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 23 

Abstract 24 

 25 

Human vision requires us to analyze the visual periphery to decide where to fixate 26 

next. In the present study, we investigated this process in people with age-related macular 27 

degeneration (AMD). In particular, we examined viewing biases and the extent to which 28 

visual salience guides fixation selection during free-viewing of naturalistic scenes. We used 29 

an approach combining generalized linear mixed modeling (GLMM) with a-priori scene 30 

parcellation. This method allows one to investigate group differences in terms of scene 31 

coverage and observers’ well-known tendency to look at the center of scene images. 32 

Moreover, it allows for testing whether image salience influences fixation probability above 33 

and beyond what can be accounted for by the central bias. Compared with age-matched 34 

normally sighted control subjects (and young subjects), AMD patients’ viewing behavior was 35 

less exploratory, with a stronger central fixation bias. All three subject groups showed a 36 

salience effect on fixation selection—higher-salience scene patches were more likely to be 37 

fixated. Importantly, the salience effect for the AMD group was of similar size as the salience 38 

effect for the control group, suggesting that guidance by visual salience was still intact. The 39 

variances for by-subject random effects in the GLMM indicated substantial individual 40 

differences. A separate model exclusively considered the AMD data and included fixation 41 

stability as a covariate, with the results suggesting that reduced fixation stability was 42 

associated with a reduced impact of visual salience on fixation selection. 43 
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 50 

1 Introduction 51 

Patients suffering from advanced stages of age-related macular degeneration (AMD) 52 

have to rely on their peripheral vision to explore their surroundings and to perform tasks (see 53 

Verghese et al., 2021, for a review). Common complaints of patients with AMD (or more 54 

generally low vision) seeking visual rehabilitation are problems associated with reading, 55 

driving and face recognition (Cahill et al., 2005; Rubin, 2013; Taylor et al., 2016). Moreover, 56 

research has shown that AMD patients often suffer from fixation instability and poor 57 

oculomotor control (Crossland, Crabb, et al., 2011; Kumar & Chung, 2014). Therefore, it is 58 

perhaps unsurprising that few studies have investigated how AMD patients actively explore 59 

naturalistic scenes through eye movements. With the present work, we start to fill this gap by 60 

investigating eye guidance during free-viewing of real-world scenes in AMD patients as 61 

compared with normally sighted older and young adults. Primarily, we wanted to explore 62 

whether effects of visual salience on saccade target selection were preserved in patients with 63 

AMD.  64 

When viewing a scene, we make sequences of saccades and fixations (Malcolm et al., 65 

2016). Saccades are quick ballistic movements that bring the eyes to new parts of the scene. 66 

During fixations, the eyes are relatively still to allow visual processing of the scene stimulus. 67 

From a given fixation in the scene, there are many potential locations for the next fixation. 68 

Even without taking the current scene into account, fixation locations are not randomly 69 

selected. Among the regularities or “biases” in the manner in which we explore scenes, is the 70 

bias to fixate at or near the center of an image (central bias, Mannan et al., 1996; Tatler, 71 

2007). Various factors contribute to the central bias (Rothkegel et al., 2017, for a review), 72 

among them strategic components. In particular, the center of the screen may be an optimal 73 

location for extracting information from scenes (Tatler, 2007).  74 

The saccades we make during scene viewing are also biased: we make more 75 

horizontal eye movements than vertical ones, with oblique saccades being the least frequent 76 

(horizontal bias, Foulsham et al., 2008). The roots of the horizontal bias are still under 77 

investigation (Anderson et al., 2020; Foulsham & Kingstone, 2010). Given that the horizontal 78 

bias is already present in infants, it may be related to the asymmetry in the topography of 79 

human photoreceptors (Van Renswoude et al., 2016). According to another account, the 80 

distribution of image features may guide eye movements in a bottom-up manner toward the 81 

image horizon (Foulsham et al., 2008).  82 
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The saccade target selection process is also guided by the visual salience of the scene 83 

stimulus, in particular during free-viewing of scene images (Parkhurst et al., 2002; Peters et 84 

al., 2005). Guidance by visual salience means that the eyes are directed to scene regions 85 

based on image features generated in a bottom-up manner from the scene. These features, 86 

which tend to be correlated (Baddeley & Tatler, 2006; Nuthmann & Einhäuser, 2015), 87 

include luminance, contrast, edge density, and color (Mannan et al., 1996; Tatler et al., 2005). 88 

Different feature maps are combined in a saliency map (e.g., Itti et al., 1998), where brighter 89 

values indicate higher visual salience (see Figure 1b and c). Eye guidance by image features 90 

assumes that the eyes are directed to the most salient location in the map first, followed by an 91 

eye movement to the next most salient location, and so on. Due to the photographer’s bias in 92 

scene composition, salience tends to be higher in the center of scenes (Tatler, 2007), calling 93 

for statistical methods that allow for assessing the independent contributions of visual 94 

salience and center bias to fixation selection in scenes (Nuthmann et al., 2017). 95 

Saliency map models are models of visual attention rather than models of eye-96 

movement control (see Frintrop et al., 2010, for a review), which may explain why most of 97 

them do not distinguish between visual salience in central vision as opposed to the periphery. 98 

Empirical eye-movement studies, on the other hand, have highlighted the importance of 99 

peripheral vision for the saccade target selection process. The importance of a given region of 100 

the visual field to a process or task can be assessed by implementing gaze-contingent 101 

artificial scotomas, which continuously remove (or strongly degrade) scene information in a 102 

selected region (e.g., David et al., 2019; Nuthmann, 2014).  103 

For example, Nuthmann (2014) asked observers to search for a medium-sized target 104 

object in each scene. One of her six scotoma conditions simulated the absence of central 105 

vision. With only peripheral vision available, participants were able to direct their eyes to the 106 

object, and their initial landing positions on the object gave rise to a two-dimensional 107 

Gaussian distribution with a peak close to the center of the object (i.e., the Preferred Viewing 108 

Location, PVL, Nuthmann & Henderson, 2010). In other words, the PVL was preserved 109 

when observers’ central vision was artificially impaired. This finding shows the importance 110 

of peripheral vision in fixation selection. 111 

Moreover, Nuthmann (2014) used the eye-movement data to decompose the button-112 

press search times into three phases representing particular sub-processes of search (Malcolm 113 

& Henderson, 2009). The data showed the following dissociation in behavior: Participants 114 

with a simulated central scotoma
1
 were selectively impaired in verifying the identity of the 115 

target, but not locating it. In contrast, the same participants with a simulated peripheral 116 
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scotoma were selectively impaired in locating the target, but not identifying it (see also 117 

Nuthmann et al., 2021). The data suggest a central-peripheral dichotomy in which peripheral 118 

vision selects and central vision recognizes (Zhaoping, 2019). 119 

AMD leads to a central scotoma due to which foveal or central analysis is impaired. 120 

As a result, the ability of people with AMD to correctly identify objects and scenes is reduced 121 

(Thibaut et al., 2015). However, patients’ remaining peripheral vision has shown to be 122 

sufficient for object and scene categorization (Boucart et al., 2013; Tran et al., 2010). For 123 

example, Tran et al. (2010) showed that individuals with a central scotoma were able to 124 

categorize scenes displayed for 300 ms as natural/urban or indoor/outdoor with high accuracy 125 

(> 75% correct), even though their performance was below that of normally sighted controls. 126 

The results from categorization studies (see also Boucart et al., 2008; Tran et al., 2012) 127 

suggest that individuals with AMD are able to quickly recognize the overall meaning or 128 

