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Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of

multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called Deformable Models Array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes, and is able to solve interaction issues towards the segmentation goal. Thus, DMA can implement complex-object and multi-object segmentation in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.

Introduction

Nowadays the different medical image modalities aid to immeasurable improvements in the diagnosis and analysis of several patients conditions. In the last three decades, computer aided diagnosis (CAD) systems have become one of the major research areas in medical imaging and diagnostic radiology [START_REF] Doi | Current status and future potential of computer-aided diagnosis in medical imaging[END_REF]. Image segmentation plays an essential role in the field of image analysis for CAD systems, being a fundamental stage that determines the eventual success or failure of the later process such as visual inspection, surgical planning, treatments or simulation. However, segmenting anatomical or functional structures from medical images is a challenging task mainly due to different image artifacts, and the complexity of datasets.

Various image analysis tasks require multiple adjacent structures segmentations, for instance, multiple organs in 3D abdominal CT like liver, spleen, kidneys, pancreas and aorta [START_REF] Okada | Multi-organ segmentation in abdominal ct images[END_REF]; brain tumor segmentation, which comprehends white and gray matter, tumor and edema (Yang et al, 2013); pelvic organ prolapse, including segmentation of rectum, bladder and uterus [START_REF] Bay | Geometric modeling of pelvic organs[END_REF], among others. Also, other challenging tasks demand complex structure segmentations such as: skull stripping in MRI [START_REF] Landman | Automatic segmentation of brain MR images using an adaptive balloon snake model with fuzzy classification[END_REF], where the different structures of the brain are segmented; knee 3D MRI bone segmentation [START_REF] Dodin | A fully automated human knee 3d MRI bone segmentation using the ray casting technique[END_REF], in which different complex shaped structures may appear; and uterus delineation in dynamic MRI (Namias et al, 2014a) that suffers from inhomogeneities and noise.

Several works have been proposed to resolve particular structure segmentation problems, and significant effort has been dedicated to the improvement of segmentation algorithms. Nevertheless, there are still challenging research directions on the integration of individual snake models for delimiting a single region of interest (ROI) or a group of different ROIs. [START_REF] Chen | A hybrid framework for 3d medical image segmentation[END_REF] have presented a hybrid segmentation framework based on deformable models, where a global energy function is introduced to combine prior-shape, region-based and boundary techniques under a fixed schema for 3D brain image segmentation. [START_REF] Abe | A region extraction method using multiple active contour models[END_REF] have proposed to use multiple active contour models (ACM) that compete with each other to segment a single object of uniform image properties as a set of subregions. More recently, [START_REF] Gao | A 3d interactive multi-object segmentation tool using local robust statistics driven active contours[END_REF] have developed a 3D multi-object segmentation tool, which not only grants mutual exclusion between regions but also parallel segmentation and models interaction using a principle of action and reaction. The authors introduce a novel active contour formulation for that particular framework which allows to segment multiple structures but with a fixed interaction scheme for all the ROIs that limits its flexibility. Additionally, most of the proposed works focus just on multiple objects detection or complex structures segmentation, not both simultaneously.

Under level sets formulations, [START_REF] Shang | Region competition based active contour for medical object extraction[END_REF] have developed a region competition active contour model. The algorithm is derived by minimizing a region based probabilistic energy function and implemented in a level set framework. The model combines edge and region features in a level set evolution equation and has been extended to 3D medical structure detection. A limitation of this approach is that the competing regions are only two: the ROI and the background. Other authors (Vu et al, 2013) have used variations of the Chan-Vese formulation (Chan and Vese, 2001) to segment the image in more than one object plus the background searching for homogeneous intensity regions. Nevertheless, this hypothesis does not hold for some medical imaging modalities because two distinct organs can present similar intensities.

