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Delaying transition to turbulence in channel flow: Revisiting the stability of shear thinning fluids

A viscosity stratification is considered as a possible mean to postpone the onset of transition to turbulence in channel flow. As prototype problem, we have chosen to focus on the linear stability of shear thinning fluids modelled by the Carreau rheological law. To assess whether there is stabilization and by how much, it is important both to account for a viscosity disturbance in the perturbation equations, and to employ an appropriate viscosity scale in the definition of the Reynolds number. Failure to do so can yield qualitatively and quantitatively incorrect conclusions. Results are obtained for both exponentially and algebraically growing disturbances, demonstrating that a viscous stratification is indeed a viable approach to maintain laminarity.

Introduction

The problem of the control of fluid flow turbulence (often to delay its occurrence or mitigate its effects, but not only) has many practical applications, from aeronautics to pipeline engineering. In an attempt to pursue effective control strategies, many different techniques have been proposed, comprehensively reviewed by [START_REF] Gad-El-Hak | Flow Control: Passive, Active, and Reactive Flow Management[END_REF]. Among them, an approach to delay transition discussed many years ago by [START_REF] Craik | The stability of plane Couette flow with viscosity stratification[END_REF] has received much attention in recent years. It can be put in the category of the "stability modifiers" and it consists in generating a small viscosity stratification in the fluid. If, for example, a laminar wall-bounded shear flow of a fluid system in which two layers of different viscosities are superposed to one another is considered, a significant stabilizing effect may appear. This is the case whenever the smaller viscosity region is close to the wall, provided that the viscous interface is positioned near the so-called critical layer, where the inviscid stability equation becomes singular (i.e. where the flow velocity matches locally the phase speed of the disturbance wave). This stabilization approach is attractive because it is passive (e.g. it does not require the input of energy into the system) and can be pursued very simply by introducing small quantities of a different fluid or of polymers in the channel, or by producing the required viscosity contrast with mild temperature or concentration gradients.

The beneficial effect of adding small concentrations of long-chain polymers to turbulent flows has been known for a long time [START_REF] Lumley | Drag reduction by additives[END_REF][START_REF] Metzner | Polymer solution and fiber suspension rheology and their relationship to turbulent drag reduction[END_REF][START_REF] Bird | Dynamics of polymeric liquids[END_REF]. Friction drag is reduced drastically and the effect appears to be associated to the enhanced effective viscosity induced by the extensional thickening properties of polymeric solutions. Numerical observations [START_REF] Orlandi | A tentative approach to the direct simulation of drag reduction by polymers[END_REF][START_REF] Sureshkumar | Direct numerical simulation of the turbulent channel flow of a polymer solution[END_REF][START_REF] De Angelis | DNS of wall turbulence: dilute polymers and self-sustaining mechanisms[END_REF] show that turbulence generating events in the buffer layer are inhibited by the presence of polymers: drag reduction is accom-panied by a weakening of the streamwise vortices, a modification in fluctuating velocity characteristics, and an increase in the average spacing between the streaks within the buffer layer. A mechanistic explanation of the effects observed is emerging through the study of nonlinear recurrent states which mirror effects observed experimentally in buffer-layer turbulence of viscoelastic fluids [START_REF] Stone | Polymer drag reduction in exact coherent structures of plane shear flow[END_REF][START_REF] Li | Nonlinear travelling waves as a framework for understanding turbulent drag reduction[END_REF].

Recent efforts aimed at assessing the effect of a stratification of viscosity have been geared towards the behavior of small disturbances in laminar channel flows [START_REF] Ranganathan | Brancher flow by location of viscosity-stratified fluid layer[END_REF][START_REF] Govindarajan | Retardation of the onset of turbulence by minor viscosity contrasts[END_REF][START_REF] Govindarajan | Surprising effects of minor viscosity gradients[END_REF][START_REF] Govindarajan | Stabilization of hydrodynamic flows by small viscosity variations[END_REF][START_REF] Chikkadi | Preventing transition to turbulence: A viscosity stratification does not always help[END_REF]. The outcome of these studies is summarized below:

(1) any space dependence of the viscosity µ in the critical layer, with µ decreasing towards the wall, is sufficient to considerably delay the onset of two-dimensional instability modes;

(2) the effect is related to a reduced production of disturbance kinetic energy by interaction with the mean field; the energy dissipation responds less dramatically to changes in viscosity;

(3) it is argued that in a turbulent configuration the energy budget could display a similar behavior, when the turbulence-production layer overlaps with the viscositystratified layer, with the same reduced-production mechanism active for each interacting mode;

(4) the secondary three-dimensional instability modes are "slaved" to the primary modes and are rapidly damped †; † The base flow considered in the secondary stability analysis consists of the steady profile plus the most unsteady traveling mode of the primary instability, with prescribed finite amplitude.

The base flow is supposed frozen in time, which is admissible under the assumption of separation of scales.

