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Laser induced damage is a major issue in high power laser facilities such as Laser MegaJoule (LMJ) and
National Ignition Facility (NIF) since they lower the efficiency of optical components and may even require
their replacement. This problem occurs mainly in the final stages of the laser beamlines and in particular
in the glass windows through which laser beams enter the central vacuum chamber. Monitoring such
damage sites in high energy laser facilities is therefore of major importance. However, the automatic
monitoring of damage sites is challenging due to the small size of damage sites and to the low resolution
images provided by the onsite camera used to monitor their occurrence. A systematic approach based on a
deep-learning computer vision pipeline is introduced to estimate the dimensions of damage sites of the
glass windows of the LMJ facility. The ability of the pipeline to specialize in the estimation of damage
sites of size less than the repair threshold is demonstrated by showing its higher efficiency than classical
machine learning approaches in the specific case of damage site images. In addition, its performances on
three datasets are evaluated to show both it robustness and accuracy. © 2022 Optica Publishing Group

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

The Laser MegaJoule (LMJ) in France, the National Ignition Fa-
cility (NIF) in the United States and ShenGuang-IV (SG-IV) in
China are high energy laser facilities designed to achieve fusion
ignition experiments by inertial confinement [1–3]. The final5

optics, which have a side length of 40 cm, are illuminated by the
laser beams and may thus suffer from laser-induced damage,
defined as a permanent change of the optical components in-
duced by laser beams [4–7]. Laser damage initiation is due to
a combination of loading induced by the UV laser beam [8] on10

random defects [9, 10] or particulate contamination on the optics
surface [11, 12] or even laser self-focusing [13]. Initiated damage
may grow after each laser shot when the laser energy is greater
than the growth threshold [14]. Damage growth on optics can
thus limit the available laser energy for each experiments.15

In order to mitigate damage growth, some techniques have
been developed such as locally reducing the laser energy under
the growth threshold at damage positions by shadowing [15]
or using CO2 laser optics mitigation [16, 17]. The effective and
optimal use of these methods relies on the early detection of20

the growth of damage sites ranging from 50 µm to 750 µm in
diameter. These damage diameters are close to the field of view
of one pixel for observation systems of high energy laser facilities

such as the Final Optics Damage Inspection (FODI) at NIF [18],
the SG-III FODI [19] and the Chamber Center Diagnostic Module25

(MDCC) on the LMJ facility [15, 20]. In order to make damage
sites visible, observed optics are illuminated by their edges,
resulting in dark-field pictures on which damage sites appear
as bright spots. For the LMJ, damage sites on the final optics
are illuminated by two green LEDs. The MDCC imaging system30

acquires images of every 176 windows after each laser shot.
These images have a definition of 4096 × 4096 pixels with a
resolution of 100 µm/pixel and a pixel depth of 16 bits.

Image analysis methods have been developed to detect and
track damage growth as early as possible. They are mostly based35

on two steps: damage detection using different algorithms and
then precise reconstruction of damage shape. To identify the
damage sites in images, an algorithm based on the analysis of the
Local Area Signal-to-Noise Ratio (LASNR) for each pixel of each
image was proposed [21]. Another method based on local area40

signal strength and 2D histogram was then proposed to detect
damage sites [22]. To reconstruct the shape of damage sites
precisely, a region growing algorithm is used [21]. In the case
of the LMJ facility, this image processing was further improved
by using image registration principles to extract, after motion,45

brightness and contrast corrections, 51 × 51 pixel sub-images of
individual damage sites from the MDCC images (Fig. 1). This

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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approach offers sub-pixel resolution [23]. In this work, a deep-
learning computer vision pipeline to detect “real” damage sites
from potential false alarms in the aforementioned sub-image50

dataset and to measure damage site diameters is used.

Fig. 1. Image of a glass window acquired by the MDCC cam-
era. The white pixels correspond to potential damage sites
detected by the image registration method to produce sub-
images with 51 × 51 pixels such as the one displayed in the
red box.

The interest for machine learning, and especially deep learn-
ing, over classical algorithms i.e. non-learning algorithms, arises
from its ability to generalize well for unknown data by auto-
matically generating relevant variables from a set of images to55

represent the data. Despite the growing amount of reviews high-
lighting this ability [24], the underlying mechanisms of such
performance have not been unveiled [25]. Supervised machine
learning algorithms for image processing usually work in two
steps. The first one is a feature extraction step where variables60

of interest are manually or automatically inferred from the data
(the images). The set of extracted features is usually referred to
as the latent space representation. In the second step, these fea-
tures are combined and used by a series of functions to produce
new variables which are solutions to the task at hand. Machine65

learning has been increasingly used for studying laser induced
damage [26]. Methods to classify damage sites have been devel-
oped using either manually extracted features directly linked
to physical properties when enough data was available to dis-
criminate between damage and artefacts [27], or automatically70