“gist” of the scene.  129 

In a more naturalistic setting, the rapid recognition of the scene’s gist is supplemented 130 

by active scene exploration, for which people with AMD may adopt an eccentric viewing 131 

strategy. Eccentric viewing involves directing the eye such that the image falls onto still 132 

functioning parts of the retina. The region of retina used is referred to as the preferred retinal 133 

locus (PRL) or pseudo-fovea (Crossland, Engel, et al., 2011; Cummings et al., 1985; 134 

Timberlake et al., 1986). 135 

In the present study, we asked participants to free-view images of naturalistic scenes. 136 

Thus, participants were given no specific instructions other than to look at the images. With 137 

our main analysis, we tested how “active” AMD patients’ scene viewing behavior is, and 138 

how prone they are to the central fixation bias. Importantly, the analysis also allowed us to 139 

test whether image salience has an independent effect on fixation selection. We hypothesized 140 

that AMD patients explore fewer scene regions and exhibit a stronger center bias, due to 141 

problems with oculomotor control (see Verghese et al., 2021). Critically, assuming that the 142 

peripheral selection of the next fixation location follows similar guidance principles in AMD 143 

patients and normally sighted individuals, we expected to observe similar effects of image 144 

salience on fixation probability for the two subject groups. In a complementary analysis, we 145 

also investigated whether the horizontal bias was preserved in AMD patients. 146 

We compared the eye-movement data of the AMD patients with data from age-147 

matched, normally sighted older participants. Additionally, we included a group of young 148 

adults to dissociate the effects of pathology and normal ageing. Results from previous studies 149 

suggest that the effect of location-based visual salience on fixation probability is smaller for 150 
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older adults compared with young adults (Açik et al., 2010; Nuthmann et al., 2020). 151 

Moreover, it was found that young and older adults show similar levels of explorative 152 

viewing behavior (Açik et al., 2010) and no differences in central bias (Nuthmann et al., 153 

2020). 154 

For our main analysis, we used an approach combining generalized linear mixed 155 

modeling (GLMM) with a-priori scene parcellation (Nuthmann et al., 2017; Nuthmann et al., 156 

2020). This method allows us to investigate group differences in terms of scene coverage, 157 

central bias and—crucially—the importance of image salience for fixation selection in scene 158 

viewing.  159 

When conducting experiments, researchers are mainly interested in the average 160 

response to independent variables or predictor variables. Existing variability across subjects 161 

is typically treated as error variance (Cronbach, 1957), potentially obscuring differences 162 

between levels of an independent variable of interest (Vogel & Awh, 2008). However, this 163 

approach ignores many relevant sources of inter-subject variability, including the use of 164 

different strategies for the same task (Seghier & Price, 2018). Between-participant variance 165 

can differ considerably between populations. Groups of older adults often (but not always) 166 

show higher inter-subject variability than younger adults (Rabbitt, 1993; Shammi et al., 167 

1998). Moreover, patient groups can have a high degree of heterogeneity (e.g., Wolfers et al., 168 

2020).  169 

When finding a group-level effect, it can be informative to explore the role played by 170 

factors associated with the individual. For example, in studies with AMD patients it is 171 

common to correlate a measure of their visual disability with their average score in a 172 

dependent variable of interest (e.g., Thibaut et al., 2016; Thibaut et al., 2015; Tran et al., 173 

2010; Wiecek et al., 2012). In recent years, mixed-effects models have proved to be a 174 

particularly suitable tool for assessing individual differences (Kliegl et al., 2011; Rouder & 175 

Haaf, 2019). One particular advantage of mixed-effects models is that they allow one to make 176 

statistical inferences about experimental effects and individual differences on the basis of a 177 

single analysis. Therefore, a secondary aim of the present study is to demonstrate the use of 178 

GLMM for documenting reliable individual differences with regard to scene-viewing 179 

parameters in different subject groups.  180 
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2 Methods 181 

2.1 Participants 182 

The participants whose data we report in the present article took part in a larger study 183 

consisting of several tasks. The eye-tracking results from an object search task have been 184 

published elsewhere (Thibaut et al., 2020). The study was approved by the ethics committee 185 

for behavioral sciences at the University of Lille (N°EUDRACT 2010-101088-31) and was 186 

conducted in accordance with the tenets of the Declaration of Helsinki. All participants gave 187 

their written informed consent. The AMD patients and the age-matched control subjects were 188 

both recruited in the department of ophthalmology at the Saint-Vincent de Paul Hospital in 189 

Lille, France. The young observers were recruited among medical students and psychology 190 

students at the university.  191 

Patients suffering from neovascular AMD with subfoveal involvement and with best 192 

corrected visual acuity (BCVA; i.e., acuity measured with subjective refraction) between 0.3 193 

to 1 logMAR were included. They were treated with at least three monthly ranibizumab 194 

intravitreal injections prior to participating in the experiments. Clinical assessment included 195 

visual acuity measurement, funduscopy, and optical coherence tomography (OCT). BCVA 196 

was measured at a distance of 4 m using the ETDRS chart, which was converted to logMAR 197 

visual acuity.  198 

Fluorescein angiography, indocyanine green angiography (ICGA), and spectral 199 

domain OCT (Heidelberg Retina Angiograph, HRA2; Heidelberg Engineering, Dossenheim, 200 

Germany) were used to confirm the diagnosis of neovascular AMD and to determine the size 201 

of the lesion (cf. Querques et al., 2012). With fluorescein angiography, the lesion area was 202 

defined as containing choroidal neovascularization, hemorrhages, scar tissue and serous 203 

pigment epithelial detachment. The ICG plaque was defined as an area of late 204 

hyperfluorescence seen in ICGA. The area of the lesion (mm²) and the greatest linear 205 

diameter of the lesion (mm) were then measured by outlining the lesion using the Eye 206 

Explorer image analysis software (Heidelberg Engineering, Heidelberg, Germany). 207 

Microperimetry was not performed as several patients had very low vision (P4, P7, P10) or 208 

were too old (above 80 years) for such a long clinical test. 209 

A French version of the Mini Mental State Examination (MMSE) was conducted to 210 

assess cognitive impairment in the AMD patients and in the age-matched normally sighted 211 

control subjects. We excluded participants with a history of neurologic or psychiatric disease, 212 
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cognitive impairment (MMSE < 25) or significant ocular diseases that might compromise 213 

oculomotor function. 214 

Clinical assessment and experiments were performed during the same visit. The eye-215 

tracking data from 17 patients diagnosed with AMD (14 women; mean age 78.2 ± 4.3 years) 216 

and 17 age-matched normally sighted controls (11 women; mean age 76.9 ± 7.2 years) were 217 

included for the present analyses. Note that 32 AMD patients were meant to be included, but 218 

the data from 15 patients had to be excluded due to excessive head movements, poor 219 

validation results for the calibration of the eye tracker, or data loss during eye-movement 220 

recordings (Thibaut et al., 2020). Additional data came from 17 young normally sighted 221 

controls (8 women; mean age 23.8 ± 2.5 years). 222 

Eye movements were recorded monocularly. For patients with bilateral AMD, the eye 223 

with the best-corrected visual acuity was used. If both eyes had equal acuity, we selected one 224 

eye randomly. For young and older control subjects, their preferred eye was tracked. Note 225 

that viewing was monocular, with the non-tracked eye being occluded throughout 226 

calibrations and recordings. 227 

Table 1 provides the individual demographic and clinical data for the AMD patients 228 

included in the study. The mean duration of the disease was three years, ranging from three to 229 

