % of SBU.
Implementation details: We follow the implementation of ALBEF [36], including the same
architecture, with our setup. The visual encoder is ViT-B/16 [19, 71], the text encoder is the
first 6 layers of BERT-base [18] and the multimodal encoder is the last 6 layers of BERT-base.
Evc is the first 2 layers of BERT-base. We extract 15 concepts for each image and we set
pvc=30% for VCA. For H-ITC loss, we use the last 6 layers of Ev and the all 6 layers of El .
For U-MIM, we use 2-layer transformer encoder.

To have a fair comparison, we compare with ALBEF trained on the same setup (called
ALBEF∗). Even though it is common to compare among all approaches in the literature, we
think that it is hard to assess the methods as they follow different training setups.
Comparison with SOTA on standard tasks: Table 1 shows a comparison with other
approaches, on VQA, NLVR2, VE following the finetuning setup. We outperform significantly
ALBEF∗ (+1.04% VQA, +1.55% NLVR2 and +0.88% VE) and other approaches trained
on more data (i.e., 4M images), such as ViLT (+2.61% VQA, +2.03% NLVR2), UNITER
(+0.85% VQA, and +0.37% VE) and OSCAR (+0.39% VQA). For Image-Text Retrieval,
The model is evaluated on COCO and Flickr30K (F30K) following 2 setups; finetuning
and zero-shot. Table 2 shows the finetuning results. Compared to ALBEF∗, our approach
achieves significant improvements, especially on R@1 with absolute improvement of 3.74%
IR and 3.6% TR on Flickr30K, and 2.59% IR and 2.42% TR on the more challenging COCO.
Interestingly, we outperform other approaches trained on more data such as ViLT, UNITER
and UNIMO (+2.58% R@1 IR F30K). Compared to the SOTA trained with 4M images, we
outperform ALBEF [36] on COCO (+1.72% TR RSUM and +0.88% IR RSUM). On zero-shot
F30K, we follow other approaches [22, 36, 81] and use the model finetuned on COCO. While
for zero-shot COCO, we directly use the model after pretraining (without VCA). Note that, by
zero-shot, we mean the model is not explicitly trained on the target dataset after pretraining.
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VCs H-ITC U-MIM VCA
Flickr30K (1K test set) VQA

TR IR test-dev
RSUM R@1 R@5 R@10 R@1 R@5 R@10 Acc.

Baseline (ALBEF∗) 535.8 85.8 97.4 98.5 70.2 89.9 94.0 71.1

✓ 545.4 87.6 97.6 99.3 74.0 91.6 95.3 71.6
✓ 545.1 87.3 98.1 99.3 73.2 92.0 95.2 72.0

✓ 543.6 88.6 97.6 99.2 72.3 91.1 94.8 71.8

✓ ✓ 547.6 88.3 97.6 99.3 73.7 92.7 96.0 71.8
✓ ✓ ✓ 550.0 89.8 97.6 99.3 74.9 92.8 95.6 71.7
✓ ✓ ✓ ✓ 550.7 88.2 97.8 99.4 75.7 93.4 96.2 72.6

Table 4: Ablation study: The models are finetuned on Flickr30K and VQA v2 (as in [20, 81]).

