New β–decay spectroscopy of the 137Te nucleus

To cite this version:

HAL Id: hal-03812617
https://cnrs.hal.science/hal-03812617
Submitted on 12 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
New β–decay spectroscopy of the 137 Te nucleus

M. Si(司敏),1 R. Rozeva,1,2 H. Naidja,3 A. Blanc,4 J.-M. Daugas,5,6 F. Didierjean,2 G. Duchène,2 U. Köster,4 T. Kurtukian-Nieto,7 F. Le Blanc,1,2 P. Mutti,4 M. Ramdhanie,8 and W. Urban9

1 Université Paris-Saclay, ICLab, CNRS/IN2P3, F-91405 Orsay, France
2 Université de Strasbourg, IPHC, 25 rue du Loess, F-67037 Strasbourg, France
3 Université Constantine 1, LPMS, DZ-25000, Constantine, Algeria
4 Institut Laue-Langevin, F-38000 Grenoble Cedex 9, France
5 CEAD/AM Île-de-France, F-91297 Arpajon Cedex, France
6 Université Paris-Saclay, CEA, CNRS, Inserm, SHFJ, BioMaps, F-91401 Orsay, France
7 CENBG, CNRS/IN2P3, Université de Bordeaux, F-33170 Gradignan Cedex, France
8 LPSC, CNRS/IN2P3, Université de Grenoble Alpes, F-38026 Grenoble, Cedex, France
9 Faculty of Physics, University of Warsaw, PL-02093 Warsaw, Poland

(Dated: January 25, 2022)

Background: Nuclear structure of the neutron-rich isotopes beyond 132Sn is investigated.
Purpose: The level scheme of 137I is obtained after β decay of 137Te. Transitions in 136I are detected after β delayed neutron emission of 137Te. The half life of 137Te is measured.
Methods: β-delayed γ-ray spectroscopy is employed for neutron-rich 137Sb and 137Te isotopes, produced at the ILL after neutron-induced fission to populate excited states in 137I.
Results: The new β decay level scheme of 137I is established. The half lives of 137Sb and 137Te are determined as 0.57(26) s and 2.46(5) s, respectively. The β-delayed neutron emission probability Pn limiting value of 137Te is deduced to be 2.17(66)%.
Conclusions: The experimental results are an important input to the theoretical description of nuclei in the region, being well interpreted within LSSM calculations and provide essential information on the first-forbidden transitions beyond N > 82 and Z > 50.

I. INTRODUCTION AND MOTIVATION

Close to the double shell closures in the nuclear chart with one of the good examples being the 132Sn doubly-magic nucleus, the nuclear shell model stays a major structural framework to work on understanding magic nuclei and their neighbours. By investigating the nuclear configuration of states around the 132Sn core, the extension of the magic core may be traced and the polarization effect of valence particles on the 132Sn core may be studied in detail [1]. Valuable information on the nucleon-nucleon effective interaction and single-particle excitation energies may also be obtained. Furthermore, with increasing the neutron excess for these nuclei, a variety of new phenomena are predicted as the existence of neutron skin, vanishing of standard magic numbers or opening of new sub-shell gaps [2–5]. These phenomena challenge recent competitive studies and boost the quest for new data to more and more neutron-rich species. In our previous review on 136Te which has two valence protons and two valence neutrons outside the doubly-magic 132Sn core, deviations of the observed transition rates from the ones predicted by the shell-model calculation are found [6]. It is of great interest to investigate the iodine isotopic chain, where in our review in [7] of 136Te β decay, the excited levels of 136I were established and compared to the shell model. In the present work new excited states also are identified in three valence protons systems beyond the magic number Z = 50. One of them, the 137I nucleus, which has two valence neutrons outside the closed neutron shell N = 82 is of particular interest since also its low-excitation states have not been explored in detail, while being very important for the nuclear structure in the region. Intermediate-spin states are addressed in our review on 135–139I nuclei [8].

The excess of valences particles could polarize the 132Sn core and could lead to collective behaviour in 137I, a quantity of information on the shell evolution of nuclei is expected at such extreme proton-neutron ratios. However, these I nuclei, similarly to their Te isotopes, have not shown a very collective behaviour and a rather similar trend of excitation energies and transition rates of their first excited states [8] with the increase of N. The three valence protons in the Iodines [7] were also regarded as a cluster [9] to explain some features of these nuclei [10]. It is a very interesting exploration field though only the yrast states could be studied in both thermal neutron-induced 235U-fission [11] and energetic neutron-induced 238U-fission [8], while many of the non-yrast states could not be populated by this reaction. Based on the knowledge of the only previous β-decay work [12] with relatively scarce data on A = 137 as compared to its A = 135 isotope, only 5 excited states up to excitation energy of 1169 keV with 9 γ-ray transitions in 137I were associated to the 137Te decay scheme [13]. Therefore, new results on 137I are highly demanded. More recently, benefiting from the development of experimental technology with radioactive neutron-rich beams [14–16], the majority of neutron-rich nuclei are investigated by spectroscopy of the fission products directly. In this work we report on the β decay of 137Te, which is itself produced by the thermal neutron-induced fission reaction on 235U.