98 months. Note that the variables describing patients’ visual ability (visual acuity, greatest 230 

linear diameter of the lesion, and surface area of the lesion) are highly correlated with one 231 

another (Spearman’s rank correlations: r  0.87, p < 0.001). A few patients had training in 232 

eccentric viewing, to varying extents. 233 

-------------------------------- 234 

Insert Table 1 about here 235 

-------------------------------- 236 

2.2 Apparatus 237 

Eye-tracking equipment by SensoMotoric Instruments (SMI, Teltow, Germany) was 238 

used. Eye movements were recorded with a tower-mount iViewX Hi-Speed eye tracker with 239 

a 350 Hz sampling rate (AMD patients, age-matched controls) and a portable RED-m eye 240 

tracker at 120 Hz (young participants). Both eye trackers offer comparable accuracy and 241 

precision. According to the manufacturer, the typical accuracy is 0.25 to 0.5° for the iViewX 242 

eye tracker, and 0.5° for the RED-m eye tracker. Eye-movement event detection took the 243 

differences in eye-tracker sampling rate into account.  244 

The eye tracker was calibrated using a 5-point calibration procedure, followed by a 5-245 

point calibration accuracy test. Subjects were asked to look at black discs (radius: 1°) that 246 
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appeared sequentially on the screen. The first calibration target was presented at the center of 247 

the screen, whereas the other ones were presented in random order in each of the four 248 

quadrants of the screen. The AMD patients fixated the calibration targets with their fovea or 249 

PRL (cf. Vullings & Verghese, 2021), see the Discussion section for additional 250 

considerations. 251 

2.3 Design, stimuli, and procedure 252 

The experiment was run using the Experiment Center software (SMI). First, 253 

participants’ fixation stability was evaluated. To this end, participants were asked to fixate a 254 

black dot (radius: 1°) centrally displayed for 10 seconds on a light grey background. 255 

Afterwards, each participant free-viewed 20 color photographs of real-world outdoor scenes, 256 

15 of which contained at least one person (see Figure 1a for an example). Each scene image 257 

was presented once for 10 s. Scene presentation was randomized across participants in each 258 

group. Each trial began with the presentation of a central cross for one second, which 259 

participants were instructed to fixate. Following a gap of 200 ms, the scene image was 260 

presented.  261 

Scenes were displayed on a 17-inch Dell monitor with a screen resolution of 1280  262 

1040 pixels (width  height). Scene images had an original resolution of 1024  683 pixels 263 

and were scaled up to 1280  854 pixels in the experiment. At a viewing distance of 60 cm, 264 

images subtended a visual angle of 36.3°  29.5°. Images came with a small black framing. 265 

The analysis grid spanned the central 1200  800 pixels and thereby discounted the black 266 

surrounding. 267 

 268 



 

 10 

 269 

 270 

Figure 1. (a) One of the scene images used in the study. (b) A saliency map (Adaptive 271 

Whitening Saliency) for this image. (c) The same AWS map in grayscale, with the analysis 272 

grid overlaid in red. In panels (b) and (c), brighter regions indicate higher visual salience. (d) 273 

Mean salience values for the grid cells, color-coded using the gray colormap. 274 

 275 

2.4 Data analysis 276 

For a given participant, the gaze raw data from the scene viewing experiment were 277 

converted into a fixation sequence matrix and a saccade sequence matrix using the BeGaze 278 

software (SMI). For oculomotor event detection, the software’s low-speed event detection 279 

method was used. With this method, the detector first searches for fixation events, after 280 

which saccade events are computed. To identify fixations, the detector uses a dispersion-281 

based algorithm (cf. Salvucci & Goldberg, 2000), for which the default settings were used. In 282 

particular, the minimum fixation duration was set to 80 ms.  283 

The fixation data were further processed and analyzed in MATLAB (The 284 

MathWorks, Natick, MA) and the R system for statistical computing. The figures were 285 
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created with MATLAB (Figure 1) or with the ggplot2 (version 3.3.5, Wickham, 2016) and 286 

cowplot (Wilke, 2020) R packages. 287 

Fixation probabilities and fixation counts were analyzed with generalized mixed-288 

effects models (GLMMs). Continuous response variables, in particular fixation durations and 289 

saccade amplitudes, were analyzed using linear mixed-effects models (LMMs). Fixation 290 

durations were log-transformed prior to inclusion in the LMM (Nuthmann, 2017). The 291 

mixed-model analyses were conducted with the R package lme4 (version 1.1-27.1, Bates et 292 

al., 2015), using the glmer function for GLMMs and the lmer function for LMMs. For 293 

LMMs, p values for fixated effects were obtained using Satterthwaite approximation as 294 

implemented in the lmerTest R package (version 3.1.3, Kuznetsova et al., 2017). For a 295 

technical introduction to mixed models in R, see Demidenko (2013). A tutorial is provided by 296 

Brown (2021). 297 

2.4.1 Grid method 298 

To assess the independent effect of visual salience on fixation probability, each scene 299 

image was parcellated into local image regions. As in previous research, we used a grid with 300 

equal-sized, square cells (Nuthmann & Einhäuser, 2015; Nuthmann et al., 2017; Nuthmann et 301 

al., 2020). How fine or coarse should the grid be? The problem with a very fine grid is that 302 

the trial-based observation matrix may contain too many zeros (cf. Nuthmann et al., 2017). 303 

The research question sets an upper bound for the grid cell size—it is implausible to 304 

investigate fixation guidance by visual salience with a very coarse grid. For the present 305 

analyses, we chose a 12  8 (width  height) parcellation (Figure 1c), yielding 96 quadratic 306 

cells, with each cell spanning 2.8°  2.8° (100  100 pixels).  307 

Next, we mapped the empirical eye-fixation data onto the scene analysis grid. We 308 

constructed an observation matrix based on the experimental design and the fixation data. 309 

The complete observation matrix would comprise 97,920 rows (3 subject groups  17 310 

subjects per group  20 images  96 grid cells per image). There were seven missing trials, 311 

reducing the observation matrix accordingly. In previous applications of the grid method, the 312 

grid cell on which the very first fixation in a given trial fell was excluded from analysis (e.g., 313 

Nuthmann & Einhäuser, 2015). For the present analysis, this grid cell was included if it 314 

received immediate refixations and/or later revisits. This procedure was adopted to guard 315 

against underestimating the central bias, in particular for AMD patients. Fixation probability 316 

was measured by a binary response variable: for a given subject and image, it was coded 317 

whether a given grid cell was fixated (1) or not (0). 318 
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2.4.2 Computation of saliency maps and central bias 319 

Over the years, many different saliency models have been developed (Borji & Itti, 320 

2013), for some of which the code is available publicly (e.g., Wloka et al., 2018). Following 321 

related work (Nuthmann et al., 2020), we used the Adaptive Whitening Saliency (AWS) 322 

Model (Garcia-Diaz et al., 2012). For each image, a corresponding saliency map was 323 

generated using code provided by the authors. The default parameters were used, with one 324 

exception: The output scaling factor (default value: 0.5) was set to 1.0 to compute saliency 325 

maps at full image resolution. The saliency map of each image was then normalized to the 326 

same range, arbitrarily chosen as [0,1] (Nuthmann et al., 2017). Supplementary Fig. 1 shows 327 

the mean normalized saliency map for the 20 scene images used in the study. 328 

Local salience can be defined as the mean or the maximum (peak) over the saliency 329 

map’s values within each grid cell. The correlation between mean and peak AWS across all 330 

grid cells from all images was very high, r = 0.927, p < 0.001. For the present analyses we 331 

chose the mean (see Figure 1d for a visualization), because it tends to be the more robust 332 

measure (Nuthmann et al., 2017; Nuthmann et al., 2020).  333 

To account for observers’ central bias of fixation, the GLMM included a central-bias 334 

predictor along with the salience predictor. How should the central-bias predictor be 335 

calculated? An intuitive solution is to determine the Euclidean distance from image center 336 