The present paper proposes an open-source segmentation framework named Deformable Models Array (DMA), to be used for medical segmentation tasks involving multiple and complex objects detection. For this purpose, DMA enables using a combination of existing or new explicit deformable models (DM) in an efficient and transparent way. Thus, DMA allows considering several segmentation strategies, for instance, simple segmentation (one ROI only), multiple-object segmentation (simultaneous detection of several ROIs, adjacent or isolated), and complex-object segmentation (ROI with complex shape or different image characteristics), including a novel model cooperative interaction scheme. The framework can deal with image data in both 2D and 3D scenarios and one of its main advantages is the possibility to easily include a set of DM algorithms to quickly develop and test segmentation strategies in almost any existing medical imaging modality.

Methods

In order to be extensible and adaptable to diverse segmentation problems, the framework must deal with different images modalities (e.g. MRI, CT, etc...), and dimensions: 2D and 3D. Although there is not a segmentation technique which can achieve high quality results in any scenario, the correct election of existing state-ofthe-art techniques or the development of a particular new method, could solve this issue. Explicit deformable models have several advantages, specially for parallel and interacting segmentation since their capability to incorporate control mechanism such as evolution restrictions, collision detection, shape guidance, etc. Moreover, DMA can deal with several segmentation strategies thanks to its ability to use several DM in a cooperative way. Therefore, one of the main contributions of DMA is its Evolution Control module, which was specially designed for this purpose. The framework is open-source, implemented mainly as filters over the ITK libraries (Yoo et al, 2002) and its graphical user interface in Qt. ITK has become one of the most complete open-source medical image processing library adding new state-of-the-art techniques in each new release version. The sources are publicly available 1 . In the following, we describe the general DMA formulation and its main components.

Global Scheme

The required input data comprises the image to segment, a set of initial models, called evolving models (e M ), and a set of deformable model techniques (dm T ) to evolve the e M , as well as the parameters of each dm T . Hence, these two items are grouped in tuples (e M , dm T ), one for each ROI. Next, DMA enables to use previous segmentation knowledge representing a set of spatial restrictions named as fixed models (f M ). Finally, a few framework parameters, later described, must be set to run the segmentation. Consequently, a convenient GUI was designed using the Qt libraries [START_REF] Blanchette | C++ GUI programming with Qt 4. Prentice Hall Professional Chan T, Vese L[END_REF] to facilitate the DMA experiment set-up, enabling to save and load the complete project state, visualize the scene, etc.

The framework is composed by a set of functional modules. The Evolution Control (EvCtrl ) module is the main component which comprises the novel cooperative functionality, and governs the evolution process. Its three main interrelated tasks are: the evolution process, the collision detection and the state management. A collision detector (ColD ) module is used to evaluate whether any inter or intra-collision occurs during the models evolution. We consider a collision as the intersection of two or more non-neighbouring elements in the geometrical model representation. As this task has high computational overhead, particularly in 3D, an efficient ad-hoc classification technique was implemented. In addition, a safe-state (SS ) module is considered one for each e M , which keeps a history of previous model states and the last known state without collisions. This module is crucial, as it determines whether to continue the evolution of the models. A collision resolution (ColR) module is concerned with solving the presence of collisions, interacting with each dm T to solve these in-tersections. Finally, we obtain the segmentation result represented by the final state of each input e M .

The global segmentation process is shown in Figure 1. The image of interest together with the models initialization are provided to the algorithm: in green the e M , and in red the f M . The EvCtrl module governs the evolutions and interactions of the models until they finish the segmentation process. Finally, if a complex structure segmentation takes place, the postprocessing assembles the models comprising the final complex structure. 

Modules

Evolution Control

The EvCtrl module is the main coordinator of the segmentation process. Its main task is to synchronize all the dm T and control their interactions. Its inputs are the above presented elements: e M +f M models, the dm T with all their parameters, the input image and a synchronization distance parameter N ∈ N + . Each e M has one instance of an SS module, and one instance of the dm T . The SS keeps a history of previous states of its particular e M , and will be able to restore its state to the last collision-safe state or checkpoint whenever is required by the EvCtrl. The dm T guides the e M evolution across the iterations. The last EvCtrl part is the ColD module. This module tracks the e M evolutions and in-teractions, looking for collisions between or inside each e M .