II. EXPERIMENT

The exotic neutron-rich 137Sb isotopes are produced at the ILL reactor, employing a thermal-neutron beam inducing fission onto a 235U target. The projectile fission fragments of
interest are selected and identified by the LOHENGRAIN [17] separator for two separate data sets tuned on A/Q setting for $Q = 21$ and $Q = 25$ to be able to disentangle more easily background from the radiation associated to the nucleus of interest. Further, the radioactive species are implanted onto our user detection system for a decay type of measurement. The detection setup consists of the LOENIE [18] β–decay station of plastic detectors in 4π geometry, placed around a supported movable Al-coated Mylar tape, evacuating the radioactivity from the implanted ions.

The measurement cycle is adapted to the half life, $T_{1/2}$, of the isotopes of interest. In this work, the time chopper is set to 3 s for injection, 3 s for measurement and 2 s for tape movement. This information is further used to extract the experimental $T_{1/2}$ value (see Sec. III A). Prompt and β-delayed γ rays emitted from the implanted isotopes could be detected by two Clover detectors (with Anti-Compton (AC) shields, used as passive shielding) and a coaxial HPGe detector in a very close geometry. Data is collected by a standard triggerless VME electronics. Further experimental details, including information on the γ-ray detection efficiency are given also in Ref. [19]. As appropriate for the studied energy range, these were also cross-checked with the experimental relative efficiencies of the $A = 136$ daughter nuclei [7].

For the $A = 137$ study reported here, it is relevant to state, that isobars and long-lived contaminants as 137I, and 137Xe (and 142Ba in $Q = 25$ case), produced directly in fission may also reach the experimental station, as the LOHENGRAIN separator does not distinguish between isobars abundant quantities of the longer-lived isobars. Such activities are taken into account in the analysis as they are already well known and mostly contribute as a long-lived background.

III. DATA ANALYSIS AND RESULTS

A. Half life of 137Te

Due to the very short half-life of the implanted 137Sb ions and its exoticity with respect to the daughter products, the delayed spectra are dominated by these 137Te, 137I daughter/grand-daughters. Also, as explained above such $A = 137$ contamination is present in the initially-implanted ions as they are produced stronger in the fission. The γ-ray energy after β decay and the corresponding timing information, based on the beam chopping are used to construct the 137"time chopper-energy" matrix. This matrix allows to monitor the activity of γ-rays within the measurement cycle itself.

By gating on β-delayed γ-rays in 137I, we obtain the decay curve of 137Te. To demonstrate this and in order to increase the statistics, we summed up the time distributions of already known γ-rays in this nucleus as 129 keV, 243 keV, 469 keV and 554 keV and fitted the half life using minimization procedure. As shown in Fig. 1, the contribution of the daughter 137Te is dominating the time curve. While any 137Sb contribution is minor (weakly produced and shorter) and may be neglected, the grand-daughter 137I nuclei may contribute to the background and can be accounted either directly with the known $T_{1/2}$ in the Bateman equations fitting [20], or as a long-lived activity background with very similar outcomes. The resulting β-decay $T_{1/2}$ are reported in Table. I together with the values from previous measurements [13]. The uncertainty in the current results comes from the statistical error and the fitting. The result on the 137Sb comes from the limit of this observation which is the 61.8 keV line (Fig. 2), corresponding to the deexcitation of the excited state in 137Te. We have to note however, that it can be still polluted by some unidentified origin as we could not observe any coincidence transitions, e.g. those reported in Ref. [21], possibly due their much lower intensity and the overall low production of 137Sb. Thus, the result can be taken as an experimental limit justifying an agreement with previous observations.

B. 137Te β decay to excited states in 137I

In the previous $\beta – \gamma$ spectroscopic study of 137I, 5 excited levels and 9 γ transitions were established [13], far below the Q_β value of 7053(9) keV (see Sec. III D). In the present work, β-delayed γ-ray spectrum of 137I is obtained by applying β- β coincidence conditions to all Ge data. The β-gated γ-ray spectrum for different A/Q settings on $Q = 21$ and $Q = 25$, as taken in our measurement, is shown in Fig. 2. One can clearly see, as marked by their energies, that in both settings the transitions from 137I are well identified. The main background comes from the 137Xe grand-daughter nuclei, while for $Q = 25$, also 142Ba contributes to the background. In order to subtract the background from long or short-lived nuclei, the analysis is performed under the condition that the selected time window corresponds to the β decay part (see Fig. 3). Transitions
from the previous measurements, β-decay of 137I [12] and 225 fission [8, 11] are observed in this work.

With the aim to expand and establish a new level scheme of 137I from this new β decay data, β-γ, γ-γ (mutual) coincidences and γ intensity balances are used. The γ-γ coincidence relations are constructed between the Clover detectors and the coaxial HPGe detector. For all these, we also used a coincidence with the detected β signal to suppress the prompt γ-ray background (similar information is given also in Ref. [19]).