(5) transient growth is relatively unaffected by viscosity gradients. Some of the assertions above prompted the present investigation since their implications might have far-reaching consequences for flow control. It has thus been decided to investigate further the linear stability issue, focussing on non-linear, purely viscous fluids:

τ = µ( γ) γ,
with τ the deviatoric stress tensor, and γ is the second invariant of the strain-rate tensor γ, defined by γ = 1 2 γ : γ 1 2

, with γ = ∇u + ∇u T . On the one hand, understanding the phenomenon of transition initiated by the growth of infinitesimal perturbations is a necessary pre-requisite to find effective transition-delay strategies. On the other hand, it has been argued by [START_REF] Farrell | Perturbation structure and spectra in turbulent channel flow[END_REF] that the mechanism responsible for the formation of coherent structures in near-wall turbulence obeys linear rules. It is thus possible that some of the findings reported here carry over to more complex situations.

Whilst many other papers on viscously stratified flows have been published, we prefer to defer further analysis of the literature to a later section, after having established the equations governing the problem. The paper is organized as follows: The linear stability equations are derived in Section 2. They differ from the equations reported previously, and a discussion on this difference is provided. In Section 3 the modal results are presented. The short-time behavior of disturbances in the subcritical regime is the object of Section 4; Section 5 contains a brief summary of the results obtained.

Set up of the problem

The motion of an incompressible, shear thinning fluid of negligible visco-elasticity in a channel bounded by two parallel plates located at ŷ = ±h is considered. The flow is driven by a constant gradient of pressure p along the longitudinal direction x. The dimensionless hydrodynamic equations are:

∂ ∂t + u.∇ u = -∇p + ∇.τ , (2.1) ∇.u = 0. (2.2)
Although the disturbance equations derived below are valid for any non-linear purely viscous fluid, a rheological law must be chosen to model the shear thinning behavior of fluids such as colloidal suspensions, paints, dispersions or polymer solutions. Among the many possibilities (power-law, Ellis, Carreau-Yasuda, Cross ...) we have chosen the [START_REF] Carreau | Rheological equations from molecular network theories[END_REF] model for the following reasons:

(i) It has a sound theoretical basis, since it arises from Lodge's molecular network theory and has proven capable to fit simultaneously the steady shear, complex viscosity, stress growth and stress relaxation functions;

(ii) It is frequently adopted to describe the rheological behavior of pseudoplastic fluids and stability analysis data are available in the literature.

We anticipate that unpublished results by our group show that the conclusions to be reported below are qualitatively unaffected when the power-law constitutive model is used instead of the Carreau law.

The constitutive relation is thus:

τ = 1 Re µ γ with µ = μ∞ μ0 + 1 - μ∞ μ0 1 + (λ γ) 2 n-1 2 ; (2.3)
the variables have been normalized with the half-channel thickness h, the centerline velocity U c , the zero-shear-rate viscosity μ0 and the dynamic pressure ρ U 2 c , with ρ the fluid density, so that the Reynolds number Re is equal to ρ U c h/μ 0 . The infinite-shear-rate viscosity μ∞ , which is generally associated with a breakdown of the fluid, is frequently significantly smaller than μ0 (see [START_REF] Bird | Dynamics of polymeric liquids[END_REF] and the ratio μ∞ /μ 0 will be neglected in the following. The power-law index n represents the degree of shear thinning, whose onset is function of the time constant of the material λ. The Carreau model tends to the power-law model when λ is very large.

Linear stability equations

We are interested in the stability of the steady unidirectional base flow U b = U b (y)e x satisfying equations (2.1-2.3), together with no-slip conditions at the rigid walls. Sample velocity distributions are plotted in figure 1 of the paper by [START_REF] Chikkadi | Preventing transition to turbulence: A viscosity stratification does not always help[END_REF], and it is demonstrated there that the profiles are 'fuller' for increasing values of the time constant of the fluid λ, for any fixed value of n. By analogy with previous results obtained by [START_REF] Fransson | Optimal linear growth in the asymptotic suction boundary layer[END_REF] for the asymptotic suction boundary layer and by [START_REF] Corbett | Optimal perturbations for boundary layers subject to stream-wise pressure gradient[END_REF] for the boundary layer under conditions of favorable streamwise pressure gradient, it is not unreasonable to anticipate that the effect of shear thinning (increasing λ or decreasing n) is stabilizing, both from the point of view of the asymptotic behavior of small disturbances and from that of the short-time transient behavior. Unexpectedly, whereas the modal behavior did indeed conform to expectations, the non-modal short-time results did not, leading [START_REF] Chikkadi | Preventing transition to turbulence: A viscosity stratification does not always help[END_REF] to "state firmly that a stratification of viscosity alone does not affect transient growth". It will be argued below that such a conclusion is incorrect.

