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ABSTRACT

Context. The ever-increasing quality of asteroseismic measurements offers a unique opportunity to use the observed global acoustic
modes to infer the physical properties of stellar interiors. In solar-like oscillators, the finite lifetime of the modes allows their ampli-
tudes and linewidths to be estimated, which provide invaluable information on the highly turbulent motions at the top of the convective
envelope. But exploiting these observables requires a realistic theoretical framework for the description of the turbulence–oscillation
coupling.
Aims. The first paper of this series established a linear stochastic wave equation for solar-like p-modes, correctly taking the effect of
turbulence thereon into account. In this second paper, we aim at deriving simultaneous expressions for the excitation rate, damping
rate, and modal surface effect associated with any given p-mode, as an explicit function of the statistical properties of the turbulent
velocity field.
Methods. We reduce the stochastic wave equation to complex amplitude equations for the normal oscillating modes of the system.
We then derive the equivalent Fokker-Planck equation that governs the evolution of the probability density function jointly associated
with the real amplitudes and phases of all the oscillating modes of the system simultaneously. The effect of the finite-memory time of
the turbulent fluctuations (comparable to the period of the modes) on the modes themselves is consistently and rigorously accounted
for, by means of the simplified amplitude equation formalism. This formalism accounts for mutual linear mode coupling in full, and
we then turn to the special single-mode case. This allows us to derive evolution equations for the mean energy and mean phase of
each mode, from which the excitation rate, the damping rate, and the modal surface effect naturally arise.
Results. The expressions obtained here (1) are written as explicit functions of the statistical properties of turbulence, thus allowing for
any prescription thereof to be tested against observations, (2) include the contribution of the turbulent dissipation more realistically,
and (3) concern the excitation rate, the damping rate, and the modal surface effect of the modes simultaneously. We show that the
expression for the excitation rate of the modes is identical to previous results obtained through a different modelling approach, thus
supporting the validity of the formalism presented here. We also recover the fact that the damping rate and modal surface effect cor-
respond to the real and imaginary part of the same single complex quantity. We explicitly separate the different physical contributions
to these observables, in particular the turbulent pressure contribution and the joint effect of the pressure-rate-of-strain correlation and
the turbulent dissipation. We show that the former dominates for high-frequency modes and the latter for low-frequency modes. To
illustrate the usefulness of this formalism, we apply it to a simplified case where we can quantify the relative importance of these
two contributions, and in particular the threshold between the two frequency regimes, as a function of the turbulent frequency and the
degree of anisotropy of both the Reynolds-stress tensor and the dissipation of turbulent energy.
Conclusions. The formalism developed in these first two papers, applied to the case of a simplified Lagrangian stochastic model for
proof-of-concept purposes, indeed proves to be viable, relevant, and useful for addressing the issue of turbulence–oscillation coupling
in the context of solar-like oscillators. It opens the door to subsequent studies physically more appropriate to the stellar case. It will
also allow, once mode coupling is included (i.e. by going beyond the single-mode case), for a realistic description of mode-mode
scattering and its influence on mode damping, mode frequency, and the energy distribution across the solar p-mode eigenspectrum.

Key words. methods: analytical – Sun: helioseismology – Sun: oscillations

1. Introduction

Stellar oscillations are a powerful tool for probing the interior
of stars. In solar-type stars, these oscillations have a finite life-
time, meaning that it is possible to measure not only the fre-
quency of the resonant modes, but also their line profile in the
Fourier domain. While the frequencies give invaluable informa-
tion about the equilibrium structure of the star, the line profiles
carry the signature of the energetic aspects of the modes, which

are tightly related to the physics of the turbulence occurring at
the top of the convective envelope. As a result, solar-like oscil-
lations offer a unique opportunity to constrain the properties of
stellar turbulent convection, which remains to this day one of
the major challenges in stellar physics (e.g., Kupka & Muthsam
2017).

The coupling between solar-like oscillations and turbu-
lent convection manifests itself in the seismic observables
in several ways. First, it is responsible for the discrepancy
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between the observed p-mode frequencies and those theo-
retically computed from oscillation calculations – commonly
referred to as the ‘surface effect’ (Dziembowski et al. 1988;
Christensen-Dalsgaard et al. 1996; Rosenthal et al. 1999). This
discrepancy is the most important hurdle on the road to a
full exploitation of the asteroseismic diagnosis potential of
solar-like p-mode frequencies, and it prevents us from accu-
rately inferring the internal equilibrium structure of these stars
or their global parameters. It is therefore of utmost impor-
tance to correct the surface effect, a task to which numerous
studies have been devoted, using either theoretical prescrip-
tions (e.g., Gabriel et al. 1975; Balmforth 1992b; Houdek 1996;
Rosenthal et al. 1999; Grigahcène et al. 2005) or empirical for-
mulations (e.g., Kjeldsen et al. 2008; Christensen-Dalsgaard
2012; Ball & Gizon 2014; Sonoi et al. 2015).