In Fig. 4, we show a spectrum gated on the 243.6-keV transition corresponding to the first excited state in 137I, where 15 cases of mutual coincidences could be found. Four of them are consistent with the previous knowledge: 129.5 keV, 357.2 keV, 469.7 keV and 925.9 keV, while six of them are used to construct six new excited levels: 609.6 keV, 974.4 keV, 1155.4 keV, 1833.7 keV, 2047 keV and 2170.2 keV. In Fig. 2, the 974.4 keV γ peak sits on the tail of a background γ in the $Q = 25$ (red) spectrum and is thus weak in the $Q = 21$ (blue) spectrum. As it has a very strong mutual coincidence with the 243.6 keV γ-ray, we propose to place this transitions on the top of the known 243.6-keV level. Due to weak statistics, for the 1833.7 keV, 2047.1 keV and 2170.2 keV transitions we present, in addition, their gated spectra, illustrated in Fig. 4. The weakly seen 2047 keV γ-ray in Fig. 2, is marked as tentative. The new 227.1-keV transition, found in the 243.6 keV gated spectrum, shown in Fig. 4, is also in coincidence with the 229.1-keV line (in the 227 keV gated spectrum, see Fig. 6), and all transitions de-exciting the level 373.1 keV such as the 129.5-keV line. As its energy, in addition, fits the energy difference between the 606.6-keV and 373.1-keV levels, we place it as a new transition in the level scheme (see Fig. 7). The 229.1-keV line is proposed to be on the top of the 606.6 keV state, establishing a new level with energy of 830.2 keV. This new level is connected also with 554.2 keV state by the new 276.2 keV transition which can also be traced in the coincidence relations depicted in Fig. 4.

The 554.2-keV level has previously been observed in the fission reaction studies [8, 11], with a single de-excitation by one transition to the ground state (g.s.). One can see from Fig. 4, that the 554.2 keV gated spectrum provides 5 mutual coincidence lines. The 440.9 keV γ transition is known from the previous fission works to connect with the higher-lying (13/2+) state. The 276.2 keV, 299.0 keV and 897.7-keV lines are observed for the first time here. The 276.2-keV transition fits the energy difference between the new excited level at 830.2 keV and the 554.2 keV, proves the existence of new connections with energies of 830.2 keV, 299.1 keV and 897.7 keV, and provides an evidence in establishing the new excited levels at 853.2 keV and 1451.9 keV excitation energy. These two levels can also be cross-checked inspecting their connections to the other levels. The 600-keV transition is marked as tentative as it is difficult to be distinguished from the de-excitation of the 606.6 keV level to g.s.. The 1170.1-keV level is known previously because of its mutual coincidence with the 925.9-keV and 243.6-keV transitions. Three other transitions de-excite this level as observed in this work, and they are weaker than the 925.9 keV line. The 569.5 keV gated spectrum, illustrated in Fig. 6, shows these coincidence transitions and suggests that the 569.5 keV line can be placed on the top of the 606.6 keV level and its energy fits well the energy difference between these 1170.1 keV and 606.6 keV states. Therefore, it is assigned to the de-excitation of level 1170.1 keV to level 606.6 keV.

Another previously-known transition which we observe here has the energy of 620.5 keV and is assigned to de-excite the 620.5-keV level directly to the g.s., without any connections to the other levels. As we could not identify any coincidence relations with known transitions, we use the time chopper information to obtain its time behaviour. The principle of this method is to use the time-energy matrix, by projecting the energy spectrum for every 1 s within time chopper decay part and thus trace the transition timing within the correct $T_{1/2}$ of the nucleus of interest. Fig. 5-(a) shows how the known 243.6-keV transition behaves as an example, while the 1435.9 keV-transition is assigned as a new transitions regarding this criteria. Fig. 5-(c,d) show how transitions from the daughters 137Xe and 137Cs behave. Due to their long $T_{1/2}$ the statistics within the decay part remains basically the same for these time projections. This criteria is used to cross-check all the new transitions observed in singles or in gated spectra and helps to reject wrongly suspected candidates.

To assign new transitions to the level scheme of 137I we used the following criteria: a) the same timing; b) mutual coincidence relations with known or new transitions; c) the same relative intensity in $Q = 21$ and $Q = 25$ settings; d) not identified to the background or the contaminants. According to these criteria, 17 excited levels could be established in this work with a total of 32 γ-ray transitions following the β decay of 137Te to 137I. Among these, we observe for the first time 8 new and one tentative levels with 18 new and two tentative transitions. Table II summarizes the information about the excited levels and γ transitions associated with this β decay to the 137I nucleus. The γ-rays intensities are normalized to the strongest 243.6-keV transition, and obtained using the background subtracted full-energy peak areas from β-gated γ-ray spectrum selecting the time chopper decay part. The β intensity of each level is extracted from the feeding and decaying γ transitions of this particular state. Its log $f r$ value is calculated using the $Q(\beta^-) = 7053(9)$ keV from the atomic mass evaluation (AME2020 [25] and Ref. [26]).

C. 137Te β feeding to the 137I ground state

In order to obtain the 137I β feeding, its further decay to 137Xe and its P_n channel to 136Xe are considered. As there is no long-lived (e.g. ms) isomeric state in 137I, these are the two branches representing the total g.s. feeding of 137I. For the β decay to 137Xe, g.s. to g.s. transitions as well as excited states are taken into account.