To characterize the stability of the flow, an infinitesimal perturbation ( u , p ) is considered and the momentum equation is linearized around (U b , p b ):

∂u ∂t = -(u .∇) U b -(U b .∇) u -∇p + ∇.τ , (2.4)
where τ is the shear stress perturbation given by τ = µ (U b ) γ (u ) + µ γ (U b ) with µ the viscosity perturbation:

µ = γij (u ) ∂µ ∂ γij (U b ) . (2.5)
Since the base flow is unidirectional, U b = U b (y) e x , it can be shown straightforwardly that

τ ij = µ (U b ) γij (u ) for ij = xy, yx (2.6) τ ij = µ t (U b ) γij (u ) for ij = xy, yx, (2.7)
where

µ t = µ (U b ) + dµ d γxy (U b ) γxy (U b ) (2.8)
is termed the tangent viscosity. Indeed, for a one-dimensional shear flow, with velocity U b (y) in the x-direction, the tangent viscosity is defined by µ t = dτ xy /d γxy , as sketched in figure 1 for a given reference point (we recall that the effective viscosity µ is experimentally defined as the ratio between τ xy and γxy , in a flow such as that considered here). For shear thinning fluids we have µ t < µ, whereas the opposite holds for shear thickening fluids. It is important to observe that the fluctuating shear stress tensor τ is anisotropic, because of the presence of a viscosity perturbation. This is a characteristic of non-linear viscous fluids, with or without yield stress †. For instance, in the case of the Bingham-Poiseuille flow, τ xy is independent of the Bingham number which is a dimensionless yield stress [START_REF] Nouar | Modal and non-modal linear stability of the plane-Bingham-Poiseuille flow[END_REF]. Since this fact appears to have been overlooked by some authors, a brief review of the literature is in order at this point.

Brief summary of research results on viscously-stratified flows in channels

A stratification in viscosity can be obtained by considering different immiscible fluids in contact (in which case the viscosity presents a discontinuity), or when temperature and/or concentration gradients are involved (so that a diffusive interface of non-zero thickness is present), or in the case of non-Newtonian fluids. The case of two superposed immiscible fluids of constant (and different) viscosities was initially considered † For Newtonian fluids with a viscosity stratification induced, for instance, by temperature gradients τ remains isotropic. [START_REF] Yih | Instability due to viscosity stratification[END_REF] who focused on long waves and found an interfacial mode of instability at all Reynolds numbers. [START_REF] Hooper | Shear-flow instability at the interface between two viscous fluids[END_REF] later found that also short waves can be easily destabilized. The instability mechanism was studied by [START_REF] Hinch | A note on the mechanism of the instability at the interface between two viscous fluids[END_REF] and [START_REF] Charru | Phase diagram" of interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability[END_REF], who elucidated the roles of the layers' thicknesses and of the viscosity ratio.

A smooth viscosity stratification can be obtained when µ depends on an intensive quantity obeying an advection-diffusion equation. The equations for two-dimensional stability modes, when µ is a linear functional of concentration or temperature alone, are given, for example, by [START_REF] Govindarajan | Surprising effects of minor viscosity gradients[END_REF], under the assumption that the scalar diffusion coefficient is sufficiently small to allow the neglect of the thickening of the interface along

x. Govindarajan's equations correctly include the terms arising from a viscosity disturbance, so that a modified Orr-Sommerfeld equation is found, coupled to a linear scalar transport equation. The same equations have been employed by [START_REF] Wall | The linear stability of channel flow of fluid with temperature-dependent viscosity[END_REF], [START_REF] Ern | Stability analysis of a shear flow with strongly stratified viscosity[END_REF] and, in the context of an exponential (rather than linear) viscosity-temperature relationship, by [START_REF] Pinarbasi | The role of variable viscosity in the stability of channel flow[END_REF] and [START_REF] Sameen | The effect of wall heating on instability of channel flow[END_REF]. [START_REF] Govindarajan | Surprising effects of minor viscosity gradients[END_REF] indicates that her results are qualitatively different from those relative to the interfacial stability of immiscible fluids; conversely, [START_REF] Ern | Stability analysis of a shear flow with strongly stratified viscosity[END_REF] show that the stability of a diffused interface tends smoothly to that of the discontinuous case when the interface thickness tends to zero. In either case, the details of the stratification are crucial in determining the fate of small disturbances.

Other authors, [START_REF] Ranganathan | Brancher flow by location of viscosity-stratified fluid layer[END_REF], [START_REF] Govindarajan | Retardation of the onset of turbulence by minor viscosity contrasts[END_REF][START_REF] Govindarajan | Stabilization of hydrodynamic flows by small viscosity variations[END_REF], [START_REF] Malik | Linear stability and energy growth of viscosity stratified flows[END_REF], do not include viscosity fluctuations in the linear stability equations. This can only be justified if an infinite scalar diffusion coefficient D were considered for the perturbations; such an assumption is however untenable with the assumed steady viscosity stratification since, if D → ∞, the basic viscosity gradient cannot be maintained. In a similar vein, Zhang, Acrivos & Schaflinger (1992) performed a linear analysis for a flowing suspension of a uniform concentration of particles. As pointed out by [START_REF] Ern | Stability analysis of a shear flow with strongly stratified viscosity[END_REF], the presence in related experiments of concentration gradients, and the existence of fluctuations in the concentration (and, as a consequence, in the fluid viscosity) could alter the conclusions.