(e.g., Nuthmann & Einhäuser, 2015). The Euclidean distance-to-center variable is an 337 

isotropic measure, assuming equal spread of fixation positions in the horizontal and vertical 338 

dimensions. However, fixation positions in scene viewing often show a horizontal-vertical 339 

anisotropy (Clarke & Tatler, 2014). To decide about which central-bias variable to use, we 340 

took a data-driven approach (Nuthmann et al., 2017). In particular, we specified one-341 

predictor GLMMs to test the seven central-bias predictors proposed by Nuthmann et al. 342 

(2017). For a given central-bias variable, one model considered the combined data from all 343 

three subject groups. Three additional models were run to analyze the data from each subject 344 

group separately. The more negative the standardized regression coefficient for the fixed 345 

effect central bias, the more variance is explained by the tested central-bias predictor 346 

(potentially leaving less variance to explain for the salience predictor). The numeric ranking 347 

of central-bias predictors differed across subject groups, but within a group the confidence 348 

intervals for the seven estimated central-bias effects overlapped. Further explorations 349 

revealed that AMD patients showed little anisotropy, compared with the other two groups. 350 

Numerically, the taxicab predictor performed best for the patient group. It was also chosen 351 
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for the present analyses because it was less sensitive to differences in anisotropy between 352 

groups, compared with other isotropic central-bias measures. The taxicab predictor was 353 

generated by calculating the distance between each grid cell center and the center of the 354 

image along the horizontal and vertical image axes: 355 

.        (1) 356 

2.4.3 Statistical analysis using mixed models 357 

In our main analysis, we used generalized linear mixed models (Bolker et al., 2009; 358 

Jaeger, 2008) to model fixation probability in scenes for three different subject groups. The 359 

data were modeled at the level of individual observations (i.e., the zeros and ones). We used 360 

the logit transformation of the probability, which the glmer function uses by default for 361 

binary data. Using the logit link function means that parameter estimates are obtained on the 362 

log-odds or logit scale. This scale is symmetric around zero and ranges from negative to 363 

positive infinity. A logit of 0 corresponds to a probability of 0.5; negative log-odds indicate 364 

probabilities smaller than 0.5.  365 

Mixed models incorporate both fixed-effects parameters and random effects. The 366 

GLMM included nine fixed effects (intercept, two main effects, six interaction coefficients). 367 

The two stimulus-related fixed effects were image salience and central bias. Stimulus-related 368 

input variables were measured within participants on a continuous scale. For the GLMM 369 

analyses, they were z transformed to a mean of 0 and a standard deviation of 1. Subject group 370 

is a categorical variable. To include subject group as predictor in the GLMM, contrast coding 371 

was used (see below). Differences between subject groups were tested through interactions 372 

between “subject group” and a given continuous predictor. 373 

Random effects represent subjects’ or items’ deviations from the fixed-effect 374 

parameters; they are assumed to be normally distributed with a mean of 0 (Baayen et al., 375 

2008). In our study design, the random factor “subject” is nested under “subject group”, 376 

because each subject can only belong to one subject group. Subjects and scenes are crossed 377 

random effects, because every subject saw all 20 scene items.  378 

Because we were particularly interested in individual differences, the GLMM was set 379 

up to include the “maximal” structure (Barr et al., 2013) for the random factor “subject”. 380 

Thus, the random-effects structure comprised a by-subject random intercept, random slopes 381 

for central bias and salience, and three correlation parameters. This allowed us to explore the 382 

degree to which subjects differed in their responses above and beyond belonging to their 383 

subject group, which was modelled as a fixed effect. If there are genuine differences between 384 
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individuals, including by-subject random effects should lead to an improvement in model fit 385 

(see Staub, 2020).  386 

Results from previous research on eye-movement control during scene viewing 387 

suggest that item variances are much larger than subject variances (Nuthmann & Einhäuser, 388 

2015; Nuthmann et al., 2017). Therefore, the random-effects structure of the GLMM also 389 

included the maximal structure for the random factor “scene item”.  390 

Using Wilkinson notation (Wilkinson & Rogers, 1973), the model formula for the 391 

main GLMM reported in this article was: 392 

Fixated ~ 1 + SubjectGroup + CentralBias + CentralBias:SubjectGroup + Salience + 393 

Salience:SubjectGroup + (1 + CentralBias + Salience | Subject) + (1 + CentralBias + Salience 394 

| Scene).           (2) 395 

3 Results 396 

First, we report the results from the fixation stability test. Second, we characterize 397 

subjects’ eye-movement behavior during scene viewing at a basic level. Third, we report 398 

results from our main analysis exploring whether individuals with AMD differ from age-399 

matched control subjects (and young subjects) in terms of scene coverage and central bias 400 

and regarding the importance of image salience for fixation selection during scene viewing. 401 

Fourth, we report results from a complementary analysis, in which we explored another 402 

viewing bias; that is, the horizontal bias.  403 

3.1 Fixation stability 404 

Fixation stability was quantified by using the conventional method of calculating the 405 

Bivariate Contour Ellipse Area (BCEA) introduced by Steinman (1965) with parameters used 406 

by Crossland et al. (2004). A larger BCEA value is indicative of a less stable fixation. The 407 

results are presented in Figure 2 (for the AMD patients, see also Table 1). Our a priori 408 

hypotheses were as follows: fixation stability should be worse for AMD patients than for age-409 

matched control subjects (Rohrschneider et al., 1995); moreover, fixation stability may be 410 

better for young than for older adults (Altemir et al., 2022). One-sided unpaired two-sample 411 

Wilcoxon tests confirmed these predictions. The BCEA (in minarc
2
) for the AMD patients 412 

(Mdn = 9250, IQR = 10422) was significantly larger than the BCEA for the age-matched 413 

controls (Mdn = 3143, IQR = 5663), W = 213, p = 0.009. In contrast, the BCEA for the young 414 

adults (Mdn = 1363, IQR = 1389) was significantly smaller than the BCEA for the control 415 

group of older adults, W  = 61, p = 0.002. 416 
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Figure 2. Fixation stability data for AMD patients, age-matched normally sighted subjects, 419 

and young adults. Each dot presents an individual participant’s Bivariate Contour Ellipse 420 

Area (BCEA) value. The horizontal lines represent the medians for the three subject groups. 421 

Lower BCEA values indicate better fixation stability.  422 

 423 

3.2 Basic Eye-Movement Measures 424 

To provide a basic description of subjects’ eye movements during scene viewing, we 425 

calculated the mean number of fixations per trial, along with mean fixation durations and 426 

saccade amplitudes (Table 2). Specifically, means or counts were calculated for each subject, 427 

and these were then averaged across subjects of a given group. The data were analyzed with 428 

mixed models, without prior averaging. Each model included the factor subject group as a 429 

fixed effect and random intercepts for subjects and scene items. To assess the effect of 430 

subject group, dummy coding (also referred to as treatment coding) was used, with the 431 

control group of old participants serving as the reference level. This coding created two 432 

contrasts, which allowed for testing whether there were any differences (a) between AMD 433 

patients and the control group or (b) between young and old participants.  434 

The number of fixations per trial (count variable) was modeled using a Poisson 435 

GLMM with a log link function. The two contrasts were not significant (AMD - control: b = -436 
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0.043, SE = 0.09, z = -0.48, p = 0.633; young - old: b = -0.036, SE = 0.09, z = -0.4, p = 437 

0.691). Fixation duration and saccade amplitude (continuous variables) were analyzed with 438 

LMMs. For log-transformed fixation durations, the two planned contrasts were not significant 439 