We observed 34 excited states and 43 γ transitions in 137Xe by the g.s. β decay of 137I, representing about 80% of the known transitions in 137Xe [13]. The I_γ for the g.s. of 137Xe is obtained in the same way: considering the β feeding from the 137Xe g.s. to 137Cs. For the β-n channel of 137I we did not observe known transitions in 136Xe. Note that the latest P_n value is 7.76(14)\% [27], compared to the evaluated one...
of 7.14(23)% [13]. Combining the above information, except correcting for unobserved branches in the daughter and unobser-
ved P_n-related γ-ray in Xe, we estimated in addition the real production of 137Xe in the γ-spectrum of the 137Te decay in the following way. The counted γ-rays belonging to Xe in the 3-6 s decay part, corrected for nonobservance are compared to those in the 0-1 s of the Te decay, where only 3% follows decay (due to its $T_{1/2}$). Analysing these portions showed that the γ-rays from Xe in this time range correspond to 20% of those in the entire decay and thus one may infer that 80% of the Xe actually comes from the Te decay and 20% is from direct production. Therefore, correcting for the above factors, the total error for the I_g g.s. feeding rises of up to 22% as reported in Table II. This reflects also the experimental log f_{117} uncertainties of particular levels as a systematic error, while the statistical errors contribute to below or around the percent level in this measurement. It may be noted also that as several transitions in $A = 137$ are in the energy range relevant for conversion, this is also investigated. While some of these transitions, as the 243.6 keV the multipolarity comes from previous measurements [11, 28], for the others, the possible $M1_{34}$ and $E2$ assumptions can be made. However, while most of these transitions are weak in intensity and their proportion is found to be minor, for two relevant γ-rays of 129.5 keV and 139.7 keV, the conversion factors assuming the four different combinations changes the relative I_g of the level. For example, for the 243.6 keV level the I_g uncertainty increases from 12.8(2.8) to 12.8(3.7). This is relevant also for the 373.1, 713.5 and 853.2 keV levels and as the change is internally in the 137Te level scheme, it does not affect the g.s. feeding and thus its uncertainty.

D. Level scheme and spin-parity assignments

Due to the $7/2^+$ spin/parity of the parent nucleus, only the low-spin states are expected to be observed in its β decay, taking into account the predominant forbidden nature of these transitions. The g.s. spin/parity of 137I as its daughter as $7/2^+$ is established earlier and completely consistent with our work here (see Sec. IV for details). For the 620.5 keV state, the spin/parity of $11/2^+$ was set because of the deduced $E2$ transition multipolarity of the 620.5 keV γ-ray in the spontaneous fission data [11]. In that study the angular correlations of this line were regarded with respect to the 333.9 keV line connecting the suggested $13/2^+$ level at 955.0 with the proposed $11/2^+$, assumed as an $M1 + E2$ type.
Figure 3. The β-gated γ-ray singles spectrum obtained following the β-decay of 137Te, after background subtraction for $Q = 21$. The leftover from the background is from 137Xe.

Figure 4. Coincidence γ-ray spectra gated on different transitions. All marked peaks are in mutual coincidence.
Table II: Excited levels and γ transitions in the β decay of 137Te to 137I. The initial level and its related information are given in the first four columns. The γ ray and its absolute intensity are provided in the fifth and sixth columns. The last two columns reveal the final level and its spin/parity. The superscript n stands for a new transition, while u marks also an assumption for uniqueness [26].