extracted ones when the data is composed of high resolution
images only to separate the damage sites based on their mor-
phology. Similarly, deep learning algorithms have been applied
to damage detection problems [28, 29] in which binary segmen-
tation maps of optical components are generated, where ones75

are pixels associated with laser-induced damage and zeros with
the rest. However, research on damage site localization prob-
lems, which aim at detecting and estimating the size of damage
sites using bounding boxes, is sparse and it is the main goal of
the solution proposed in this article. In addition, in supervised80

learning the emphasis is usually put on the end result, i.e. the
output of the algorithms, rather than on its relation with the
extracted features or latent space. Exploiting this relation would
diminish the black-box behaviour of the associated deep learn-
ing algorithms, which could lead to a better characterization of85

laser induced damages on sensitive optical components. Sev-
eral very performant localization algorithms exist (such as Mask
R-CNN [30]) or YOLO [31]), and while they rely on successive
sub-components to obtain good results, they train them simul-
taneously and do not get rid of the aforementioned black-box90

behaviour. Inspired by these methods, we developed a pipeline
or a sequence of algorithms, to isolate and optimize indepen-

dently the relevant sub-tasks which we deemed essential to the
localization and characterization of damage sites. We first de-
scribe this approach and then compare it to simple alternatives.95

This approach is based on damage site images provided by the
on-site MDCC camera. Let us stress out that we also benchmark
it on a third dataset generated in the MELBA facility, a centime-
ter aperture laser damage testing set-up equipped with high
resolution diagnostics [8] giving access to images at a 6.5 µm100

resolution (damage size and fluence distribution).

2. MATERIAL AND METHODS

A. Datasets
Three datasets were used. The first to train the pipeline and
evaluate its performances while the two others were exclusively105

used to test its precision and robustness. Each dataset was com-
posed of labeled sub-images, i.e. input sub-images and target
variables: a target class indicating if they contain real damage
sites or artefacts (reflections, false alarms, or only noise), as well
as the target bounding box around the damage site when rel-110

evant. Each bounding box was provided as a 4-dimensional
vector (x0, y0, w, h), where (x0, y0) is the center of the bounding
box on the sub-image, and w and h are respectively the width
and height of the bounding box, which were used as estima-
tions of the size of the damage sites. The first and main dataset115

(LMJ 1) was composed of 11620 sub-images of 51 × 51 pixels,
corresponding to 166 damage site locations on one full glass
window, captured at 70 different times. The captures were per-
formed after one laser shot or after a sequence of laser shots.
The intensities are displayed in gray levels ranging from 0 to 216,120

and the objects of interest are assumed to be at the center of the
sub-images (Fig. 1). The targets were automatically generated
using a skimage module [32], and their quality was manually
assessed. Fig. 2 shows the distribution of the width and height
of the target bounding boxes on damage site sub-images. The

(a) (b)

(c) (d)

Fig. 2. Histogram (first column) and cumulative probability
(second column) of the width (a, b) and height (c, d) of the
target bounding boxes of damage images in the LMJ 1 dataset.

125
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width and/or height of most damage sites were smaller than
7 pixels, which corresponds to the aforementioned limit on the
size of reparable damages (750 µm). Note that a few damage
sites (≈ 100) had a bounding box height or width larger than 20
pixels, or approximately 2 mm. These very large damage sites130

cannot be repaired. Damage sites should be detected as early
as possible to prevent them from reaching such dimensions,
especially when they have a rapid growth.

The main dataset (LMJ 1) was further split into 3 sets of dam-
age site locations. For the learning phase of the networks, the135

first 100 site locations (7000 sub-images) were divided into 70
training locations (4900 damage site sub-images) and 30 vali-
dation locations (2100 sub-images). The remaining 66 site lo-
cations were kept for the testing phase. The validation data
was used to keep track of effects such as overfitting during the140

training phase. The testing sites were used afterward to per-
form a statistical analysis of the performances of the trained
network. The second dataset (LMJ 2) contained approximately
24000 sub-images acquired by the MDCC camera on different
windows, after a sequence of laser beam shots or a single shot.145