The linear stability of non-Newtonian fluids to two-dimensional travelling wave modes in a plane channel with heat transfer has been studied by [START_REF] Pinarbasi | Effect of viscosity models on the stability of a Non-Newtonian fluid in a channel with heat transfer[END_REF] for the case of inelastic liquids modeled by the Carreau constitutive equation. In this case, µ was included in the analysis and considered function of the shear rate only, dropping the (supposedly negligible) dependence on the temperature fluctuations. The same type of viscosity law was later adopted by [START_REF] Chikkadi | Preventing transition to turbulence: A viscosity stratification does not always help[END_REF], who examined also the case of two miscible fluids of equal densities and different viscosities. This latter analysis focused, in particular, on the problem of the transient growth of disturbances, a problem practically ignored up to very recently in the literature of non-Newtonian fluids. In their paper [START_REF] Chikkadi | Preventing transition to turbulence: A viscosity stratification does not always help[END_REF] did not account for the anisotropic nature of the shear stress disturbance tensor.

A very recent paper by Saamen and Govindarajan (2007) addresses the effect of heating on the modal and non-modal stability of channel flow of a Newtonian fluid; the viscosity depends on temperature with an Arrhenius law. A decrease in viscosity towards the wall stabilizes normal modes, in line with previous findings; non-modal results are found to be very much affected by an increase in Prandtl number and, surprisingly, optimal disturbances are found to be two-dimensional, spanwise homogeneous. The paper employs a reference viscosity which is the value averaged across the normal-to-the-wall direction, as suggested by [START_REF] Wall | The linear stability of channel flow of fluid with temperature-dependent viscosity[END_REF].

The present contribution examines some of the assumptions that have appeared in the literature and aims at a rational assessment of the effect of a viscosity stratification on the modal and non-modal growth of disturbances. The question of which reference viscosity to adopt is also addressed.

Final equations

The disturbance field is assumed of the form

[u , p ] = [ũ(y, t), p(y, t)] exp [i (αx + βz)],
with α and β the streamwise and spanwise wavenumbers, respectively. Equation (2.4) can be written in terms of the normal velocity ṽ and the normal vorticity η = iβ ũ -iα w, so that the initial-value problem becomes:

-i     L C 1 C 2 S         ṽ η     = ∂ ∂t     ∆ṽ η     ,
(2.9)

where the operators L, C 1 , C 2 and S are defined as:

L = α U b ∆ -D 2 U b + i Re µ∆ 2 + 2DµD 3 + D 2 µD 2 -2k 2 DµD + k 2 D 2 µ + i α 2 Re k 2 D 2 + k 2 (µ t -µ) D 2 + k 2 ,
(2.10)

C 1 = -i α β Re k 2 D 2 + k 2 [(µ t -µ) D] ,
(2.11)

C 2 = β DU b -i α β Re k 2 D (µ t -µ) D 2 + k 2 , (2.12) S = α U b + i Re µ ∆ + i Re Dµ D + i Re β 2 k 2 D [(µ t -µ) D] , (2.13) with k 2 = α 2 + β 2 ; D = d/dy and ∆ = D 2 -k 2 .
A Chebyshev collocation method is used to solve (2.9) along with boundary conditions ṽ = Dṽ = Dη = 0 at y±1. This definition was suggested by [START_REF] Wall | The linear stability of channel flow of fluid with temperature-dependent viscosity[END_REF] for Newtonian fluids, to better represent the global decrease of µ when the channel walls were heated. Later on, it was adopted by [START_REF] Chikkadi | Preventing transition to turbulence: A viscosity stratification does not always help[END_REF] also for Carreau fluids.

The importance of the viscosity perturbation term is illustrated by figure 2 where the critical Reynolds number, Re c , is reported as a function of the time constant λ at n = 0.5 and compared with the situation where µ is artificially forced to zero. The results obtained for this last situation are in excellent agreement with those given by [START_REF] Chikkadi | Preventing transition to turbulence: A viscosity stratification does not always help[END_REF]. The evolution of the corresponding streamwise wave number is also represented. In the range of the rheological parameters considered in figure 2, it is found that shear thinning stabilizes the flow, but the degree of stabilization is more modest when all terms are included in the equations, and the critical Reynolds number is about a factor of two smaller. The fact that including or excluding the viscosity perturbation gives rise to such large variations is, in itself, a significant result; Chikkadi and Govindarajan (2007) indicate that such differences in critical Reynolds numbers are mildly attenuated when n increases from 0.5 to 0.7.