<table>
<thead>
<tr>
<th>E_{γ} (keV)</th>
<th>J^π_f</th>
<th>I_{γ} (%)</th>
<th>$\log ft$</th>
<th>E_{γ} (keV)</th>
<th>I_{γ} (%)</th>
<th>E_f (keV)</th>
<th>J^π_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>$7/2^+$</td>
<td>47(10)</td>
<td>5.7(1)</td>
<td>243.6(8)</td>
<td>100.0(6)</td>
<td>0</td>
<td>$7/2^+$</td>
</tr>
<tr>
<td>243.6(8)</td>
<td>$5/2^+$</td>
<td>12.8(37)</td>
<td>6.2(1)</td>
<td>243.6(8)</td>
<td>12.2(2)</td>
<td>243.6</td>
<td>$5/2^*$</td>
</tr>
<tr>
<td>373.1(7)</td>
<td>($3/2^+,5/2^+$)</td>
<td>2.8(14)</td>
<td>6.9(2)</td>
<td>373.0(9)</td>
<td>15.2(3)</td>
<td>0</td>
<td>$7/2^*$</td>
</tr>
<tr>
<td>554.2(10)</td>
<td>$9/2^+$</td>
<td>7.0(15)</td>
<td>6.4(1)</td>
<td>554.2(10)</td>
<td>33.4(5)</td>
<td>0</td>
<td>$7/2^*$</td>
</tr>
<tr>
<td>600.6(6)</td>
<td>($3/2^+,5/2^+$)</td>
<td>2.4(6)</td>
<td>6.9(1)</td>
<td>227.1(7)p</td>
<td>1.2(1)</td>
<td>373.1</td>
<td>($3/2^+,5/2^+$)</td>
</tr>
<tr>
<td>620.5(10)</td>
<td>$9/2^+,11/2^+$</td>
<td>2.5(6)</td>
<td>6.8(1)</td>
<td>340.9(11)</td>
<td>13.3(2)</td>
<td>373.1</td>
<td>($3/2^+,5/2^+$)</td>
</tr>
<tr>
<td>713.5(7)</td>
<td>($7/2^*$)</td>
<td>14.8(33)</td>
<td>6.0(1)</td>
<td>469.7(9)</td>
<td>26.1(4)</td>
<td>243.6</td>
<td>$5/2^*$</td>
</tr>
<tr>
<td>830.2(6)p</td>
<td>($5/2^+,9/2^+$)</td>
<td>1.5(3)</td>
<td>7.0(1)</td>
<td>229.1(7)p</td>
<td>0.3(1)</td>
<td>554.2</td>
<td>$9/2^*$</td>
</tr>
<tr>
<td>853.2(7)p</td>
<td>($5/2^+,9/2^+$)</td>
<td>1.5(3)</td>
<td>7.0(1)</td>
<td>139.7(6)p</td>
<td>0.9(1)</td>
<td>713.5</td>
<td>($7/2^*$)</td>
</tr>
<tr>
<td>955.0(12)</td>
<td>$11/2^+13/2^+$</td>
<td>0.3(1)</td>
<td>7.6-9.6u</td>
<td>400.8(7)</td>
<td>1.1(1)</td>
<td>554.2</td>
<td>$9/2^*$</td>
</tr>
<tr>
<td>1170.1(6)</td>
<td>($7/2^*$)</td>
<td>2.9(7)</td>
<td>6.6(1)</td>
<td>569.5(9)p</td>
<td>1.6(1)</td>
<td>600.6</td>
<td>($3/2^+,5/2^*$)</td>
</tr>
<tr>
<td>1218.0(11)p</td>
<td>($3/2^+,9/2^*$)</td>
<td>0.3(1)</td>
<td>7.6(1)</td>
<td>974.4(8)p</td>
<td>1.1(1)</td>
<td>243.6</td>
<td>$5/2^*$</td>
</tr>
<tr>
<td>1399.0(11)p</td>
<td>($3/2^+,11/2^*$)</td>
<td>0.2(1)</td>
<td>7.7-9.6u</td>
<td>1155.4(8)p</td>
<td>0.7(1)</td>
<td>243.6</td>
<td>$5/2^*$</td>
</tr>
<tr>
<td>1435.9(9)p</td>
<td>($5/2^+,9/2^*$)</td>
<td>0.8(2)</td>
<td>7.1(1)</td>
<td>1435.9(9)p</td>
<td>2.8(2)</td>
<td>0</td>
<td>$7/2^*$</td>
</tr>
<tr>
<td>1451.9(7)p</td>
<td>($7/2^*$)</td>
<td>2.5(6)</td>
<td>6.6(1)</td>
<td>600d</td>
<td>853.2u</td>
<td>($5/2^+,9/2^+$)</td>
<td></td>
</tr>
<tr>
<td>1218.0(11)p</td>
<td>($3/2^+,9/2^*$)</td>
<td>0.3(1)</td>
<td>7.6(1)</td>
<td>974.4(8)p</td>
<td>1.1(1)</td>
<td>243.6</td>
<td>$5/2^*$</td>
</tr>
<tr>
<td>1399.0(11)p</td>
<td>($3/2^+,11/2^*$)</td>
<td>0.2(1)</td>
<td>7.7-9.6u</td>
<td>1155.4(8)p</td>
<td>0.7(1)</td>
<td>243.6</td>
<td>$5/2^*$</td>
</tr>
<tr>
<td>1435.9(9)p</td>
<td>($5/2^+,9/2^*$)</td>
<td>0.8(2)</td>
<td>7.1(1)</td>
<td>1435.9(9)p</td>
<td>2.8(2)</td>
<td>0</td>
<td>$7/2^*$</td>
</tr>
<tr>
<td>1451.9(7)p</td>
<td>($7/2^*$)</td>
<td>2.5(6)</td>
<td>6.6(1)</td>
<td>600d</td>
<td>853.2u</td>
<td>($5/2^+,9/2^+$)</td>
<td></td>
</tr>
<tr>
<td>1218.0(11)p</td>
<td>($3/2^+,9/2^*$)</td>
<td>0.3(1)</td>
<td>7.6(1)</td>
<td>974.4(8)p</td>
<td>1.1(1)</td>
<td>243.6</td>
<td>$5/2^*$</td>
</tr>
<tr>
<td>1399.0(11)p</td>
<td>($3/2^+,11/2^*$)</td>
<td>0.2(1)</td>
<td>7.7-9.6u</td>
<td>1155.4(8)p</td>
<td>0.7(1)</td>
<td>243.6</td>
<td>$5/2^*$</td>
</tr>
<tr>
<td>1435.9(9)p</td>
<td>($5/2^+,9/2^*$)</td>
<td>0.8(2)</td>
<td>7.1(1)</td>
<td>1435.9(9)p</td>
<td>2.8(2)</td>
<td>0</td>
<td>$7/2^*$</td>
</tr>
<tr>
<td>1451.9(7)p</td>
<td>($7/2^*$)</td>
<td>2.5(6)</td>
<td>6.6(1)</td>
<td>600d</td>
<td>853.2u</td>
<td>($5/2^+,9/2^+$)</td>
<td></td>
</tr>
</tbody>
</table>

The 620.5 keV state, observed in this work represents a single transition to the ground state. However, we could not detect any coincident transitions to represent feeders from above. Thus, its intensity should be mostly coming in direct feedings. Such scenario would not be entirely consistent with the earlier proposed spin/parity of $11/2^+$ and $\log ft$ value of 6.8(1). The evaluated in this work, therefore according to our data $\Delta J < 2$, possibility shall not be excluded. For example, if the previously assumed $11/2^+$ level would be a $9/2^+$ candidate, the 620.5-keV transition may have some mixing and this would not conflict with several deviations from the theoretical angular correlation coefficients from the previous observation in Ref. [11]. Such scenario would include the margin in the β intensity, observed in this experiment and respectively may be also suggested for the 620.5-keV level.