The EvCtrl module first calls the ColD to check for initial collisions and the SS module to save the first safe states. Then the evolution loop starts: every dm T do N iterations, consequently the ColD checks for collisions and if any occurs the EvCtrl ask the diverse dm T to solve the collision problems. Finally, the new checkpoint is saved in the SS module. The loop continues until all dm T finish their evolution. We define context information as the knowledge provided by the model interaction, generally as a spatial restriction coming from both the f M and the e M during the segmentation process under the framework formulation.

Safe States

The SS module keeps a list of e M states along with the iteration number when it is saved, and the last collisionfree state or checkpoint. The SS uses these saved states to restore the models to a safe configuration before mesh overlapping. During evolution, whenever it is necessary, the EvCtrl can rollback the e M to any of the saved states, apply a collision solution to the problematic nodes, and re-evolve the e M towards the current synchronization point.

Collision Detector

This module implements a collision detector algorithm. The algorithm concerns with the detection of intersecting elements from different models or elements of the same model (self-collisions). It is worth noting that if a collision is not solved, the segmented models are invalid, as the meshes are struggling or overlapping. Hence, a collision detector should search potential elements in conflict efficiently and, if a collision is detected, some resolution strategy should be taken. Elements collision checking is performed several times, almost for every iteration, adding a high computational cost to the process.

As the collision detector is mainly dependent on the snake model representation, it is important to consider the space dimension to instantiate the particular ColD. Therefore, in 2D it is necessary to implement a segment intersection routine, but if we are dealing with a 3D space, the algorithm must handle spatial triangle intersections.

Improved Collision Detection Strategies:

In real time solutions, grids or kd-trees are good approaches to find elements in space. Some works consider that initial meshes are distant from each other and many evolution steps are required before a collision appears. Nevertheless, this assumption is not completely true, and collisions should be checked every a small number of step, with a high computational cost, even with classifications schemes. Generally, the detection time is higher than the snake evolution time.

A simple strategy to reduce the computational cost even more is to do one collision check after a fixed number of evolution steps N . If a collision is detected at the end of the interval, the EvCtrl goes back to a safe state, resolves the collision and continues. However, if N is large, intersections could be detected distant from the actual collision iteration. When this occurs, models trends to distort. On the contrary, if N is small, the computational cost is high; Nonetheless, the borders proximity is tighter. This checking strategy has a collision checking cost of Θ( K N ) where K is the total number of evolution steps.

To improve the collision detection algorithm, we implemented another strategy called sub-step checking. We still check for collisions each N steps but saving all the intermediate states (element positions and forces). If no collisions are detected after N steps, these states are erased. Otherwise, we use a binary search through the saved states to efficiently find the first collided state iteration. Thus, the total detections required for the sub-step checking strategy is Θ((K log N )/N ).

Collision Resolution Strategies

The final module implements a collision resolution strategy in collaboration with the dm T involved to avoid further intersections.

A simple but effective method to solve collisions is to freeze colliding elements. These elements are marked, and they are no longer updated in the next evolution steps. Another option, instead of freezing elements, is to use a proportional repulsive force opposite to the movement of each colliding element [START_REF] Teschner | Collision detection for deformable objects[END_REF]. Even though it is a more general approach, it is unstable, and, in the studied cases leads to a similar result as the freezing strategy, and at a higher cost.

Results

Experiments

We introduce five challenging real-case medical segmentation examples where the framework capabilities are highlighted. The first example is a 2D segmentation problem involving multiple and complex pelvic organs in MRI. The uterus borders have low contrast and its inner region has high signal inhomogeneities making it very difficult to segment using a single DM. Namias et al (2014a) remark the segmentation for this problem. Second, two segmentation tasks of adjacent volumetric objects are included: heart segmentation in CT and brain tumor segmentation in MRI. On the one hand, the soft tissue in CT imaging has low contrast making it complicate to segment by common dm T . On the other hand, DMA enables to segment multiple tumors simultaneously. Finally, two segmentation examples of complex structures in CT are shown where the presence of obstructing matter completely changes the image intensity inside the ROI.