To interpret the effect of the viscosity disturbance, the modified Orr-Sommerfeld equation is multiplied by v * , the complex conjugate of v, and integrated in y from the lower to the upper wall. Taking the real part of the result it is easy to obtain:

ω i |Dv| 2 + α 2 |v| 2 = α DU b (v r Dv i -v i Dv r ) - 1 Re µ(4α 2 |Dv| 2 + |D 2 v + α 2 v| 2 ) + 1 Re (µ -µ t ) |D 2 v + α 2 v| 2 , (3.1)
where

|v| 2 = v 2 r + v 2 i and . = 1 -1
(.) dy. The third term on the right-hand-side of (3.1) arises from the viscosity perturbation. It is a positive-definite term for shear thinning fluids (µ t < µ) which carries the consequence that viscous dissipation is reduced as compared to the case with µ = 0. Hence, the onset of instability is found earlier than in the µ = 0 case. When an infinitesimal perturbation is imposed on the basic flow, the shear stress and the shear rate are disturbed by δτ xy and δ γxy , so that the disturbance field 'will feel' the (smaller) tangent viscosity µ t = δτ xy /δ γxy , sketched in figure 1, and not the effective -nor the average -viscosity. We will come back to this point later on.

In the remainder of the paper the viscosity perturbation is always accounted for, unless otherwise stated.

To analyse the effect of shear thinning on the critical conditions, Re c was computed for different values of n and λ. Results are reported in figure 3 (left). It is worthy to note that: (i) at "low" values of the time constant λ, shear thinning stabilizes the flow, and the maximum degree of stabilization is reached for λ ≈ 1, i.e., when the characteristic time associated to the fluid rheology equals the characteristic time of the flow; (ii) for "large" values of λ, shear thinning appears to be destabilizing. This observation is coherent with results obtained by [START_REF] Gupta | Hydrodynamic stability of the plane Poiseuille flow of an electro-rheological fluid[END_REF] for the case of power-law fluids, where the Reynolds number is defined with a nominal viscosity, K(U c /h) n-1 , K being the consistency. We further observe that if the computations are carried out with µ = 0, only a stabilizing effect is present.

In the discussion so far, the reference viscosity is the average viscosity µ = µ /2 of the , it is simple to see that the critical layer equation at lowest order reduces to:

ξ D2 v = -i μt D4 v, (3.2)
where D = d/dξ. Also, close to the wall in y = 1 (and likewise for the lower wall) the boundary layer approximation of the Orr-Sommerfeld equation is: When µ tw is adopted, it is observed in figure 4 (left) that shear thinning is consistently stabilizing. Figure 4 (right) displays the asymptotic (large λ) behavior of the critical Reynolds number based on the wall tangent viscosity Re tw as function of the power-law index n: the critical Reynolds number decreases exponentially with n, and reaches the Newtonian limit when n = 1.

D 2 χ v * = -i µ t * D 4 χ v * , (3.3) where χ = y -1 * , * = (α Re c) -1/2 , c = ω/α, v * (χ) = v(y), µ t * (χ) = µ t (
In laboratory experiments it is a custom to employ the effective viscosity at the wall in the definition of the Reynolds number (see, for instance, [START_REF] Peixinho | Laminar transitional and turbulent flow of yield stress fluid in a pipe[END_REF]. From measurements of the pressure drop, the wall stress is estimated; rheological diagrams are then used to infer an approximate value of the wall viscosity. If the viscosity perturbation were not taken into account in the equations, the effective wall viscosity would emerge from the critical and wall layer equations as the most appropriate reference. Should we adopt the effective viscosity at the wall as scale, to conform to experimental practice, we would find the same qualitative behavior as with µ tw , as attested by figure 5. However, for the arguments advanced above, we maintain the tangent viscosity at the wall as the most appropriate scale. To complete the description of the critical conditions, we have represented in figure 6 (left) the evolution of the streamwise wavenumber with the rheological parameters λ and n. Independently of the flow behavior index, longer waves are found at criticality when λ ≈ 1; the critical wavenumbers tend to constant values with increasing λ and the asymptotic curve of figure 6 (right) displays a non-monotonic behavior, with shorter waves emerging with the increase of shear thinning for n below 0.6.

Examination of the energy budget provides additional insight onto the effect of shear thinning. It is simple to derive the Reynolds-Orr equation for the perturbation energy, by following the procedure that led to (3.1); in symbolic form the equation reads:

d I 1 dt = I 2 - 1 Re I 3 . (3.4)
The term on the left-hand-side represents the time variation of the disturbance kinetic energy density, I 2 is the integral of the product of the Reynolds' stress with the mean velocity gradient and quantifies the energy available to the perturbation, and I 3 /Re is the rate of dissipation of kinetic energy into heat. Following [START_REF] Govindarajan | Retardation of the onset of turbulence by minor viscosity contrasts[END_REF], it is convenient to compute and compare the space-averaged production and dissipation terms Γ ± defined by