As we detect the 554.2-keV transition as the second strongest, relative to that of the first excited state (also previously identified with spin/parity of $5/2^+$ [12]), this gives quite some certitude for the spin of the originating state. It does well fit the spin/parity of $7/2^+$ for the g.s. and is in a very good agreement with our shell-model (SM) expectations (see Sec. IV) that places the first $9/2^+$ state at 554.2 keV excitation energy. Furthermore, looking at the I_{γ} and $\log ft$ values for the 554.2-keV level, some $5/2^+$ possibility cannot be completely excluded. This tendency actually comes from the fact
that if the 554.2-keV transition is mostly an $M1$ type, mixed
with some $E2$ multipolarity, the required $\Delta I = 1$ branch would
connect similarly strong a $5/2^+$ to the $7/2^+$ ground state. Note
that the SM calculations (see Sec. IV) predict, that the second
$5/2^+$ state may be expected much below the first $9/2^+$ state and
such a state would be populated directly and relatively strongly
from the $7/2^-$ g.s. β decay.

The next candidate for the second ($7/2^+$) state is the previ-
ously observed 713.5 keV state, de-exciting by three γ tran-
sitions, that we also observe, with the strongest one connecting
to the 243.6 keV state with a spin/parity $5/2^+$ Ref. [11, 12].
Its experimental I_β and log f_I also suggest ($7/2^+$) assign-
ment. However, such identification would be somewhat in variance
with the SM prediction that expects the second $7/2^+$ level at
571 keV excitation energy, while the third $7/2^+$ state is calcu-
lated at 774 keV (see Sec. IV). Although they all are predicted
with the same configuration, there is no clear reason why they
would be compressed, except the possibility of unaccounted
mixing in the configuration of these states. The third candi-
date for such spin/parity, according to our data, is at excitation
energy of 1170 keV. This is very well probable and matches
the findings of Ref. [12] to our data, where we observed three
more transitions de-exciting this level (see Fig. 7). The level
must have been among the strongest ones observed in that first
β-decay study and their proposed spins as $5/2^+$ and $7/2^+$ would
be the favoured ones from the $7/2^-$ g.s. of the mother nucleus, thus
very consistent.

The two levels at 830.2 keV and 853.2 keV have similar I_β
and log f_I values though lower than expected for spin/parity of
$7/2^+$. Besides, their interconnecting transitions to the lower,
lying $5/2^+$ and $9/2^+$ states, make this $7/2^+$ possibility less ade-
quate. Therefore, we propose both ($5/2^+, 9/2^+$) as spin/pari-
ities assignments. This would agree with the SM results for $9/2^+$
and be underestimated for a $5/2^+$, while the third $7/2^+$ and $3/2^+$
states, expected in the vicinity at 774 keV and 900 keV, require
different experimental branching.

The next level which experimentally has strong I_β feeding
and can be the ($7/2^+$) state is located at 1170.1 keV, previously
observed and matching the forth $7/2^+$ predicted at 1085 keV.
The state at 1451.9 keV which has similar characteristics may
have the same origin, thus also proposed as a ($7/2^+$) state.
Although the ($5/2^+$) possibility cannot be completely excluded
this would require more data to search for feeding branches
that we could not observe. Interestingly, the five states we
suggest with spin/parity $5/2^+$ or $7/2^+$($E_x < 1.2$ MeV), being
the strongest fed, are communicated though left unassigned in Ref. [12].

In the data presented here, it can be seen that four similar
new excited states at 830.2, 853.2, 1435.9 and 1451.9 keV are
established. According to their possible de-excitation tran-
sition multiplicities, the spin/parities are consistent with the
earlier proposed ($9/2^+$) spin/parity, while due to the relatively
low log f_I value a ($5/2^+$) possibility may be added or even
($7/2^+$) for the latter one.

Some spin-parity assignments suggested previously [11],
were based on the possible proton-neutron SM configuration
(see Sec. IV). A possible β decay of 137Te to 137I is expected to
be primarily originated from the conversion of a neutron from

\begin{align*}
\text{Figure 5. Energy spectrum corresponding to the decay of the nucleus chopped at each second. Blue, red and green (color online) are for}\n\text{the first 1st, 2nd and 3rd second, respectively.}
\end{align*}
main configurations for 137I may be traced for the computed states in Tab. III. This is certainly very different from the observed sequences in the 136I neighbour, where various neutron excitations could be seen [7], including some moderate $vl_{13/2}$ occupation (see e.g. Fig. 13). Such behaviour may be attributed to the proximity of the $N = 82$ closed shell in the former case, to the fast step with the extra neutrons from an odd-odd to an odd-even system and finally to its structure.

As it can be seen from the current Table, the purity of the two main configurations in the low-energy states of 137I is not small and, therefore, the other contributions appear with relatively minor weight in the wave functions. We present these results in accordance with the excited states that are candidates for the experimentally-populated spin/parity. In the Table, we give up to 10 excited states for the $3/2^+$ candidates for populated states at intermediate energy, and up to 6 excited states, as relevant for the spin/parities $5/2^+, 7/2^+, 9/2^+, 11/2^+$ and $13/2^+$ (see Fig. 8). One may remark, that the neutron excitation to the $v p_{3/2}$ orbital is applicable only in a very few cases. The proton excitations containing the $\pi d_{5/2}$ orbital shows clearly a competition with the $\pi g_{7/2}$ orbital for excited states, and is also the second important contribution (with about 20%) in the $7/2^+$ g.s. of 137I.