We have considered two traditional dm T for the experiments: T-Snakes [START_REF] Mcinerney | T-snakes: Topology adaptive snakes[END_REF] and GVF-Snakes Xu and Prince (1997), which are briefly described in the "Appendix", since their capabilities and previous experience of the authors. The experimental parameters are summarized in Table 1. The experiments were ran in an Intel(R) Core(TM) i5-3570 CPU @ 3.40GHz with 16Gb RAM and Linux kernel version: 3.11.0-23-generic.

The segmentation results are validated against the ground truth (GT) given by the physician or available online. For the 2D experiments we use the Dice similarity coefficient:

D(A, B) = 2 × |A ∩ B| |A| + |B| (1)
where A is the reference pixel set and B is the DMA resulting pixel set. To compare the 3D surfaces we directly evaluate the volumetric differences using a raycast technique over the triangular meshes models according to the following volumetric coefficient metric:

M(A, B) = 1 -(f n + f p ) (2) f n = V A/B V A V B and f p = V B/A V A V B ( 3 
)
where f n is the false negative rate, f p is the false positive rate, V A is the volume of the reference model A and V A/B is the volume difference between A and B. In a similar way, V B is the volume of the DMA resulting model B and V B/A is the volume difference between B and A. Both quality metrics lie between 0 and 1 where 0 means no similarity and 1 a total similarity. With the only purpose of presenting the framework capabilities in the following experiments, we used a manual initialization. Even tough automatic model initialization could be done for each specific case, this issue is out of the scope of this paper.

Multiple organ segmentation in dMRI (2D)

In this section we present the segmentation of two adjacent pelvic organs: bladder and uterus vagina set (UV-S), under T2-weighted dynamic Magnetic Resonance Imaging (dMRI) for prolapse diagnose.

The dataset was acquired with informed consent of the patients, taken in the sagittal midline by specialists at the Hôpital La Timone, Marseille, France [START_REF] Pirro | Résultats préliminaires et perspectives de la modélisation dynamique pelvienne patient-spécifique[END_REF]) also used in (Rahim et al, 2010) and (Namias et al, 2014a). The segmentation stage comprises a fundamental part in the MoDyPe project2 supported by the French National Research Agency under reference ANR-09-SYSC-008. In T2-weighted images, the uterus segmentation represents a challenging goal due to its heterogeneous boundary and narrow shape (Namias et al, 2014a).

An initialization example is shown in Figure 2. We use previous segmentations of the the rectum as context information (Figure 2, on the right). We use only one e M for the bladder and three for the UV-S representing the uterus body, the cervix and the vagina. All dm T are T-Snakes.The UV-S set delimitation is particularly difficult because of its intensity inhomogeneities. For this reason we employ a three e M set to segment this complex structure. The UV-S region is represented by the union of the e M final states. 

Case

Input Meshes Image DMA Parameters

Pelvic organ segmentation

Uterus: e M =3 Bladder: e M =1, f M =2 (fat, rectum)

T2 256x256 MRI DICOM T-Snakes, 2D

ColD(N=25)

Heart segmentation

Heart: e M =1. f M =6 (lungs, liver, cava, aorta, stomach)

512x512x167 CT DICOM T-Snakes, 3D

ColD(N=25)

Tumor segmentation

Tumor: e M =1, f M =2 (white and gray matter) In red the collided segments, in green the non collided.

Results

We include six patients. This multi-object segmentation experiment exploits most of the capabilities of the framework. Firstly, we segment the bladder and the UV-S simultaneously, using the prior rectum segmentations as constraints. Some qualitative results are shown in Figure 3. In green, the segments that did not collide are depicted, and in red the collided elements.

On the one hand, the bladder contours are mostly green as they rarely interact with the UV-S contours. On the other hand, the UV-S borders interact with each other and with the rectum constraint (on the right). Although the f M are omitted in the figure, they were considered as constraints. Dice coefficients of the segmentation results against the GT given by the physician are summarized in Table 2. As can be seen, DMA achieves excellent results, particularly in the UV-S, despite the images intrinsic difficulties. 