The pixel intensities were similar to those from the main dataset.
Since the damage sites were located on different windows, the
date of acquisition by the MDCC camera varied from site to site,
and there were irregularities such as the number of sub-images
available for one particular site location. These irregularities150

of the data provided the means to test the pipeline with data
more representative of the current operation of the MDCC on
the LMJ facility. The associated targets were automatically gen-
erated. Despite the similarities of this dataset with the LMJ 1
dataset, its generated targets were not characterized as deeply155

and were thus used for performance assessment only. Finally,
the third dataset was composed of more than 100000 sub-images
obtained in the MELBA experimental set-up. It allowed the
study of the growth of laser induced damage when irradiated
with fluences matching those of the LMJ facility, with precise160

measurements providing high-resolution images (6.5 µm/pixel
against 100 µm/pixel for the LMJ datasets). The purpose of this
dataset was to test the robustness of the size estimation network
and to exploit the high resolution of the sub-images to get an
accurate validation database. In order to obtain accurate tar-165

gets, the bounding boxes were automatically generated using
the high-resolution sub-images. Additionally, a low-resolution
version of this dataset was generated. The stability of the com-
plete pipeline was assessed by comparing its output on this
low-resolution version to the targets from the high resolution170

one. This dataset presented significant differences with the other
two, which prevented us from training the network on it de-
spite the high amount of data, as it might have led to a reduced
performance for the LMJ data.

B. Description of the pipeline175

The pipeline is a sequence of algorithms using deep-learning
to perform specific tasks which were deemed essential to the
proper estimation of damage site size.

B.1. Sub-images pre-classification

The first step was to classify the sub-images. Not all sub-images180

contained damage sites, and it was important to discriminate
between real damage sites and artefacts. If the low resolution
does not permit to obtain an accurate classification of the damage
sites on the basis of their morphology, unlike the work proposed
in ref. [33] where laser induced damage sites were classified into185

different morphologies using high-resolution sub-images, it is

still possible to discriminate between sub-images of damage sites
and artefacts. Three types of artefacts were considered: reflection
sites, empty sub-images and false alarms. The first type is due
to the MDCC LED lighting, while the two others are caused190

by the image registration method. Means to detect empty sub-
images and reflection sites were developed and incorporated
into the pipeline, but not for the false alarms which can be easily
filtered out at the end by checking for locations with decreasing
intensities or moving objects. In Fig. 3 are shown subsets of sub-195

images of three locations of potential damage sites in the main
dataset LMJ 1, to illustrate the concept of empty sub-images
false alarms and reflection sites.

(a) Damage site appearing after several shots. The first sub-images are
empty

(b) False alarm detected as a damage site in the first sub-image. After
some time, it disappears and the sub-images are empty.

(c) Reflection of a growing damage site at the center of the sub-images.
The reflected damage is brighter, at the bottom.

Fig. 3. Evolution of three locations of potential damage sites
with laser shots, from early acquisition by the MDCC camera
on the left to more recent ones on the right.

A segmentation was then performed on the sub-images to
identify the reflection-free ones containing damage sites. Bound-200

ing boxes around the damage sites were generated from the
resulting segmented sub-images. They were fed as training tar-
gets to the the last damage size estimation network (or bounding
box regression network).

Detection of empty sub-images A manual classification of the205

sub-images was performed to discriminate between empty and
non-empty images. The set of sub-images resulting from this
manual classification was used to train the neural network
schematized in Fig. 4 to automatically detect empty sub-images.
This simple convolutional neural network is composed of 4210

convolutional layers, which produce 5×5×64 images from one
51×51 sub-images, feeding into a sigmoid-activated artificial
neuron outputting the probability of an input sub-image be-
ing empty. The input sub-images were augmented, i.e. rotated
around the center and flipped. The use of data augmentation215

prevented the network from overfitting and improved its ability
of generalization. The chosen loss function was the binary cross
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entropy between the target and predicted values, optimized with
the Adam optimizer with a default learning rate of 0.001. The
performance of the network on the testing sites was estimated220

using the precision parameter, defined as the ratio between the
number of correctly classified empty and non-empty sub-images
over the total number of sub-images. A precision of 95.38 % was
obtained.

Detection of reflection sites225

The sub-images were then further classified to filter out those
containing both a damage site and its reflection, resulting from
the multi-reflection of light on the two sides of the vacuum win-
dow. Due to the slight tilting angle of the MDCC (up to 3◦), the
light beam illuminating the damage sites may be reflected on the230

front face of the vacuum window before going through the rear
face again and reaching the MDCC camera. Both reflection and
real damage sites appear on the sub-images. The intensity of
the reflection site is significantly lower than that of the damage
site. Thus only large damage sites with a higher scattered light235

intensity may lead to the generation of reflection sites. We call
< Idamage > the average light intensity of a damage site. The
reflected site is obtained after a reflection on the front face of the
glass window (reflection coefficient r) followed by a transmis-
sion through the rear face before reaching the MDCC camera.240

The expected ratio between the average reflection light intensity
< Ire f lection > and the real damage light is therefore:

< Ire f lection >

< Idamage >
≈ r (1)

In all three datasets, the objects of interest were always at
the center of the 51 × 51 sub-images. This led to the following
criterion for reflection:245

I(25, 25)
max(I)

≤ 2.r, (2)

where I(25, 25) denotes the intensity at pixel (25, 25), i.e. at the
center of the sub-image. The factor 2 was arbitrarily added to
take into account the high intensity variations which may be
observed across the pixels of a single object. The sub-images
were considered empty whenever the calculated ratio was below250

2.r, the sub-image is considered centered on a damage reflection.
Despite its simplicity, this criterion provided an accuracy of
99.6% on the test dataset.