Γ + = I 2 E ; Γ -= 1 Re I 3 E , ( 3.5) 
with I 1 = Eexp(2ω i t). At criticality, the transfer of energy from the base flow to the disturbance motion is exactly balanced by viscous dissipation as exemplified in figure 7 for the case of a Newtonian fluid. The disturbance kinetic energy is supplied essentially in the vicinity of the critical layer, whose thickness is O (α Re) -1/3 , while most of the dissipation occurs in the wall layer, which is O(α Re) -1/2 . The effect of viscosity stratification on the energy budget can be appreciated by comparing the results obtained for a Newtonian fluid (figure 7) with those given in figure 8 configuration with n = 0.7, α = 1.12, Γ + = 1.798 × 10 -4 , Γ -= 9.581 × 10 -3 . Right: configuration with n = 0.5, α = 1.264, Γ + = -7.904 × 10 -3 , Γ -= 1.312 × 10 -2 . displayed in figure 7; (ii) the position of the critical point approaches the wall; (iii) the order of magnitude of the average viscous dissipation remains the same of the Newtonian case.

The main factor determining stability or instability of the flow is the exchange of energy between base flow and perturbation, which is driven by the phase change between the two fluctuating velocity components, caused by the viscosity stratification. When the viscosity fluctuation is artificially forced to zero, a large negative production region appears, leading to a fictitious stabilization (cf. figure 9).

Short-time behavior: Transient growth and optimal disturbances

The transient evolution of perturbations in the linear regime is determined following the methodology described by [START_REF] Schmid | Optimal energy density growth in Hagen-Poiseuille flow[END_REF]. For a given Fourier mode, the instantaneous disturbance kinetic energy is given by which is function of time and of the initial condition, q 0 = (v, η) T 0 = q (y, 0; α, β). As usual, the gain G is defined as the amplification of the kinetic energy at time t over all non-zero initial conditions:

E t (q 0 ; α, β) = 1 2k 2 1 -1 |Dv| 2 + k 2 |v| 2 + |η| 2 dy, ( 4 
G (t, α, β) = sup q 0 =0 E t (q 0 , α, β) E 0 (q 0 , α, β) ; (4.2)
then the maximum transient energy growth possible over all times is G max (α, β) = sup t≥0 G (t, α, β). The maximum of G max for all the pairs (α, β) is denoted G opt which is reached by the optimal perturbation at a specific time t opt . Unlike the exponential amplification case, here the growth of disturbances occurs over a relatively short initial time and is related to an inviscid mechanism, the lift-up of low speed streaks from the wall. Viscosity acts only to moderate the amplification and, also in this case, employing a wall-based viscosity appears reasonable.

We have initially employed µ to compare with the results obtained by [START_REF] Chikkadi | Preventing transition to turbulence: A viscosity stratification does not always help[END_REF], and have thus employed the following parameters: Re = 1000, n = 0.5 and λ = 2. In figure 10 (left), the curve labelled with (2) is in very good agreement with that given by [START_REF] Chikkadi | Preventing transition to turbulence: A viscosity stratification does not always help[END_REF] (see their figure 4). The curve labelled with (1), which accounts for µ , displays an amplification which is up to 27% larger and G opt reaches 230 at a time of 81. It is thus clear that the conclusion by [START_REF] Chikkadi | Preventing transition to turbulence: A viscosity stratification does not always help[END_REF] that transient behavior is unaffected by a stratification of viscosity must be revised. The apparent enhanced growth experienced by a shear thinning fluid versus a Newtonian fluid occurs in the presence of a 'fuller' base velocity profile and this is at odd with previous transient growth studies [START_REF] Corbett | Optimal perturbations for boundary layers subject to stream-wise pressure gradient[END_REF][START_REF] Fransson | Optimal linear growth in the asymptotic suction boundary layer[END_REF]. G opt = 196 at t opt = 75.9 [START_REF] Schmid | Stability and Transition in Shear Flows[END_REF]. The effect of shear thinning is to reduce significantly the maximum growth attainable at fixed Re tw , and the corresponding time, as by the approximate scalings

G opt n =1 G opt n=1 ≈ n 3.60 ; t opt n =1 t opt n=1 ≈ n 1.57 ,
which apply when λ is large enough. A similar stabilizing effect of shear thinning would have arisen had we used a Reynolds number based on the effective wall viscosity. As far as the optimal horizontal scales of motion are concerned, they do not differ much from the Newtonian case.

To obtain a complete picture of the transient growth dependence with the horizontal wave vector, the maximum growth is calculated for a range of wavenumbers and plotted in the (α, β) plane. An example of level curves of G max for Re tw = 4584 (Re = 1000) at n = 0.5 and λ = 2 is provided in figure 11. The optimal perturbation occurs at α = 0 and β = 1.93, and G opt = 236.8 is reached after t opt = 99 advective time units. The numerical results show that around these optimal conditions the transient behavior is weakly dependent on β whereas the variation with the streamwise wavenumber is rather rapid. For comparison, in the Newtonian case at Re 4584 the optimal disturbance is found at α = 0, β = 2.04, and after t opt = 348 the amplification reaches G opt = 4119 [START_REF] Biau | Optimal perturbations and minimal defects: Initial paths of transition to turbulence in plane shear flows[END_REF].