(AMD - control: b = -0.083, SE = 0.099, t = -0.84, p = 0.406; young - old: b = 0.113, SE = 440 

0.099, t = 1.14, p = 0.260). Saccade amplitudes were significantly reduced for AMD patients 441 

compared with age-matched controls, b = -1.423, SE = 0.4, t = -3.56, p < 0.001. Mean 442 

saccade amplitudes were not significantly different for young compared with old adults, b = 443 

0.504, SE = 0.399, t = 1.26, p = 0.213. In summary, the main finding from these analyses is 444 

that AMD patients made saccades with shorter amplitudes than age-matched normally 445 

sighted subjects. 446 

-------------------------------- 447 

Insert Table 2 about here 448 

-------------------------------- 449 

3.3 GLMM results: Central bias and image salience 450 

Next, we conducted a grid-based mixed-model analysis to assess effects of image 451 

salience on fixation selection, after controlling for subjects’ tendency to look at the center of 452 

scene images. Using mixed modeling allows one to simultaneously investigate group 453 

differences and individual differences. 454 

3.3.1 Group-level effects 455 

To include the predictor subject group in the GLMM, a dummy-coding scheme was 456 

used. Consequently, the GLMM did not test main effects (i.e., average effects across the three 457 

subject groups) but simple effects; that is, effects for the reference group of old participants. 458 

Importantly, differences between the three subject groups were tested through interactions. 459 

For example, including the interaction between salience and subject group allowed for testing 460 

whether the salience effect was significantly different for either of the other two subject 461 

groups. The actual coefficient for the effect of salience in AMD patients (or young 462 

participants) is obtained by adding the simple effect coefficient and the relevant interaction 463 

coefficient. The GLMM results are summarized in Table 3, with the fixed-effects results 464 

depicted in Figure 3.  465 

The first fixed effect in the GLMM is the intercept. It represents the overall fixation 466 

probability, describing how many different scene patches observers selected for fixation. The 467 

fixed effect for the model intercept characterizes the group of older adults: b = -2.049, SE = 468 

0.122, z = -16.83, p < 0.001. Note that the logit value of -2.049 corresponds to a probability 469 



 

 17 

of 0.114. The fact that the intercept was significantly different from zero has no interpretative 470 

meaning. Compared to the reference group of older adults, the intercept was significantly 471 

lower for AMD patients (b = -0.830, SE = 0.164, z = -5.04, p < 0.001), indicating that AMD 472 

patients fixated fewer scene patches than age-matched old observers. There was no 473 

significant difference between old and young adults (b = 0.291, SE = 0.162, z = 1.8, p = 474 

0.072). The intercept coefficient for the AMD patients is the sum of the coefficient for the old 475 

subjects (-2.049) and the interaction coefficient (-0.830). The interaction coefficient is a 476 

difference score, describing the difference between AMD patients and old subjects. Figure 3a 477 

provides a visualization. 478 

The central-bias predictor describes how fixation probability varies as a function of 479 

distance from scene center. A significant negative slope for the reference group (older adults) 480 

captures the well-known central bias (Mannan et al., 1996; Tatler, 2007); that is, fixation 481 

probability linearly decreased with increasing distance from scene center (b = -0.772, SE = 482 

0.094, z = -8.18, p < 0.001). Compared to the reference group of older adults, the central-bias 483 

slope was significantly more negative for AMD patients (b = -0.534, SE = 0.128, z = -4.16, p 484 

< 0.001) and less negative for young adults (b = 0.256, SE = 0.126, z = 2.03, p = 0.043). 485 

Thus, the central bias was most pronounced for AMD patients, who showed an increased 486 

tendency to fixate central regions of the image. The central bias was weakest for young 487 

adults, with older adults in between.  488 

Importantly, our GLMM based grid cell analysis allowed for assessing to what degree 489 

image salience influences fixation selection above and beyond a general preference for 490 

fixating the center of the image. For the reference group (older adults) there was a significant 491 

positive fixed effect for AWS, which means that fixation probability increased with 492 

increasing image salience of the image regions (b = 0.245, SE = 0.072, z = 3.40, p = 0.001). 493 

Young adults showed a significantly stronger effect of image salience than older adults (b = 494 

0.25, SE = 0.079, z = 3.17, p = 0.002), which is in agreement with previous research (Açik et 495 

al., 2010; Nuthmann et al., 2020). Interestingly, there was no significant difference between 496 

AMD patients and older adults (b = -0.008, SE = 0.08, z = -0.1, p = 0.923).  497 

-------------------------------- 498 

Insert Table 3 about here 499 

-------------------------------- 500 

 501 
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Figure 3. Fixed-effects results from the grid GLMM fitting fixation probability during scene 503 

viewing for AMD patients, old normally sighted control subjects, and young subjects. (a) 504 

Intercept, representing the overall fixation probability (converted from log-odds to 505 

probabilities). The brown bar depicts the intercept for the old subjects (reference group). The 506 

inset plot shows two difference scores: the difference between AMD patients and old subjects 507 

(AMD – old) and the difference between young and old subjects (young – old), with the error 508 

bars depicting 95% confidence intervals. Accordingly, the intercept for the AMD patients 509 

(blue bar) and/or young subjects (yellow bar) is derived by summing the simple effect 510 

coefficient for the old subjects and the respective difference score. (b) Predicted partial 511 

effects of central bias (left) and image salience (right) on fixation probability in log-odds 512 

scale for AMD patients (blue solid line), age-matched normally sighted subjects (brown long-513 

dashed line), and young adults (yellow dashed line). The predictions were generated with the 514 

keepef function from the remef R package (Hohenstein & Kliegl, 2020). 515 

 516 

To test the generalizability of results, a number of control analyses were performed. 517 

First, local salience was defined as the grid cell’s peak salience rather than its mean salience. 518 

Second, the binary response variable (1 fixated, 0 not fixated) was replaced with fixation 519 

counts, which were modeled using a poisson GLMM with a log link function. Third, we 520 

repeated all analyses with a coarse 6  4 grid. The qualitative pattern of results did not 521 

change.
2
 522 
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3.3.2 Individual differences 523 

The GLMM was set up with the maximal random-effects structure to protect against 524 

Type I errors (Barr et al., 2013; Schielzeth & Forstmeier, 2009). However, by including by-525 

subject and by-item random effects we can also account for individual differences and item 526 

effects (Nuthmann et al., 2017). Here, we will use the GLMM results to assess whether there 527 

were reliable individual differences, which we expected to be particularly pronounced among 528 

the AMD patients.  529 

To recapitulate, by-subject random effects represent subjects’ deviations from the 530 

fixed-effect parameters. Accordingly, the zero lines in Figure 4a represent the fixed-effect 531 

estimates. Specifically, the vertical broken line in both panels of Figure 4a represents the 532 

model intercept. The horizontal broken lines represent the central-bias effect (left panel) and 533 

the salience effect (right panel), respectively. The dots in Figure 4a depict the by-subject 534 

random effects, with different colors denoting different subject groups. The horizontal and 535 

vertical error bars depict 95% prediction intervals.  536 

For all three variables of interest, there are quite a few subjects for which the 537 

prediction intervals do not include the zero line (Figure 4a). For some of the subjects, 538 

particularly AMD patients, the prediction intervals are entirely on opposite sides of the zero 539 

line. Thus, the graphs are suggestive of considerable individual differences.  540 

To test whether the differences between individuals were statistically reliable, the 541 

maximal model (Table 3) was compared with two reduced models. In model 1, the by-subject 542 

random slope capturing the central bias and the two correlation parameters involving the 543 

central bias were removed. In model 2, the by-subject random slope capturing the salience 544 

effect and the two correlation parameters involving image salience were removed.  545 