B.2. Sub-image segmentation

This task was performed with a UNET-like architecture [34],255

which had already proven its efficiency in damage detection (let
us stress out that what is usually referred to as damage detection
is actually damage site image segmentation) on large images [28].
The network architecture is shown in Fig. 5. The U shape of the
network was kept. The left part of the U reduced the width260

and height of the images, added more channels and extracted
useful features, while the right part combined different levels of
features (three levels are visible in Fig. 5) to construct the target
image from relevant information.

Reflection-free and non-empty sub-images only were used265

at this stage (around 2700 sub-images out of the 7000 present in
the training subset of the LMJ 1 dataset), and the targets were
automatically generated using the segmentation methods from
the Python scikit-image module, a library of image processing
tools [35]. Emphasis was put on the detection of small damage270

sites, with small grayscale values close to the noise level of the
acquired sub-images. Although the network performed better
than the classical machine learning approach, the price to pay for
high performances was a detection of false damage sites in some
sub-images. It was thus necessary to filter out irrelevant (i.e.275

non-centered) objects from the sub-images using the threshold-
based tools provided by scikit-image (skimage). The results of
the segmentation step for some damage sites with low pixel
intensity values are presented in Fig. 6.

The first row displays 4 input sub-images of the algorithm,280

representing damage sites in different environments. a1 shows a
damage site with an over-illuminated band on the right, which
is considered as noise, b1 is an empty sub-image, c1 is a dam-
age site of about 3 pixels (≈ 300 µm), with background noise
presenting a local maximum, and d1 corresponds to a larger285

damage site with locally high pixel intensities in the bottom-left
corner (visually invisible due to the high pixel intensities of the
damage site itself), which corresponds to a reflection. The sec-
ond row shows the result of the segmentation process using the
tools provided by the skimage module [32]. For these 4 specific290

examples, the threshold-based methods failed to extract useful
information only. In a2, only the high intensity band shown
in a1 was segmented. Despite the seemingly low noise levels
in the sub-images b1 and c1, the result of the segmentation is
inaccurate and even shows noise as damage sites in b2 and c2.295

As expected, the high intensity noise in d1 was difficult to iso-
late, and appeared as a damage in d2. The third row contains
the result of the segmentation step using our pipeline. a3, b3,

Fig. 4. Architecture of the convolutional network tasked with the detection of empty sub-images. The output dimensions, kernel
size, stride and padding are indicated under the convolutional blocks, which are composed of a convolutional layer, a batch normal-
ization, a droupout layer and a leaky ReLU activation function.
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Fig. 5. Architecture of the UNET-like convolutional neural network used to generate the segmentations of the damage sub-images.
The left part extracts features while reducing the size of the sub-images, and the right part combines these features to construct the
expected output.

Fig. 6. Comparison of segmentation+filtering in the pipeline
and using skimage threshold-based segmentation method.
The first row displays 4 input sub-images. In a1 can be ob-
served a high intensity vertical band due to LED light on the
side of the glass windows. In b1 is displayed a sub-image
without damage site. c1 is a small damage site with inten-
sity levels close to the background. d1 is a large damage with
locally high pixel intensities in the bottom-left corner. The
second row shows the segmentation using skimage methods
on the 4 input sub-images. The third row is the segmentation
using the pipeline, and the fourth one combines this segmenta-
tion with an object filtering method.

c3 and d3 show an accurate segmentation of the central objects
present in the input sub-images, despite the noisy background.300

In certain cases, other non-centered objects might appear, such
as the large band in a3. The pipeline segmentation was there-
fore combined with a simple filtering method to keep only the
centered objects. The results of this complete process for all 4
sub-images of the first row is presented in a4, b4, c4 and d4.305

B.3. Size estimation of laser induced damage sites

At this stage, the target bounding boxes were used to train a
convolutional neural network using the information obtained

via the previous steps in order to enrich the loss function and
maximize the performances. The variational neural network310

with the architecture shown in Fig. 7 was used. First, the 2-
channel inputs, composed of the damage site sub-image as well
as the corresponding segmented sub-image, propagate through
convolutional layers followed by fully connected (FC) layers
to produce latent vectors of dimension 128, i.e. intermediate315

representations of the inputs which constitute the latent space. In
the specific case of object localization, the latent space is expected
to embed relevant information about the damage sites in the 128
coordinates of the intermediate representations. To improve the
efficiency of the information embedded into the latent vectors,320

the construction of the latent space was constrained by forcing
each of the 128 coordinates to be normally distributed using
two 128 coordinate vectors µ⃗ and σ⃗, which are respectively the
mean and standard deviations of the coordinates of the latent
vectors. Finally, the latent vectors were used by another FC layer325

(the decoder made of 4 neurons) to output an approximation
(x̃0, ỹ0, w̃, h̃) of the target bounding box for each input.