The velocity field ve y + we z associated to the optimal perturbation is displayed in figure 12. It is characterized by two counter-vortices which transform into streaks at t = t opt . In this respect the "optimal" behavior is analogous to that of Newtonian fluids. A global view of the effect of shear thinning on the optimal transient amplification of disturbances is provided in figure 13. On the left figure, the Reynolds number is based on the viscosity averaged across y, on the right it is based on µ tw . The left frame appears to demonstrate that shear thinning enhances significantly the amplification experienced by "optimal" initial streaks compared to the Newtonian case (with a negligible effect for the case in which µ is neglected). Exactly the opposite effect is found by using as scale the tangent viscosity at the wall (figure 13, right). As in the case of the exponential growth, the curves collapse onto one another for λ sufficiently large. For the range of parameters considered here, the optimal perturbation consists of longitudinal vortices with decreasing transverse wave number as n decreases.

Conclusions

The linear stability of viscously stratified channel flow (with the viscosity modelled by the Carreau law) has been revisited, focussing on both exponentially and algebraically growing perturbations. The motivation for this study comes from the possibility of delaying transition to turbulence by creating a viscosity contrast in the channel. We have accounted for a non-vanishing viscosity disturbance µ , and this yields an anisotropic disturbance stress tensor.

The results we arrive at are in contradiction with previously reported conclusions.

Part of the disagreement stems from the neglect of µ in past studies, and part arises from the choice of the viscosity used to define the Reynolds number. Whereas in the past it has been deemed appropriate to use the average effective viscosity to produce results for shear thinning fluids (to eventually compare with corresponding results for the Newtonian case), we argue here that the tangent viscosity evaluated at the wall is a more pertinent choice. Although the selection of the viscosity scale appears to be simply a matter of choice, the conclusions that one reaches by comparing different shear thinning fluids among themselves and against Newtonian fluids can be radically different from one choice to the other.

For the case of two-dimensional exponentially growing waves the choice of the wall tangent viscosity as the relevant scale is dictated by the asymptotic behavior of the flow in the wall and critical layers. It is found that the instability occurs much earlier than previously reported for a range of material time constants λ and power-law indices n, as a consequence of the more efficient transfer of disturbance energy across the critical layer as compared to the µ = 0 case. The largest stabilization occurs for λ ≈ 1.5 (independent of n) and the stabilizing effect is maintained for arbitrarily large values of λ.

As far as the transient growth of three-dimensional waves in the subcritical regime is concerned, previous results indicated that shear thinning had negligible influence.

Our main conclusion is embodied by figure 13: whilst shear thinning appears to be destabilizing when Re is based on the average effective viscosity, the opposite effect appears when the (tangent or effective) viscosity at the wall is used. The superiority of a wall-based viscosity in describing the physics of the problem cannot be easily ascertained on asymptotic ground. However, the lift-up effect is an inviscid phenomenon and viscosity acts primarily in a near wall layer to moderate the growth of streaks: thus, it seems reasonable to employ a wall-based viscosity to describe this diffusive effect. Choosing µ underestimates the effective Reynolds number.

In all situations considered here it has been found that transition is effectively postponed when a viscosity contrast is produced in the layer, at least for fluids which can be represented by the Carreau model. The extension of this study to different types of constitutive relations is called for, including shear thickening fluids, to achieve a more general understanding of the stability of viscously stratified flows. Current work focuses on the viscosity contrast needed to optimally delay transition to turbulence.
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 1 Figure 1. Left: Qualitative behavior of τxy versus γxy for a Carreau fluid. The slope of the dotted line is the so-called effective viscosity, the slope of the dashed line is the tangent viscosity. Right: Effective and tangent viscosity as function of the wall-normal coordinate y, for n = 0.5 and two values of λ. The thick line is the effective viscosity and the thin line is the tangent viscosity

  Standard techniques (described in Schmid & Henningson 2001 and references therein) are employed to compute eigenvalues, eigenmodes and transient energy growth. The convergence of the results has been verified and the code has been thoroughly tested by comparing both the modal and the non-modal results with those provided in Chikkadi et al. (2005).