Another important point is the very small contribution of the $v h_{9/2}$ orbital in the wave function of the $7/2^-$ g.s. of the mother 137Te nucleus. The presence of this $v h_{9/2}$ component and its decay to a state with $\pi h_{11/2}$ component in the daughter is the main responsible transition for a GT strength at the beginning of this major shell. In the neighbouring 136I case, several 1^+ states originated from such main configuration are populated, with one very strong branch, as predicted by the SM at about 2 MeV excitation energy [7]. Similar range is recently suggested also for 138I in Ref. [39]. Here, for $A = 137$, the $v h_{9/2}$ component is really minor with a theoretically calculated proportion of only 2.5%. Note, that while present in $A = 136$ with about 10%, it is completely blocked e.g. for 135I. It is worth to highlight, that for $A = 140$ of the same isotopic chain [40], this probability is again enhanced with respect to $A = 137$, based on the more mixed g.s. configuration on one side and due to the lowered excitation energy of the GT states themselves, on the other, as it can be seen from the results in Ref. [40].

Figure 6. Coincidence γ-ray spectra gated on the 247 keV and 569 keV transitions. All marked peaks are in mutual coincidence.
Figure 7. The proposed level scheme of ^{137}I obtained from β decay of ^{137}Te. The new levels and transitions are in red (color online), tentative transitions are with dotted line. The $Q(\beta^-)$ of ^{137}Te is taken from Ref. [25]. For the levels marked with (*), some assumption for uniqueness may be possible (see text, Table II).

While reporting on the first excited states in the ^{137}Te mother nucleus, in Ref. [28], some $\nu h_{9/2}(f_{7/2}^3)$ contributions are accounted e.g. for the yrast $9/2^−$ states, including the g.s., together with the three valence $v f_{9/2}$ configuration. These, as well as core vibrations coupled to them, were suggested to originate the $3/2^−$ and $5/2^−$ states, however they were not observed in the same study, while the position of these states is relevant in the situation of ^{137}Te nucleus. These states could be seen only in the more recent β-decay of $^{137}\text{Sb} \rightarrow ^{137}\text{Te}$, where the first negative parity states, expected with such configurations are found at relatively high in energy and thus not among those populated in the experimental β-decay results. It could, therefore, be concluded that at $A = 137$ no allowed branch $\nu h_{9/2} \rightarrow \pi h_{11/2}$ could be experimentally observed. As such contribution to the expected configurations is minor also in the examined $^{137}\text{Te} \rightarrow ^{137}\text{I}$ study here, and none of the excited states seem to present such a strong transition branching, we
giving similar conclusions for this odd--A β decay.

A. The 7/2$^-$ g.s. of 137Te

The g.s. spin/parity of the β-decaying 137Te nucleus can rather firmly be set to 7/2$^-$ based on the experimental log f_t values in the $A = 137$ I daughter and very strong branch to its 7/2$^+$ g.s. The direct g.s. to g.s. feeding is also relatively strong in this nucleus with about 47%. It behaves completely analogous to the $A = 135$ nucleus with similar experimental strength [12], from where similar spin/parities can be concluded.

The g.s. of 137Te was suggested with quite some certainty in Ref. [11] based on the observation of a large part of its yrast scheme (up to spin/parity of (3/2$^+$)), multipolarity of several transitions connecting with the g.s. and SM calculations based on the Kuo-Herling (KH5082) [41] interaction, reasonably describing 137I as the one proton coupling to the 136Te nucleus. The perfect match of this assignment for the 137I ($Z = 53$, $N = 84$) 84 isotope to systematics of heavier-Z Cs, La isotone nuclei is found in a follow-up fission work [42], where the entire excitation scheme could be built in a complete analogy to the 139Cs ($Z = 55$, $Z = 84$) isotope and in agreement with the data on other $N=85$ isotones [43]. These excitations are found also to be well described by the two-body CD-Bonn SM interaction using experimental single-particle energies from

Both mother and daughter $A = 137$ g.s. spin/parity assignments are in a good agreement also with our SM calculations using the N3LO effective interaction. They predict the 7/2$^-$ state to be the 137Te g.s.. It is already reported, that this prediction for lowest state with largest probability (>50%) as a single neutron state is in a full consistency with the Napoli SM interaction [21].

It is worth to note that similar predictions were given also in earlier works [28], where the 7/2$^-$ assignment is compared to systematics of the heavier isotones (up to $Z = 64$) and concluded that it is best choice for this $Z = 52$ nucleus. Also, it is quoted in Ref. [28] that this would suit the non-observation (in their data) of candidates for the 3/2$^-$ and 5/2$^-$ states for this nucleus. These candidates could only be tentatively suggested from β-decay to 137Te to be at excitation energy of 61.8 keV for the (5/2$^-$) state and at least 1136.6 keV for some possible (3/2$^-$) state [21], despite the fact that this is somewhat in variance with the SM theory with both N3LO and Napoli interactions, predicting the two states as first excited states at around the g.s. for N3LO and around 200 keV for the Napoli SM interactions.
The appearance of the possible (3/2\(^+\)) states is uniquely identified in this work (see Fig. 7). These states appear in the neighbouring \(^{135}\text{I}\) where the g.s. spin/parity is the same as in the other odd-A I isotopes, including \(A = 137\). These states cover several possibilities in \(A = 135\) with \(\log ft\) around 7.4-7.5 and together with the 11/2\(^+\) possibilities up to 8.1 in [12]. The candidates in \(A = 137\), again similarly probable, cover except possible \(\Delta J = 2\) (of the g.s.) also \(\Delta J = 1\) and together with the spin/parity of 11/2\(^+\), \(\log ft\) values from 6.8 to 7.7. For three of the observed states with \(\Delta J = 2\) as most probable scenario, also uniqueness of the first-forbidden transitions may be assumed, reflecting the upper \(\log ft\) value as given in Table II.