The network was trained on augmented data, i.e. rotated and
flipped sub-images. The loss function was designed to allow the
network to perform better on damage sites smaller than 7 pixels,330

to discriminate between damage site sub-images and artefacts,
and to force the normal distribution of the coordinates of the
latent vectors. This was achieved with a combination of the
Smooth L1 Loss with several other terms, each accounting for
one of the specific wanted effects.335

C. Performance metrics

Object detection aims at localizing objects (object localization), i.e.
finding bounding boxes around them, and classifying them (clas-
sification). Although the means to evaluate the performances of
algorithms specifically designed for the detection of objects have340

been exhaustively studied for problems different from that of
laser-induced damage, little interest has been shown on the eval-
uation of the performance of object localization algorithms. Most
object detection algorithms generate several candidate bounding
boxes (regions in Mask R-CNN [30] or anchors in YOLO [31])345
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and filter out irrelevant ones using the Intersection Over Union
score (IoU). We chose the IoU score as an object localization score
which measures the overlap between the predicted and target
bounding boxes instead of using it as a filtering tool. However,
it did not provide sufficient information to properly characterize350

the object localization methods at play (the pipeline or its alter-
natives). Three metrics providing similar results but holding
complementary information were thus added. An overview of
the calculations of the four scores is displayed in Fig. 8. T is
the set of pixels contained within a target bounding box, and355

P is the set of pixels contained within the associated predicted
bounding box generated by an object localization algorithm.

C.1. Intersection over union (IoU)

The IoU is defined as:

IoU =
|P ∩ T|
|P ∪ T| . (3)

It measures how well two bounding boxes overlap, and yields360

consistent results for large objects, i.e. objects larger than 10
pixels, even with an error of 1 to 2 pixels on the dimensions or
position of the predicted bounding boxes. For damage sites of
width or height less than 7 pixels (750 µm), which are the damage
sites of interest since they are those which can be repaired, a drop365

of the IoU score depending on the ability of the bounding box
prediction solutions to find such objects should thus be expected.
The IoU does not hold information on the distance between
predicted and target bounding box centers. If the bounding
boxes do not overlap, the score will remain 0, no matter how far370

their centers are. Therefore, studying failing cases may prove
difficult, in particular in the case of small objects (with width

Fig. 8. Calculations of the Intersection over Union (IoU), Gen-
eralized IoU (GIoU), Precision (Pr) and Recall (Rec) using
the Target bounding box (T) of a damage site, the Predicted
bounding box (P) generated by an algorithm and the Smallest
enclosing box (C) of the predicted and target bounding boxes.

or height less than 2 pixels). This is why the Generalized IoU
(GIoU) [36] was also considered.

C.2. Generalized intersection over union (GIoU)375

The GIoU is defined as:

GIoU = IoU − |C \ (P ∪ T)|
|C| . (4)

Fig. 7. Architecture of the variational bounding box regression neural network used to estimate the size of the damage sites. Each
damage site sub-image and its segmentation are fed into convolutional layers to extract relevant features, before propagating
through fully connected layers to generate the latent vector L. The coordinates of L are all normally distributed, with means and
standard deviations µ⃗ and σ⃗. From the latent vector, the predicted bounding box target with coordinates (x0, y0, w, h) is produced
(red rectangle).
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where C is the set of pixels within the rectangle containing both
P and T. The values of the GIoU range from -1 to 1, where the
values in the [-1;0] range correspond to an IoU of 0. It shows
a great agreement with the IoU for high values, while offering380

more information on damage sites with low IoU values. The
GIoU could in theory replace the IoU, but it is generally less
employed. Therefore, both metrics were chosen.

C.3. Precision and recall

Finally, the expression of precision is385

pr =
|P ∩ T|
|P| . (5)

and recall is defined as

rec =
|P ∩ T|
|T| . (6)

Using these definitions, the precision indicates how well the
algorithms are capable of finding the pixels which best represent
the objects of interest, i.e. damage sites, while the recall provides
information regarding the ability of the algorithms to encap-390

sulate the entirety of a damage site. A high precision but low
recall means that the tested algorithm may find some features to
identify the damage sites, but is not capable of estimating their
size. The IoU is positively correlated with the average of both
metrics, and looking at each one of them separately is another395

means to have an in-depth view of sub-images with similar IoU
values.