  3. Long-time behavior of the disturbance: Eigenvalue problemWhen the long-time behavior is sought, the disturbance mode can be assumed to vary exponentially with time, i.e. [ṽ, η] (y, t) = [v, η] (y; α, β) e -i ω t . The initial value problem (2.9) is transformed into a generalized eigenvalue problem with the complex frequency ω as the eigenvalue. Since there is no equivalent of Squire theorem for nonlinear viscous fluid, we have performed several tests for different values of n ∈ [0.2, 1] and λ ∈ [0, 20], as well as different wavenumbes α and β ∈ [0, 5]. The results indicate that the lowest critical Reynolds number is obtained for spanwise-homogeneous disturbances,i.e. β = 0. In hindsight, there are clues as to the validity of Squire's theorem: On the one hand, if µ is artificially forced to zero, it can be shown easily that Squire's transformation holds (see, i.e.,[START_REF] Drazin | Hydrodynamic Stability[END_REF], and that an equivalent two-dimensional problem can be defined. Secondly, when the viscosity perturbation is accounted for, its effect appears only through τ xy , present in the x-and y-perturbation equations and involving uniquely axial and normal velocity disturbances. Finally, it is of significance the fact that in τ xy enters only the tangent viscosity, which is here smaller than µ.The two-dimensional eigenvalue problem reduces to the solution of a Orr-Sommerfeldlike equation, L v = ω ∆ v. The even and odd v-modes decouple and may be considered separately, with boundary conditions on the channel centerline y = 0 being v = D 2 v = 0 or Dv = D 3 v = 0 for odd and even symmetries, respectively. For Re greater than the critical value Re c the even modes have a positive imaginary part, corresponding to a linearly unstable Tollmien-Schlichting wave. To compare our results with those existing in the literature, Re (based on the zero-shear-rate viscosity μ0 ) is converted to Re: the overbar defines a Reynolds number based on the viscosity averaged across the channel.

Figure 2 .

 2 Figure 2. Variation of the critical Reynolds number (on the left) and streamwise wave number with the time constant λ at n = 0.5: the line denoted by (1) (respectively (2)) corresponds to results including (respectively, excluding) the viscosity perturbation. The + signs correspond to unpublished data provided byChikkadi and Govindarajan (2007).
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 3 Figure 3. Effect of shear thinning on the critical Reynolds number Rec (on the left) and on the position of the reference point y b where µ(y b ) = µ. The curves are labelled by the flow behavior index n.

  Carreau fluid. The relevance of this scaling can be assessed by plotting the position y b where the local effective viscosity µ (y b ) = µ. Figure 3 (right) shows that this reference point y b is away from the wall. The fact of employing an effective viscosity which pertains to a position far from the wall is counterintuitive, since Tollmien-Schlichting waves originate in a near-wall viscous layer. Analysis of the dominant terms of the Orr-Sommerfeld equation in the critical and wall layers helps establish the relevant viscosity scale. In a neighborhood of y = y c , the Orr-Sommerfeld equation Lv = ω∆v, must be rescaled so that viscous terms enter the primary balance. By letting v(ξ) = v(y) and μt (ξ) = µ t (y), with ξ = y -y c and = α Re dU b

  y) and D χ = d/dχ. It is clear from (3.2) and (3.3) that it is the tangent viscosity that enters the balance in wall and critical layers. This supports the choice of the wall tangent viscosity µ tw = µ t (y = ±1) as reference, in place of µ.
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 45 Figure 4. Variation of the critical Reynolds number, based on the wall tangent viscosity, with the time constant λ, for different values of n (left); asymptotic behavior for large λ (results obtained by fixing λ = 20)(right).

Figure 6 .

 6 Figure 6. Variation of the critical wavenumber with the time constant λ, for different values of n (left); asymptotic behavior for large λ (results obtained by fixing λ = 20)(right).

Figure 7 .

 7 Figure 7. Disturbance kinetic energy transfer terms: the production term I2 is represented by a solid line and the viscous dissipation term I3/Re is plotted with a dashed line. Newtonian fluid with Re = 5772 and α = 1.02; Γ+ = Γ-= 7.394 × 10 -3 . In this figure and the figures to follow the position of the critical layer is shown by a dotted vertical line.
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 8 Figure 8. Effect of viscosity stratification on the energy budget, Re tw = 5772, λ = 10. Left:

Figure 9 .

 9 Figure 9. Effect of viscosity stratification on the energy budget at Re = 5772 (Re tw = 56630), n = 0.5 and λ = 10. Left: unstable case with α = 1.001, Γ + = 6.153 ×10 -3 , Γ -= 5.700 ×10 -3 . Right: stable case obtained by artificially imposing µ = 0, α = 1.107, Γ + = 1.847 × 10 -3 , Γ -= 7.769 × 10 -3 .

  Figure 10 (right) helps reconcile physical intuition with numerical results: the amplification factor G at Re tw = 1000, α = 0, β = 2.05, λ = 2, is drawn for different values of the shear thinning index n. The case n = 1 coincides with the Newtonian case for Re = 1000, i.e.
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 1011 Figure 10. Energy amplification at λ = 2, α = 0, β = 2.05. Left: Re = 1000 and n = 0.5. For the curve labelled with (1) µ is taken into account; for curve (2) µ is forced to zero; curve (3) pertains to a Newtonian fluid. Right: Retw = 1000 and different values of n.

Figure 12 .

 12 Figure12. Optimal perturbation and optimal streaks at Retw = 4584 (Re = 1000), n = 0.5 and λ = 2. On the left the velocity vectors vey + wez of the optimal perturbation at t = 0 are plotted; on the right equally spaced contours of the streamwise velocity u at t = t opt are displayed.
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 13 Figure 13. Effect of the shear thinning on the optimal amplification: (left) Re = 1000, (right) Retw = 1000