Context Information Evaluation

The next two experiments highlight the importance of the context information derived from DMA formulation.

Heart segmentation in CT

In this experiment, we use a public dataset from the 3D Image Reconstruction for Comparison of Algorithm Database3 (Soler et al, 2012) called 3D-IRCADb-02, which is composed of two anonymized abdominal enhanced 3D CT-scans. The first acquisition has been made during the arterial phase in inhaled position.

The dataset provides the ground truth segmentation of the principal organs as DICOM images and also triangular surface meshes. We segment the heart using the ground truth meshes of the surrounding organs (lungs, stomach, liver and vena cava) as constraints.

The constraint organ meshes are shown in gray in Figure 4(a), the model initialization in green and the GT in yellow. We present three different runs. The first run sets the parameter configuration leading to a model expansion using no image information (nullifing the gradient external force). The second run employs all the standard forces but not the context information. Finally, the third run utilizes all of the available information. (c) Final state using all information. 

Results

The first run shows the importance of the context information since just using this piece of information, the dm T can achieve an acceptable segmentation quality (M = 0.765). As the e M does not use image information to guide their evolution, the results should over-segment the heart since the e M only stops when it collides with an f M . This phenomenon is remarked in the f p column of the Context experiment in Table 3. The f p representing the over-segmentation phenomenon, depicts the greatest error overall. In the second run, a standard segmentation is performed. Despite having a better overall segmentation [START_REF] Landman | Automatic segmentation of brain MR images using an adaptive balloon snake model with fuzzy classification[END_REF]. We employ four simulated brain MRI from the data set including the simulated image SimBRATS HG0004 which has two tumors (Figure 6). First, we segment the white and gray matter and the meshes are used as context information in the experiments. To segment the tumors, the deformable models were initialized with a spheric model (Figure 6 

Results

For the two tumors image, one e M was used for each one. We highlight this special case because we could segment both tumors simultaneously using DMA.

In this experiment, the usage of context information improved the stand alone snake segmentation process as shown in Table 4. As expected, the f p is considerably reduced using context information what avoids over-segmentation. Context information is particularly important in cases where the tumors location context and the extended edema present similar intensities. Under these conditions, the stand-alone snake had lower quality results than DMA (4 1 & 4 2 , Table 4).

Obstructions in CT

In CT imaging, some anatomic structures can feature remarkable heterogeneous image intensities. A representative example is the digestive system where there is a mixture of air, liquids, food, and fecal material. Under these circumstances, a simple segmentation strategy fails to properly segment the organ of interest. Nevertheless, the DMA framework can handle this issue. We present two occlusion segmentation examples: colon segmentation and stomach segmentation. A sagittal view of the rectum in a CT Colonography (CTC) is shown in Figure 7(a). Feces, rather than dark(air), appear in the rectum with a brighter signal intensity hampering the segmentation task. A sagittal view of the stomach is depicted in Figure 7(b). Likewise, the presence of food, liquids and air produces two distinctive signal intensities.

Colon segmentation

In this case, we use an anonymized public colonoscopy computed tomography (CTC) image from the National Cancer Institute Image Cancer Archive 5 . Some images present obstructions because of liquid and Results DMA was applied in 5 CTCs of the dataset where different sections were obstructed. No quantitative measures are presented because the missing found portions are about 4% ∼ 8% of the total volume of the ROI, giving a minimum variation of the M index (∼ 0.05%). In all cases, DMA managed to complete and connect the pending sections (Figures 8(a) and 8(b) on the right).

Stomach segmentation

The second occlusion experiment also uses the acquisitions from the 3D-IRCADb-02 dataset. We segmented the stomach in two images. In both cases we set three e M , two for the dark region and one for the bright one as shown in Figure 9(a). No context information was used.