3. RESULTS AND DISCUSSION

A. Comparison of the different solutions
The performances of the pipeline were evaluated with the cho-400

sen metrics in the case of sub-images containing damage sites
only. The test subset of the main LMJ dataset (LMJ 1) was thus
reduced to only 1700 sub-images of real damage sites. However,
training subset also contained sub-images associated with arte-
facts or even empty sub-images. In these cases, the coordinates405

of the bounding boxes were 0. All 4 metrics were computed
for every sub-images, for the pipeline and the 6 alternatives
presented in table 1: a simple convolutional neural network
(CNN), the random forest algorithm (RF), and the ResNet50 [37]
or Inception V3 [38] networks for the feature extraction, coupled410

with either a neural network (RN50+VNN, IV3+VNN) or the
random forest algorithm (RF). Each alternative was optimized
in order to provide the best possible results.

Despite the metrics supporting the results, they should be415

viewed as mostly qualitative. The comparison of machine learn-
ing algorithms is a complex task, which requires the considera-
tion of many parameters. Several means to improve the results
of the alternatives to the pipeline exist. However, the results
should provide sufficient information to justify the design of a420

pipeline to tackle the damage site localization problem.
First, the mean GIoU for RF algorithm is well below 0, which

evidences the fact that using the intensity of isolated pixels alone
is not enough to approximate the dimensions of a damage site.
Transfer-learning based methods, namely RN50 and IV3 + VNN425

or RF, provide better results. The choice of the RF algorithm
was inspired by reference [33], which shows that feeding a set of
relevant features extracted by a pre-trained backbone to decision
trees (and thus the RF algorithm) should provide good results.
However, low IoU values were obtained for the RN50+RF and430

IV3+RF solutions with our datasets. These results point out the
influence of the specificity of the dataset. The resolution of the
MDCC images is too low relative to the size of the damage sites
in the 51 × 51 pixels sub-images, which is different from what is
usually observed in the datasets with which the networks were435

trained. Still, the backbones provide a better representation of
the damage sites than the sub-image pixel intensities (i.e. the
RF algorithm only). Finally, combining RN50 and IV3 with the
VNN instead provides better results, with an IoU exceeding
0.5, and precisions and recalls clearly demonstrating the ability440

of the overall architectures to find suitable bounding boxes for
most damage sites. Finally, the CNN was trained specifically
for datasets related to laser-induced damage. Therefore, the
latent vectors were more relevant than in the case of pre-trained
backbones RN50 and IV3, as evidenced by the increased values445

of the IoU and GIoU. However, the performances of the CNN
drop for smaller damage sites, which are those of interest, as
evidenced in Fig. 9, on which the GIoU scores for the damage
site sub-images of the test subset as well as the diagonal length
of the bounding boxes (referred to as damage size) are displayed.450

Therefore, the CNN does not seem to be a practical solution. In
the end, the high values of the performance metrics observed
for the pipeline justify its use over other solutions.

Fig. 9. Scatter plot of the GIoU score and damage size (bound-
ing box diagonal length,

√
sur f ace) for each of the damage

sites from the test subset of the LMJ 1 dataset. The predictions
were generated by the one-step CNN. Each point is a damage
site.

B. Performances of the pipeline

Table 2 contains the mean values of the different metrics for the455

two LMJ datasets (LMJ 1, LMJ 2) and the MELBA dataset.
The IoU is greater than 0.7 for all three datasets, which indi-

cates the ability of the network to properly predict the bounding
boxes in all three cases. The small differences observed between
the mean IoU and GIoU are evidence of a good consistency460

throughout all the damage sites. Finally, the recall values are
greater than 0.9, which means that the predicted bounding boxes
almost completely encapsulate the target bounding boxes. Thus,
the discrepancies between the predicted and target bounding
boxes are mostly due to an overestimation of the damage size by465

the predicted boxes compared to the target ones. This lowers the
risk of wrongly assuming that a damage site is still repairable.
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Pipeline CNN RN50+VNN IV3+VNN RN50+RF IV3+RF RF

IoU 0.910 0.724 0.516 0.502 0.444 0.463 0.111

GIoU 0.908 0.715 0.489 0.463 0.364 0.417 -0.398

pr 0.940 0.883 0.830 0.719 0.618 0.612 0.189

rec 0.966 0.817 0.581 0.643 0.576 0.686 0.195

Table 1. Mean values of the Intersection over Union (IoU) and Generalized Intersection over Union (GIoU) calculated for the
pipeline and the 6 alternatives: single-step convolutional neural network (CNN), ResNet50 with a variational neural network as
decoder (RN50+VNN), Inception V3 with a VNN (IV3+VNN), ResNet50 with the random forest algorithm as decoder (RN50+RF),
Inception V3 with the RF (IV3+RF), and the Random Forest only (RF). The scores were evaluated for the 1700 damage sites sub-
images of the testing subset of the main LMJ dataset.