It is the position of the 3/2\(^+\) states that is well matching the predicted excitation energy by the SM calculations. It can be seen in Fig. 8, where the direct correspondence and the predicted configuration as part of the \(v_{3/2}\pi d_{3/2}\) multiplet may be traced. The competing \(\pi d_{5/2}\) configuration is relevant only for states above 1.1 MeV and some of the higher-lying in energy experimental candidates that, nevertheless, may correspond to a theoretical state with such origin (see color code, online). However, some of the other propositions for these states as \(5/2^+, 9/2^+\) (or 11/2\(^+\)) also predicted nearby would finally not be excluded.

Of the 11/2\(^+\) states, only those with the lowest \(v_{3/2}\pi d_{3/2}\) configuration (see Table III) may be seen. Indeed, the lowest of these states being among the experimental possibilities \((E_x = 620\text{ keV})\) has a remarkable theoretical \((E_x = 588\text{ keV})\) correspondence. The experimental possibilities for the second and third 11/2\(^+\) states listed together with the first 13/2\(^+\) or fifth 3/2\(^+\) possibilities, respectively, have also perfect SM counterparts.

Concerning the 5/2\(^+\) states, we could classify with certitude the first excited states of them, which is based as expected, on the predominant \(\pi d_{5/2}\) configuration (see Table III with more than 40\% probability). As it stays only at \(E_x = 235\text{ keV}\), the orbital positioning may be inferred, and compared with other recent data with similar conclusions [4, 7, 21]. Moreover, this state is reported also in the heavier \(^{139}\text{I}\) at \(E_x = 208\text{ keV}\) and compared to the same SM prediction \((E_x = 175\text{ keV})\) with rather good agreement [5, 8]. It can be, therefore, concluded that no drastic change it the \(\pi d_{5/2}\) orbital is present in these I isotopes, which is different than its behaviour of the Sb isotopes [4, 21]. Interestingly, in the \(A = 135\) Iodine neighbour, the second 5/2\(^+\) state is also observed in the vicinity of the first (e.g. at about 270 keV excitation energy difference) [12]. This is the predicted by the SM appearance in \(^{137}\text{I}\) (see Fig. 8). We have observed another candidate within the excitation energy, e.g. the 373.1 keV state, however it may also be assigned differently. The clear difference is based on the experimentally observed \(I_0\) and respective \(\log ft\) values that for the 5/2\(^+\) state in our work amount to 12.8 and 6.2, respectively. It is in a very good agreement with the data on both 5/2\(^+\) states in \(^{135}\text{I}\), with respective values of 24.2/16.4 and 6.3/6.4. In \(^{137}\text{I}\), two 5/2\(^+\) states with \(d_{3/2}\) proton are predicted among the first six in about 1 MeV energy spacing, thus larger than in the lighter neighbour. Indeed, two candidates can be traced among the excited states around 850 keV and 1.4 MeV (see Fig. 7).

Similar is the situation with the 9/2\(^+\) states, two of which are based on the same proton excitation as the 5/2\(^+\) states, while the rest belong to the \(v_{3/2}\pi g_{3/2}\) multiplet. It has to be underlined, however, that their wave-functions are much more mixed than those of the 5/2\(^+\) states with relative contributions of the order of \(^{17}\text{f}^\circ\). Experimentally, only the first 9/2\(^+\) is firmly assigned, while the other six candidates \((\Delta J = 1)\) of the
In our work, we performed new β-decay spectroscopy of the 137Te nucleus to the daughter 137I. We observed several new transitions corresponding to first-forbidden branches to excited states in 137I. Due to the relatively weak P_{β} ratio and insufficient statistics, the transitions after β-delayed neutron emission were strongly hindered and only few indications of states in 137I could be seen. Therefore, such investigation would require more experimental data.

From the investigations performed in this work, it is interesting to highlight the non-observation of GT strength for this $A = 137$ isotope, while a possible even-odd effect with decrease of the GT strength at the expense of favoured first-forbidden decay seems to be present. Furthermore, the strong effect of both $\pi g_{7/2}$ and $\pi d_{5/2}$ orbital orbitals seems to completely dominate the structure of the 137I isotope observed in our data up to 2.4 MeV excitation energy.

The nucleus has an interesting relation to studies of electron and anti-neutrino reactor spectral behaviour in connection to the role of the first-forbidden transitions, especially as forbidden decays cannot be neglected and need to be accounted properly. Being an essential ingredient in the understanding not only for nuclear astrophysics but also reactor anti-neutrino spectra, these type of studies certainly merit deeper investigation.

ACKNOWLEDGMENTS

The authors would like to thank the ILL staff for providing good quality neutron beam, the support of N. Laurens and the engineering team of Lohengrin for their help in mounting the experimental setup and handle during the long experiment. The usage of EXOGAM Clovers together with their respective Anti-Compton shields from GANIL is also acknowledged. The fund support No.201804910510 provided by China Scholarship Council (CSC) is acknowledged.

REFERENCES