Results Table 5 there are high f n rates because the method undersegments the ROI. A sagittal view of the segmentation result is presented in Figure 9(c). The dotted lined circles show where the under-segmentation occurs, being the most difficult areas to include because of intensity variations, concave shape and models interaction that make models stop distant from the real borders. 

Discussion

The real-case experiments included several segmentation strategies available on DMA. For instance, simple segmentation with constraints (heart), multiple segmentation (tumors) and complex segmentation (stomach and colon) and both complex and multiple segmentation (pelvic organs) which included CT and MRI imagery in 2D and 3D, and multiple dm T , showing the adaptability and wide branch of potential applications for the framework.

More precisely, in the uterus and bladder example, we segmented both a complex structure and a simple one simultaneously. The e M evolved in parallel and competed against each other to advance towards the organs borders. In the heart and tumor experiments, we simulated a sequential segmentation where we used previous knowledge such as f M to evaluate the importance of the contextual information. The DMA results show that the context information improved the stand alone snake results reducing the false positive rate, but sometimes increasing the false negative error. Then, we presented a concrete segmentation application where the DMA formulation is specially advantageous. We introduced two examples including colon and stomach segmentation in CT with obstruction problems. We took advantage of the framework characteristics to straightforwardly solve complex structure segmentation scenarios where previous works needed two or more different segmentation steps. A fair comparison between DMA and existing methods is hard because the latter cannot not model these complex scenarios as a whole.

In all cases, collision detection plays an outstanding role. Mesh collisions are detected and managed, both in 2D and 3D using different image modalities. It provides the usage of previous knowledge, in the form of meshes, as spatial restrictions to the e M . The explicit use of context information is a contribution since no previous works stand out its importance and benefits.

Conclusion

A novel open-source framework for multi-object segmentation in medical images was presented. The framework allows using and combining any explicit deformable model technique to perform segmentation tasks under different modalities in a transparent way. One of the main contributions of this proposal is the incorporation of a control scheme to coordinate the evolution of the models and resolve interaction issues. This module not only helps to prevent object overlapping or leakage, but also provides a mechanism to introduce context information from the other ROIs as fixed models. This piece of information has an important relevance since it improved, in some occasions, the standalone techniques segmentations results. Other relevant contribution is its possibility to work under several segmentation conditions: sequentially, by first segmenting the "simple" objects, converting them to fixed models and then "hard" ones; or, in parallel, evolving multiple models that compete to segment different ROIs. The experimental results showed great adaptability to a wide range of medical imaging scenarios.

Although only two classic dm T were employed, DMA can easily integrate any explicit method. Moreover, for the collision resolution module, other strategies could be incorporated, which should be considered as future work. Nevertheless, we think that using, for instance, a repulsion force, would lead to similar results increasing the computational cost.

Appendix: Snakes Formulations

Snakes are explicit deformable models that can evolve towards an object boundary within the image under the influence of internal forces and external forces. After the initial proposal of [START_REF] Kass | Snakes: Active contour models[END_REF], several formulations have been proposed [START_REF] He | A comparative study of deformable contour methods on medical image segmentation[END_REF]. In this paper, we consider two well-known DM techniques as examples. The first method is based on the T-Snakes formulation proposed by [START_REF] Mcinerney | T-snakes: Topology adaptive snakes[END_REF] and the second is the Gradient Vector Flow Snakes (GVF-Snakes) presented by Xu and Prince (1997).

T-Snakes formulation

T-Snakes based methods are discrete approximations to a conventional parametric snakes model while retaining many of its properties. The model is geometrically represented by a closed polygonal for 2D problems and by a triangular surface mesh for 3D. The deformation of the snake model is governed by discrete Lagrangian equations of motion, and each element x(t) evolves according to the following motion equation:

x(t + 1) = x(t) -∆t (aα(t) + bβ(t) -pρ(t) -qf (t)) ( 4)

where α, β are the internal forces (tension and flexion), f , ρ are the external forces (balloon and image gradient forces), and a, b, p and q are the force weighting parameters.

The T-Snakes formulation modifies the original external force adding an adaptive inflation force ρ(t) term depending on the image intensity features.