LMJ 1 LMJ 2 MELBA

IoU 0.910 0.938 0.729

GIoU 0.908 0.937 0.729

precision 0.940 0.964 0.743

recall 0.966 0.971 0.976

Table 2. Mean values of the IoU, GIoU, precision and recall
calculated on the 3 datasets: the test subset of the main dataset
(LMJ 1), the second dataset (LMJ 2) and the MELBA dataset.
The predicted bounding boxes were generated using the
pipeline.

B.1. Efficiency based on damage size

In Fig. 10, the histogram of the IoU values for all the damage sites
of the test subset (a) are plotted. The damage sites of interest,470

those with width or height less than 750 µm, were filtered out to
generate (b).

(a) (b)

Fig. 10. Histogram of the computed IoU score for (a) the com-
plete subset of the main dataset, and (b) only the damage sites
with a predicted bounding box diagonal length less than 10
pixels.

Out of the 773 filtered damage sites present in Fig. 10 (b), 710
have an IoU value greater than 0.8, among which 674 have a
perfect score. The distribution for all the damage sites showcase475

a few failing damage sites, 135 potential damage sites with an
IoU less than 0.7 out of 1700 damage site sub-images. These 135
failing cases correspond to either empty sub-images (containing
no damage site), false alarms which the pre-classification step
failed to filter out, large damage sites (more than 10 pixels in480

height and width) or very elongated damage sites. Examples of

these failures are provided in Fig. 11.

(a) (b) (c)

Fig. 11. Examples of damage sites for which the pipeline
failed. In (a) an elongated damage site, in (b) a large damage
site, and in (c) a false alarm wrongly labelled as damage site.
The red rectangles are the predictions, the white ones are the
targets.

In the case of large damage sites and elongated ones, the
predicted bounding boxes widths and/or heights were greater
than 7 pixels, thus above the size threshold of 750 µm, which is485

enough for us to monitor them carefully. Overall, the network
performs better on smaller damage site sub-images. This is
shown in Fig. 12.

In Fig. 12 (a), each point is a damage site sub-image of the test
subset. They are positioned based on their predicted bounding490

box diagonal length (labelled as damage size) and their associ-
ated IoU score. Since the set of diagonal length values is finite
and smaller than the number of damage sites, a 2D density plot
is also displayed in Fig. 12 (b) to highlight the distribution of
the damage sites in (a). The network generates more accurate495

predictions for damage sites with predicted diagonal lengths
less than 10 pixels. As the size of the damage sites increases,
good predictions are still obtained, but with lower IoU values
than in the case of the smallest damage sites. These results agree
with the way the bounding box regression network was trained:500

the loss function was designed in such a way that the pipeline
would pay more attention to the smallest damage sites. This is
highlighted in Fig. 13.
Fig. 13 (a) displays the norm of the latent vectors generated
by the encoder of the bounding box regression network for all505

the sub-images of the damage site (approximately 4000 input
sub-images), and the diagonal length of the predicted bounding
boxes. The diagonal length of the predictions is highly correlated
with the diagonal length of the target bounding boxes as shown
in Fig. 13 (c). Fig. 13 (b) is a zoom in on the damage sites with510

a diagonal length less than 12 pixels. For real damage sites, the
range of values taken by the norm of the latent vectors widens
as the diagonal length increases. The network thus has a clearer
representation of the smaller damage sites, and is capable of
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(a)

(b)

Fig. 12. Scatter plot (a) and 2D density plot (b) of the IoU score
and damage size, defined as the diagonal length of the bound-
ing box, for each of the damage site from the test subset of the
LMJ 1 dataset. Each point corresponds to a damage site.

accurately associating bounding boxes to them. This is further515

highlighted by the high Pearson and Spearman correlations be-
tween the norm of the latent vectors of smaller damage sites
(diagonal length less than 10 pixels) and the diagonal length in
table 3.

All sites Sites < 10 pixels

Pearson corr. 0.557 -0.613

Spearman corr. 0.192 -0.750

Table 3. Pearson and Spearman correlation coefficients be-
tween the norm of the latent vectors of the damage sites in the
main LMJ dataset, and the diagonal length of the bounding
boxes.