Likelihood ratio tests (LRT) were used to determine whether dropping a particular 546 

random effect from the maximal model led to a significantly worse fit of the model. The log-547 

likelihood increases with goodness of fit. The Akaike Information Criterion (AIC, Akaike, 548 

1974) corrects the log-likelihood statistic for the number of estimated parameters. The 549 

Bayesian Information Criterion (BIC, Schwarz, 1978) additionally corrects for the number of 550 

observations. The AIC and BIC both decrease as goodness of fit increases. 551 

According to the LRT, model 1 provided a significantly worse goodness of fit than 552 

the maximal model (logLik 
2
(3) = 584.66, p < 0.001); moreover, both AIC and BIC were 553 

larger for model 1 than for the maximal model (AIC: 68685 – 68106 = 579; BIC: 68855 – 554 

68305 = 550).  555 
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Model 2 also provided a significantly worse goodness of fit than the maximal model 556 

(logLik 
2
(3) = 402.9, p < 0.001), with both AIC and BIC being larger for model 2 than for 557 

the maximal model (AIC: 68503 – 68106 = 397; BIC: 68674 – 68305 = 369). Put the other 558 

way around, including by-subject random slopes (and the corresponding correlation 559 

parameters) in the maximal model led to an improvement in model fit. In summary, the 560 

model comparisons substantiate that there were genuine differences between individuals.  561 

To obtain individual subject coefficients for a given variable of interest, we need to 562 

add the predictions for random effects to the fixed-effect estimate. In Figure 4b, the 563 

differently colored dots depict the individual coefficients for the 51 subjects from the three 564 

different subject groups. For the 17 AMD patients, represented by the blue dots, the subject 565 

numbers from Table 1 are additionally provided. Moreover, the colored horizontal and 566 

vertical lines represent the fixed-effect estimates for the three variables and three subject 567 

groups.  568 

To reiterate, the central bias describes the phenomenon that fixation probability 569 

decreases with increasing distance from image center. Therefore, almost all subject 570 

coefficients for the central-bias predictor are negative (Figure 4b, left). The more negative the 571 

central-bias coefficient, the stronger the central bias. The intercept represents the overall 572 

fixation probability. A smaller by-subject intercept means that fewer scene patches were 573 

fixated, and this is associated with a stronger central fixation bias. The systematic 574 

relationship between intercept and central bias is particularly evident for the AMD patients, 575 

with some of them showing a particularly strong central bias. 576 

The salience effect captures the observation that fixation probability tends to increase 577 

with increasing image salience. Therefore, most subject coefficients for the salience predictor 578 

are positive (Figure 4b, right). However, some of the individual coefficients are negative or 579 

close to zero, which means that salience had no impact on fixation selection for these 580 

subjects. For example, AMD patient 10 shows a relatively strong central bias and no salience 581 

effect. AMD patient 8, on the other hand, shows low scene coverage and a strong central 582 

bias, but an average salience effect. 583 
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Figure 4. By-subject effects on fixation probability for the 51 subjects that took part in the 585 

study. Scatterplots of the central-bias effect (left panels) and the salience effect (right panels) 586 

against the intercept in the GLMM. The intercept represents the overall fixation probability; a 587 

small by-subject intercept indicates that few scene patches were fixated (i.e., scene coverage 588 

was low). In each panel, different colors denote subjects that belong to a given subject group 589 

(blue: AMD, brown: age-matched old adults, yellow: young adults). (a) The conditional 590 

modes of the distributions of random effects are shown by colored dots, given the 591 

observations and evaluated at the parameter estimates. The horizontal and vertical error bars 592 

depict 95% prediction intervals. (b) Individual subject coefficients; that is, the sum of fixed-593 
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effect estimates and predictions for random effects. The colored vertical lines depict the 594 

fixed-effect estimates for the intercept in the GLMM for a given subject group. The colored 595 

horizontal lines depict the fixed-effect estimates for central bias (panel b, left) and salience 596 

(panel b, right) for a given subject group.  597 

 598 

3.3.3 Inclusion of patient variables as fixed effects in the GLMM 599 

A final question we considered is whether there is a systematic relationship between 600 

AMD patients’ visual ability and indicators of fixation selection in scenes. An intuitive 601 

solution may be to compute correlations between measures of patients’ visual ability (Table 602 

1) and their GLMM subject coefficients (Figure 4b). Kliegl et al. (2011) point out that 603 

random effects for different subjects are not independent observations. For this reason, the 604 

authors advise not to use random effects (or individual coefficients) for further inferential 605 

statistics, and to refer to estimates of (G)LMM parameters instead. Accordingly, we 606 

evaluated the AMD patients’ fixation data in another GLMM for which the fixed-effects 607 

structure comprised the central-bias and salience predictors, and also a “patient variable” and 608 

its interactions with central bias and salience. The model equation was as follows: 609 

Fixated ~ 1 + CentralBias + Salience + PatientVariable + PatientVariable:CentralBias + 610 

PatientVariable:Salience + (1 + CentralBias + Salience | Subject) + (1 + CentralBias + 611 

Salience | Scene).          (3) 612 

For the predictor reflecting patients’ visual ability we chose the surface area of the 613 

lesion (Table 1). We reasoned that a larger central scotoma may lead to a less effective use of 614 

peripheral vision and therefore to less exploratory viewing behavior and weaker guidance by 615 

visual salience. However, the main effect of surface area on fixation probability was not 616 

significant, b = 0.142, SE = 0.197, z = 0.72, p = 0.472. The interaction between surface area 617 

and central bias was also not significant, b = 0.02, SE = 0.146, z = 0.14, p = 0.892. The 618 

interaction between surface area and salience was not significant either, b = -0.047, SE = 619 

0.067, z = -0.7, p = 0.485. 620 

There was no systematic relationship between patients’ scotoma size (surface area) 621 

and their BCEA value (Spearman’s rank correlation: r = 0.14, p = 0.600), which is in 622 

agreement with previous research (e.g., Crossland, Culham, et al., 2004). Note that the results 623 

from reading studies suggest that higher BCEA values are associated with decreases in 624 

reading speed (e.g., Crossland, Culham, et al., 2004; Rubin & Feely, 2009). Therefore, we 625 

conducted an exploratory mixed-model analysis with predictors related to AMD patients’ 626 
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BCEA values as fixed effects. This analysis allowed us to explore the relationship between 627 

patients’ fixation stability and indicators of fixation selection. The main effect of fixation 628 

stability on fixation probability was not significant, b = 0.135, SE = 0.198, z = 0.68, p = 629 

0.494. The interaction between fixation stability and central bias was also not significant, b = 630 

0.028, SE = 0.146, z = 0.19, p = 0.848. However, there was a significant interaction between 631 

fixation stability and salience, b = -0.155, SE = 0.056, z = -2.77, p = 0.006, which means that 632 

higher BCEA values (indicating lower fixation stability) were associated with a smaller 633 

salience effect.
3 

634 

3.4 Horizontal bias 635 

When inspecting complex scenes, observers not only show a central bias, but also a 636 

horizontal bias; that is, a preference for horizontal over vertical and oblique saccades 637 

(Foulsham et al., 2008). In a complementary analysis, we therefore explored whether the 638 

horizontal bias was preserved in AMD patients.  639 

The direction of a saccade was quantified as the angle between the horizontal plane 640 

and the line connecting the current fixation with the next fixation. For a given subject group, 641 

a polar histogram was constructed by sorting saccade angles from all observers into 36 642 

equally spaced bins of 10°. The density histograms in Figure 5a show the expected horizontal 643 

bias. The saccade-angle distributions for AMD patients and age-matched control subjects 644 

showed no substantial differences. However, it appears that young adults made saccades 645 

along the horizontal plane (5°) more frequently than older adults and AMD patients. 646 