Table 3 shows that our model significantly outperforms ALBEF∗ (+7.88% F30K and +8.76%
COCO R@1 IR) and other approaches trained on more data such as UNITER, ViLT, CLIP on
F30K IR and COCO, as well as ALIGN on COCO.
Ablation Study: Table 4 shows the contribution of the different components of our ViCHA
strategy. Using VCs seems to give significant improvements over the baseline (+9.6% RSUM
and +0.5% Acc. VQA), similarly for H-ITC and MIM. Then we add our H-ITC loss, which
also brings additional points (+2.2% RSUM and +0.2% Acc. VQA), showing the importance
of a stronger pre-alignment loss. We favor the MAE based, unimodal MIM loss which
improves the results by 2.4% RSUM. We choose U-MIM over M-MIM due to its superior
performance, however, both objectives gives better result than the baseline; +7.8% and +3.2%
RSUM for U-MIM and M-MIM respectively (detailed results can be found in the appendix).
This reveals the importance of MIM as well as using SSL objectives for VLP. We finally
add VCA, that significantly help the VQA task (+0.9% Acc.). Overall, we show that all
contributions are not antagonistic and can be combined effectively. More ablation can be
found in the appendix.
Data and Compute Efficiency: The way the VCs are extracted (using CLIP) is not central
to our work, as for the gain coming from 400M pairs of CLIP. This is supported in our
experiments in the supplementary material, where we replace CLIP by an object detector.
In addition, Table 4 shows that other components contribute significantly, where the gain
coming from H-ITC and U-MIM individually, is comparable to VCs. The number of params
of ViCHA during inference is 248.5 M compared to 209.9 M for ALBEF and ∼ 265 M
for METER [20]. The training time of ViCHA (1M) is ∼ 70 hours, for ViCHA (800K) the
training time is much lower (39h). This is with the paper setup (4 GPUs A100). Compared to
other SOTA, using 8GPUs A100; ALBEF [36] takes 2-3 days and METER 8 days [20].
Additional Scores on Visual Grounding: Table 5 shows a comparison between Weakly
Supervised Visual Grounding (WSVG) approaches on the RefCOCO+ dataset. We outperform
ALBEF∗ (+0.67 % val, +1.06 % TestA and + 1.19 % TestB) as well other approaches such
as DTMR Sun et al. [69] and KPRN Liu et al. [46]. Compared to ALBEF trained on 4M
images we obtain better performance on the TestA set (+ 0.68 %). In addition, we show some
qualitative results using Grad-CAM by back propagating the ITM loss until the 3rd layer of
the multimodal encoder, the results can be found in the appendix.
Data filtering: Interestingly, the model trained on the filtered data (ViCHA†) gives compara-
ble results on image-text retrieval (Table 2 and 3), sometimes better than, training on all data
(e.g., NLVR2 and SNLI-VE, Table 1), while being always better than ALBEF∗.
Illustration of VCs: We show (Figure 3) that VCs can capture high level, global and some
aspects in the scene that can not be shown explicitly or detected by other techniques (e.g.,
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Method Val TestA TestB

ARN [45] 32.78 34.35 32.13
CCL [90] 34.29 36.91 33.56
KPRN [46] 35.96 35.24 36.96
DTMR [69] 39.18 40.01 38.08
ALBEF [36] 58.46 65.89 46.25

ALBEF∗ 57.00 65.51 44.24
ViCHA 57.67 66.57 45.63

ViCHA† 56.40 65.93 45.69

Table 5: Comparison with SOTA on Weakly Supervised Visual Grounding RefCOCO+.

Object detectors as in OSCAR [40]).

Dataset: COCO
Caption: "Prepping vegetables with a chef’s
knife prior to executing a recipe."
VCs: ’demonstration kitchen’, ’cooking demon-
stration’, ’kitchen restaurant scene’, ’galley
kitchen’, ’kitchen scene’, ’type kitchen’, ’meal
preparation’, ’food preparation’, ’chef’, ’chef
coat’, ’lettuces’, ’chef knife’, ’efficiency kitchen’,
’plan kitchen’, ’kitchen worker’

Dataset: SBU
Caption: ’ Mom opening up a bottle of cider mix
from Catherine. Stupid tree was in my way.’
VCs: ’santa juana’, ’mama santa’, ’bev pelletier’,
’pam tree’, ’amazon’, ’sue veeder’, ’christmaspre-
sents’, ’christmas woman’, ’christmas basket’,
’anne peterson’, ’santa gifts’, ’holiday cheer’,
’pamela hinshaw’, ’cynthia rybakoff’, ’christmas’

Dataset: VG
Caption: ’the hat is pink’
VCs:’birthday celebrate’, ’birthday celebration’,
’birthday party’, ’cake cutting’, ’celebration
cake’, ’cake portion’, ’birthay cake’, ’bithday
cake’, ’child cake’, ’birth day’, ’celebration’,
’cutting cake’, ’birthday’, ’congratulations cake’,
’birthday cake’

Figure 3: Illustration of VCs: VCs capture global information, actions and other aspects of the scene
that help to give a rich context.

5 Conclusion

We propose a new efficient VLP approach centered on 3 main components; stronger Vision-
Language pre-alignment through hierarchical contrastive objective, self supervision via
masked image modeling based on MAE, and a new Visual Concepts injection and extraction
technique. The approach outperforms state of the models trained on the same setup (+3.6%
F30K TR and +1.04 Acc. VQA compared to ALBEF), as well as others trained on much
more data (times 4 more data, such as OSCAR and ViLT). Overall, we show that investing in
the learning schemes is a very promising approach that helps to exploit more effectively the
data, especially at low data regime. We hope that this work will encourage more effort (from
a wider range of research laboratories) in this direction, that might lead to have more mature
techniques, and then, perhaps, wisely leverage them when going large scale.
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