ρ(t) = F (I(x(t))) • n(x(t)) (5) 
where n is the unitary normal vector to the model and F is a binary function relating ρ to the intensity field of the image I:

F (I(x(s, t))) = +1 if |I(x(s,t))-CI(r)| kσ(r) ≤ 1 -1, otherwise (6) 
where CI(r) is the characteristic intensity of the ROI, σ(r) is the ROI intensity deviation, and k is an input parameter.

GVF-Snakes formulation

Gradient vector flow (GVF) snakes introduce a new external force for active contour models. The difference between traditional snakes and GVF-Snakes consists in that the latter converge to boundary concavities and they do not need to be initialized close to the boundary (Xu and Prince, 1997).

To improve the original snake formulation, the authors introduced a non-irrotational external force field v(x, y) = [u(x, y), v(x, y)] known as gradient vector flow field. The field is calculated as a diffusion of the gradient vectors of a gray-level or binary edge map:

GV F = µ(u 2 x + u 2 y + v 2 x + v 2 y ) + |∇f | 2 |v -∇f | 2 dxdy ( 7 
)
where µ is an input parameter.
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 2 Fig. 2 Uterus and bladder segmentation in sagittal midline MRI. e M (circles on the left) and f M (right).
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 3 Fig. 3 Bladder and UV-S final DMA results in six patients. In red the collided segments, in green the non collided.
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 4 Fig. 4 Experiment mesh representation. (a) The initial e M (in green), ground truth (in translucent yellow) and surrounding organs f M (in gray). (b-c) In green the evolving elements and in red the frozen ones for the different runs.

  metric (M = 0.845) and half of the f p volume compared to the first run, Figure 4(b) shows that the e M intersects boundary organs, especially the liver and the stomach. The final experiment used all of the available information. In this case, the e M molded to the surrounding organs (Figure 4(c)), and obtained the best result (M = 0.892) with the lowest f p and f n volumes. The analytic results are visually confirmed in Figure 5. Figure 5(a) shows over-segmentation of the DMA result using context information (in blue) against the ground truth (in yellow). In Figure 5(b), even though the false positive rate is reduced due to the image information, there are some over-segmented pieces. Finally, Figure 5(c) shows the best result using both image and context information. Tumor segmentation in MRI This experiment consists in tumor segmentation in MRI. Brain tumor image data used in this work were obtained from the MICCAI 2012 Challenge on Multi-modal Brain Tumor Segmentation 4 (Landman

  (a)) and a GVF-Snake formulation was applied (Figure 6(b)).
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 65 Fig. 6 MRI tumor segmentation. (a) Experiment set-up. One e M for each tumor (green). (c) DMA result.
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 7 Fig. 7 Occlusion examples in CT. (a) Rectum occluded region in a CTC. (b) Stomach occluded region from the IRCAD dataset. Heterogeneous region limit in red line
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 8 Fig. 8 CTC colon obstruction problems. Experiment set-ups on the left. Previous segmentation results (in red) acting as f M . The e M in green. Mesh representation of the segmentation result over the CT on the right.

Fig. 9

 9 Fig. 9 Stomach segmentation experiment over complex structure ROI. (a) Experiment set-up over the CT. In translucent red the GT, in green the e M initialization. (b) DMA segmentation result. (c) Under-segmentation problems.
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Multiple organs segmentation, quantitative comparison using Dice similarity against GT.
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  summarizes the segmentation results. DMA achieves good results in both cases, even though

	Data		No Context			With Context
	Set	M	f P	f N	M	f P	f N
	1	0.867 0.019 0.114	0.936 0.003 0.061
	2	0.848 0.022 0.130	0.890 0.002 0.108
	4 1	0.593 0.365 0.042	0.879 0.003 0.118
	4 2	0.682 0.265 0.053	0.843 0.005 0.152
	7	0.832 0.121 0.049	0.895 0.003 0.102

Table 4

 4 Tumor segmentation experiment. Context information vs. stand alone snake technique.
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 5 Stomach segmentation performance.
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