In addition, the norm of the latent vectors of artefacts (re-520

flections, unidentified objects or empty sub-images) is clearly
separated from the norm of the real damage sites of smaller
size. The artefacts, identified in the pre-classification step of the
pipeline, were associated with out-of-distribution latent vectors,
namely vectors with great norm values relative to the mean525

value and standard deviations of all latent vectors. The limit
between real damage sites and artefacts becomes fuzzy as the
size of damage sites increases. Even though the biggest damage
sites are difficult to tell apart from artefacts from their latent vec-
tor norms only, Fig. 13 (d) shows that the artefacts with a vector530

norm close to the norm of bigger damage sites are reflections
(green points), which can be identified with great precision in

Fig. 13. (a) Scatter plot of the damage size, i.e. diagonal length
of the predicted bounding box, and norm of the latent vectors
generated by the size regression network on the sites of the
test subset of the LMJ 1 dataset. Each point is a potential dam-
age site. (b) Zoom of the scatter plot for site with damage size
lower than 12 pixels (≈ 1200 µm). (c) Scatter plot of the pre-
dicted damage size and target diagonal length for all the sites.
(d) Same scatter plot as (a), where the artefacts were split into
reflections (green points) and other artefacts (red points).

the pre-classification step.
Finally, Fig. 14 displays the results of the bounding box pre-

diction of 9 randomly selected sub-images of the test subset. The535

red bounding boxes are predictions, the white ones correspond
to targets.

B.2. Robustness of the pipeline

The performances of the size regression network were also stud-
ied with the LMJ 2 dataset. Unlike the LMJ 1 dataset, the sub-540

images of this dataset were extracted from the MDCC images
of different glass-windows of the vacuum chamber of the LMJ
facility, and not just one. The proportion of smaller damage sites
was higher than it was in the LMJ 1 dataset. Therefore, all 4
metrics in the second column of table 2 indicate better results545

than in the first column.
The 2D density plot of the IoU and predicted diagonal length

of all damage sites in the dataset is shown in Fig. 15 (a), and
the histogram of the IoU score in (b). The results are very sim-
ilar to those obtained with the test subset of the LMJ 1 dataset.550

However, there is a higher density of smaller damage sites in
Fig. 15 (a), and only a few sub-images (379 out of 7041 damage
sites) with an IoU smaller than 0.7. Most of these failures were
artefacts which were wrongly labelled as damage sites, i.e. false
alarms: sub-images containing moving objects classified as dam-555
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Fig. 14. Results of the bounding box regression obtained for 9
damage sites from the test subset of the main, LMJ 1 dataset.
The white bounding boxes correspond to target bounding
boxes, while the red bounding boxes are predictions generated
by the pipeline.

(a)

(b)

Fig. 15. Scatter plot (a) and 2D density plot (b) of the IoU score
and damage size, which is the diagonal length of the bounding
box, for each of the damage site from the LMJ 2 dataset. Each
point corresponds to a damage site.

age. These artefacts may be removed by adding a filtering step
based on the consistency of the position of the detected objects
in the sub-images. Given these results, we expect an accurate
prediction of the size of most damage sites appearing on the
glass windows of the LMJ facility.560

Similarly, the pipeline still performs well with the MELBA
dataset despite the drop in efficiency observed in table 2. The

high recall value shows that the target bounding boxes are at
least contained within the predicted ones. As mentioned before,
the images in the dataset have a higher default resolution and are565

bigger (771 × 771 pixels). In order to use them with the pipeline,
they needed to be resized. This led to the disappearance of
damage sites with width or height smaller than 50 µm and thus
empty target bounding boxes, which is why the recall value
remained high compared to the one obtained with LMJ datasets,570

while the IoU, GIoU and precision scores were significantly
lower. However, the values of these metrics are still good enough
to consider that the pipeline performs well, and robustly, with
different datasets such as the MELBA one.

4. CONCLUSIONS575

In this work, a deep-learning based pipeline designed to esti-
mate the size of damage sites was presented. The efficiency
of machine-learning approaches depends on the ability of the
algorithms to generate a relevant intermediate representation,
or latent space, of the input data, by incorporating metadata580

into it, i.e. additional information regarding the input data. As
such, a lot of effort was put in the characterization of the data,
and the resulting information was integrated in the form of sub-
tasks, namely the detection of artefacts and empty images, and
the segmentation of damage sites images. While common ma-585

chine learning techniques usually rely solely on an input image
to produce the output damage site size, it was demonstrated
that, in comparison, the performances, which were measured
through 4 complementary metrics measuring the overlap be-
tween predicted and target bounding boxes, were improved by590

considering these relevant sub-tasks. The emphasis was put
on the ability of the pipeline to provide accurate estimations
of damage sites with associated bounding box width or height
smaller than 7 pixels, corresponding to the maximum size of
≈ 750µm, below which the damage sites can still be repaired.595

We have shown that the pipeline is capable of generating robust
predictions by evaluating it on two additional datasets. The LMJ
2 dataset, similar to the LMJ 1 dataset but more realistic, and
the MELBA dataset, possessing many discrepancies with the
LMJ ones. Accurate predictions were obtained for both datasets600

despite their difference with the training data.
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