For statistical evaluation, the proportion of horizontal, vertical, and oblique saccades 647 

was calculated for each subject in a given group (cf. Van Renswoude et al., 2016). Saccades 648 

made along the 0° axis and the 180° axis (30°) were classified as horizontal saccades, 649 

whereas saccades made along the 90° axis and the 270° axis (30°) were classified as vertical 650 

saccades. Finally, saccades made along the 45°, 135°, 225°, and 315° axes (15°) were 651 

classified as oblique saccades. Thus, each of the three directional categories (horizontal, 652 

vertical, oblique) covered the same angular range (i.e., 120°).  653 

For a given subject group, about 50% of the saccades were classified as horizontal 654 

saccades (AMD patients: 48.7%, age-matched controls: 49.7%, young adults: 51.9%); see 655 

Figure 5b. The proportion of horizontal saccades did not differ between AMD patients and 656 

age-matched controls, t(32) = -0.41, p = 0.688. Using broadly defined categories, the 657 

proportion of horizontal saccades did not differ significantly between young and older adults 658 
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either, t(32)  = 0.9, p = 0.374. None of the other two-sample t-tests indicated significant 659 

differences.  660 
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 661 

Figure 5. Analysis of the angular direction of saccades. (a) Distribution of saccade directions 662 

for AMD patients (blue solid line), age-matched normally sighted subjects (brown long-663 

dashed line), and young adults (yellow dashed line). The polar histograms depict densities 664 

and were constructed using a bin size of 10°. The dots represent the bin centers. A 90° 665 

saccade angle denotes an upward saccade, 180° a leftward saccade, and 270° a downward 666 

saccade. The solid radial grid lines denote the cut-off points to classify horizontal, vertical, 667 

and oblique saccades; see text for additional details. (b) Proportion of horizontal, vertical, and 668 

oblique saccades for the three subject groups. Each dot presents an individual participant’s 669 

proportion, and horizontal lines represent the mean. For a given subject group, the three mean 670 

proportions add up to 1.  671 

 672 

4 Discussion 673 

The purpose of this study was to investigate where and how AMD patients look at 674 

images of naturalistic scenes. Our analyses focused on viewing biases and the impact of 675 

visual salience. Compared with age-matched normally sighted subjects, AMD patients’ 676 
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viewing behavior was less exploratory, with a stronger central fixation bias. Both subject 677 

groups showed an independent effect of image salience on fixation probability. The salience 678 

effect was not reduced in AMD patients, suggesting that eye guidance by visual salience was 679 

still intact. The horizontal bias was also preserved in the patient group. 680 

In our scene viewing task, each trial started with the presentation of a central fixation 681 

cross, which meant that subjects started to explore the scene from its center. Successive 682 

fixation locations tend to be close to one another, introducing dependency (Barthelme et al., 683 

2013). Therefore, the fixations that follow the initial, central fixation are also more likely 684 

located near the center of the scene. In our data, this showed as the well-known central 685 

fixation bias (e.g., Mannan et al., 1996), but note that a central tendency has also been 686 

observed for non-central initial fixation positions (Tatler, 2007).  687 

In our experiment, subjects had 10 s to look at each scene image, giving them ample 688 

time to explore the whole image. An analysis of global eye-movement measures indicated 689 

that AMD patients made saccades with shorter amplitudes than age-matched control subjects 690 

(Table 2). In the grid GLMM analyses, this translated into a significantly reduced model 691 

intercept for the AMD patients, which means that they sampled significantly fewer scene 692 

patches than the control subjects (Table 3). Moreover, their central fixation bias was 693 

significantly stronger (Table 3, Figure 4). Finally, the results for the by-subject random 694 

effects showed a correlation between scene coverage and central bias: The fewer scene 695 

patches were selected for fixation, the stronger the central fixation bias (Table 3, Figure 4). 696 

The unconstrained nature of our free-viewing task allowed subjects to adopt a 697 

viewing style that they deemed fit. AMD patients’ less explorative viewing behavior may be 698 

due to impairments caused by their scotomata. Note that differences in viewing behavior 699 

between AMD patients and age-matched controls are likely to be task dependent. Thibaut et 700 

al. (2016) asked AMD patients to name pictures of real-world scenes that were presented for 701 

2 s each and found that AMD patients “moved their eyes around more” (p. 88). Thus, AMD 702 

patients’ explorativeness may depend on the demands imposed by the task at hand.  703 

Despite the presence of a central scotoma, AMD patients were more likely to fixate 704 

high-salience than low-salience scene patches. This finding is not as counterintuitive as it 705 

may seem, given that selection for fixation is essentially a peripheral-vision task (see Ludwig 706 

et al., 2014; Nuthmann, 2014). Importantly, the salience effects for the patient group and the 707 

control group did not differ in size. At the same time, we found substantial individual 708 

differences, in particular in the patient group.  709 



 

 26 

Evidence from previous studies suggests that the influence of low-level image 710 

features on fixation selection in scenes decreases with increasing age (Açik et al., 2010; 711 

Nuthmann et al., 2020). In agreement with this general result, we found that fixation 712 

probability was modulated by image salience to a greater extent for young adults than for 713 

older adults. We also found that the central bias was (somewhat) less pronounced for young 714 

adults, which is different from Nuthmann et al. (2020) who found no differences in central 715 

bias for young and older adults. Finally, the distributions of saccade directions indicated 716 

subtle differences between young and older adults, warranting further research. 717 

In previous investigations, correlations between AMD patients’ average scores in a 718 

dependent variable of interest and measures of their visual ability were assessed (e.g., 719 

Thibaut et al., 2016; Thibaut et al., 2015; Tran et al., 2010; Wiecek et al., 2012). In the 720 

present context, we could have generated the input for such correlation tests by fitting a 721 

separate generalized linear model to each subject’s data. However, with this approach there is 722 

a risk of overfitting the data, because subjects with extreme values are “taken too seriously” 723 

(see Gelman & Hill, 2007). Instead, we ran a generalized linear mixed-effects model with by-724 

subject random effects, which allowed us to make predictions for individual subjects in the 725 

light of the behavior of all other subjects. In such a model, unreliable between-subject 726 

variance in the effects is removed through shrinkage (Efron & Morris, 1977; Makowski et al., 727 

2014; Rouder & Haaf, 2019). It is neither advised nor necessary to correlate the random 728 

effects for different subjects with other subject variables such as scotoma size (Kliegl et al., 729 

2011). Instead, patient-related variables can be included as additional fixed-effect terms in 730 

the mixed model. Analyzing AMD patients’ scene-viewing data this way, we observed a 731 

significant interaction between BCEA and visual salience. When fixation stability was low, 732 

the impact of visual salience on fixation selection was reduced. By contrast, the size of the 733 

lesion did not predict fixation selection in any way. 734 

Eye tracking AMD patients is challenging. Calibrating a standard laboratory eye 735 

tracker requires subjects to look at a number of calibration targets with known coordinates 736 

(see https://youtu.be/69oriD6j1DI). Typically, the calibration targets are presented in random 737 

order to prevent subjects from anticipating the location of the next target, which may make 738 

them leave the current target before it disappears. Given that the calibration procedure 739 

requires subjects to saccade to single targets in peripheral vision, the targets need to be 740 

visually salient. However, the calibration procedure also requires subjects to fixate each 741 

target for a certain amount of time. If AMD patients fixate the target with the fovea, it is 742 

obscured by the scotoma. Therefore, some researchers have used a “wagon wheel” as 743 

https://youtu.be/69oriD6j1DI
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calibration target which is meant to help AMD patients with fixating the target’s center of 744 

gravity with the fovea (González et al., 2006; Sullivan & Walker, 2015). Alternatively, 745 

patients with stable PRLs may use their PRLs rather than their foveae for calibration (see 746 

Gupta et al., 2018, for discussion).  747 

For eye-tracking studies like ours, it is preferable if subjects approach the fixation 748 

task during calibration and the subsequent free-viewing task in similar ways. Therefore, 749 

during calibration we neither encouraged foveal fixation by using specifically designed 750 

calibration stimuli (Sullivan & Walker, 2015) nor did we specifically encourage the use of a 751 

PRL by instructing participants “to look at the target so that it could be seen” (Costela et al., 752 

2017, p. 6074). As indicated in Sec. 2.2 above, we cannot say with certainty whether a given 753 

AMD subject used the fovea or a PRL to fixate the calibration targets. In the following, we 754 

discuss whether this has any bearing on the interpretation of our empirical findings.  755 

In the context of scene viewing, the difference between using the fovea or a pseudo-756 

fovea (PRL) can be described as prioritizing either “seeing” or “looking”. If the patient 757 

adopts an eccentric viewing strategy, they will “see” what is at fixation, but their scotoma is 758 

likely to hide more eccentric scene content and therefore some of the candidate target 759 

locations for the next saccade. Conversely, if the patient does not use a pseudo-fovea, their 760 

scotoma will degrade scene information at fixation but leave more scene content visible in 761 

the periphery (and thus “to look for”). Either way, the peripheral selection of the target 762 

location for the next saccade should follow similar guidance principles as in normally sighted 763 

individuals. In agreement with this prediction, we found effects of visual salience on saccade 764 

target selection to be preserved in patients with AMD.  765 

In principle, more complex scenarios can develop when patients change their fixation 766 

behavior, either between the calibration task and the free-viewing task, or within a given task. 767 

For example, Costela et al. (2017) compared gaze locations during free-viewing of dynamic 768 

scenes (i.e., videos) with the PRL used in a fixation task. The results suggested that people 769 

with central vision loss did not necessarily use the same PRL in the two tasks (see also 770 

Crossland, Crabb, et al., 2011). Such changes in fixation behavior can result in offsets 771 

between measured and actual gaze positions. 772 

Note that our grid method is fairly robust in this regard. The scene patches or grid 773 

cells that we used for analysis were relatively large in size. Moreover, the mean salience of 774 

adjacent scene patches tends to be correlated (see Figure 1d). Finally, we assessed how 775 

explorative a subject’s viewing behavior was by analyzing the number of scene patches 776 

observers selected for fixation. Thus, our analysis method tolerates reductions in accuracy 777 
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and precision, within limits. We note that other analyses commonly used to investigate eye 778 

guidance in scenes place higher demands on accuracy (e.g., Nuthmann, 2017). Therefore, it is 779 

important to continue developing methodologies for measuring the location of the PRL (e.g., 780 

Tarita-Nistor et al., 2015) along with eye-tracking technologies that explicitly address the use 781 

of a PRL (or sometimes multiple PRLs) instead of the fovea.  782 

783 
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 1064 

Footnotes 1065 

1
 Visual cognition researchers typically consider central vision to be from 0° to 5° 1066 

eccentricity; everything beyond 5° is peripheral vision (Loschky et al., 2019). 1067 

2
 There was one exception: When using the binary response variable and a 6  4 grid, the 1068 

model intercept was significantly larger for young compared with old subjects. In our main 1069 

analysis, this difference was not significant (Table 3, Figure 3a). 1070 

3
 In both of these additional GLMMs, the fixed-effect coefficients for the intercept, the 1071 

central bias, and salience were significantly different from zero, as would be expected from 1072 

the results of the main GLMM (Table 3). 1073 

1074 
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 1075 

Tables 1076 

Table 1. Individual demographic and clinical data for the AMD patients included in the 1077 

study. 1078 

 1079 

Participant 

Number 

 

Gender Age MMSE 

score 

Duration 

of AMD 

(months) 

Visual 

acuity 

(LogMAR) 

GLD 

(mm) 

SA 

(mm
2
) 

BCEA 

(minarc
2
) 

1 female 82 27 42.4 0.6 3.417 6.97 3120.71 

2 female 78 28 45.7 0.4 3.058 4.8 2340.08 

3 female 82 30 76.1 0.4 2.925 4.91 3253.23 

4 female 72 30 74.2 1 3.375 8.9 8779.51 

5 female 80 29 13.8 0.8 3.532 9.57 5555.60 

6 male 83 28 14.4 0.4 2.586 2.82 1883.36 

7 female 80 30 3 1.6 6.525 25.74 11394.56 

8 female 78 28 27.3 0.4 1.623 1.39 16657.36 

9 female 77 30 7.5 0.6 2.831 4.21 1349.14 

10 female 81 30 73.2 1 5.896 21.21 13908.58 

11 female 79 30 7.9 0.4 0.384 0.04 13542.71 

12 female 71 29 9.1 0.3 1.758 2.83 17492.23 

13 female 81 30 60 0.8 4.910 9.79 16903.14 

14 male 86 30 41 0.3 0.855 0.42 9249.95 

15 female 74 27 1.8 0.7 3.006 5.3 11162.78 

16 female 73 30 98 0.4 2.669 3.64 900.34 

17 male 73 26 41 0.9 4.681 10.65 11057.94 

Note. MMSE = Mini Mental State Examination, AMD = age-related macular degeneration, 1080 

LogMAR = logarithm of the minimum angle of resolution, GLD = greatest linear diameter of 1081 

the lesion, SA = surface area, BCEA = bivariate contour ellipse area.  1082 

1083 
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 1084 

Table 2. Mean (and standard deviation) general scanning behavior per participant for AMD 1085 

patients, age-matched normally sighted subjects, and young adults. 1086 

 1087 

  Number of 

fixations per trial 

Fixation 

duration (ms) 

Saccade 

amplitude (°) 

 AMD patients 30.35 (9.1) 233.93 (97.3) 3.18 (1.05) 

Subject group older adults 30.52 (5.61) 241.46 (64.38) 4.6 (1.19) 

 young adults 29.5 (5.37) 270 (84.79) 5.1 (1.25) 

1088 
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 1089 

Table 3. Generalized linear mixed model fitting the effect of image salience and central bias 1090 

on fixation probability in scene viewing: estimates of coefficients (b), standard errors (SE), z-1091 

values, and p-values for fixed effects and variances and correlations for random effects. 1092 

 1093 

Fixed Effects B SE z p 

Intercept (Old) -2.0495 0.1218 -16.827 < 0.001 

Intercept: AMD - Old -0.8298 0.1645 -5.045 < 0.001 

Intercept: Young - Old 0.2911 0.162 1.797 0.072 

Central bias (Old) -0.772 0.0944 -8.175 < 0.001 

Central bias: AMD - Old -0.534 0.1282 -4.165 < 0.001 

Central bias: Young - Old 0.2561 0.1263 2.028 0.043 

Salience (Old) 0.245 0.072 3.401 0.001 

Salience: AMD - Old -0.0077 0.0797 -0.097 0.923 

Salience: Young - Old 0.2497 0.0787 3.171 0.002 

Random Effects     

Groups Name Variance Correlation  

Subject Intercept 0.21583 Intercept  

 Central bias 0.12932 0.74 Central bias 

 Salience 0.04866 -0.11 -0.15 

Scene Intercept 0.03314 Intercept  

 Central bias 0.01780 0.50 Central bias 

 Salience 0.04069 0.25 0.43 

 1094 