Secondly, the turbulent convective motions in the supera-
diabatic region are responsible for both the stochastic exci-
tation and the linear damping of solar-like oscillations. As
a result, the signature of turbulent convection is also car-
ried by the observed amplitudes and linewidths of the modes,
and the latter can be used to constrain the former. This
task calls for the development of theoretical prescriptions for
both the stochastic driving (e.g., Goldreich & Keeley 1977a,b;
Balmforth 1992a,c; Samadi & Goupil 2001; Chaplin et al. 2005;
Samadi et al. 2005, 2006; Belkacem et al. 2006, 2008, 2010)
and the linear damping (e.g., Goldreich & Kumar 1991;
Balmforth 1992a; Grigahcène et al. 2005; Dupret et al. 2006;
Belkacem et al. 2012) of solar-like p-modes.

But because the coupling between turbulent convection and
solar-like oscillations occurs predominantly in the superadiabatic
region, where heat transfers, convective motions, and oscillations
all share the same typical spatial scales and timescales, establish-
ing a theoretical prescription for this coupling constitutes a chal-
lenging task. As a result, simplifying assumptions are very often
necessary to obtain tractable relations. Many previous theoreti-
cal efforts are based on time-dependent mixing-length theories
(e.g., Gabriel et al. 1975; Houdek 1996; Grigahcène et al. 2005;
Sonoi et al. 2017; Houdek et al. 2017, 2019), which amounts to
reducing the entire turbulent flow to a single typical spatial scale
and timescale, in direct contradiction with the picture of the tur-
bulent cascade in high Reynolds number flows. This constitutes a
major flaw of these formalisms, as the turbulent pressure and the
turbulent dissipation both derive directly from this turbulent cas-
cade and are deemed to play a major role in turbulence–oscillation
coupling. Furthermore, while the mixing-length hypothesis is rel-
evant in the bulk of the convective envelope, it ceases to be valid
closer to the surface of the star, as highlighted by 3D hydro-
dynamic simulations (see Nordlund et al. 2009, for a review).
Another problem with these approaches is the necessity to sep-
arate the equations of hydrodynamics into distinct sets of equa-
tions for the turbulent convective motions and the oscillations,
respectively, either in the form of a separation between typical
wavenumbers (e.g., Grigahcène et al. 2005) or by performing hor-
izontal averaging in a simulation (e.g., Nordlund & Stein 2001).
While other approaches have been investigated as an alternative,
such as Reynolds-stress models (e.g., Xiong et al. 2000) or the
direct extraction of modes from 3D large-eddy simulations (e.g.,
Belkacem et al. 2019; Zhou et al. 2020), no ideal solution seems
to stand out. Therefore, it remains imperative to seek a more
adapted theoretical framework in which to describe this coupling.

In this series of papers, we investigate a novel modelling
approach designed to address the issue of turbulence–oscillation
coupling in the context of solar-like oscillators, based on
Lagrangian stochastic models of turbulence. In the first paper of

this series (Philidet et al. 2021), we used a Lagrangian stochastic
model to obtain a linear stochastic wave equation that is repre-
sentative of solar-like p-modes and simultaneously contains the
effect of the turbulence on the modes. This linear stochastic wave
equation constitutes our baseline theoretical framework for quan-
tifying turbulence–oscillation coupling. In this second paper, we
exploit it to directly relate the asteroseismic observables – namely,
the amplitudes and linewidths of the modes, as well as the surface
effect incurred by their eigenfrequencies – to the statistical prop-
erties of the underlying turbulence. The present formalism dif-
fers from previous approaches in several ways: (1) the turbulence
is included in its most general form, which allows for any pre-
scription of turbulent convection to be tested against observations;
(2) the treatment of turbulent dissipation is more realistic than
in mixing-length theory, which allows its impact on turbulence–
oscillation coupling to be quantified; (3) all seismic observables
(surface effect, mode amplitudes, and linewidths) are quantified
simultaneously, thus strengthening the constraints we can put on
the properties of turbulent convection.

This paper is structured as follows. In Sect. 2 we recall the
linear stochastic wave equation we obtained in the first paper of
this series (Philidet et al. 2021), and we give a succinct physical
interpretation of the various terms that it exhibits. In Sect. 3 we
detail how this stochastic wave equation can be reduced to cou-
pled equations for the complex amplitude of all the individual
normal modes of the system, through the application of the sim-
plified amplitude equation formalism, and we explicitly derive
this amplitude equation in the case of solar-like p-modes. In
doing so, we keep the simplifying assumption that the entropy
fluctuations of the gas can be neglected. In Sect. 4 we consider
the single-mode case, which, for main-sequence solar-like oscil-
lators, is likely to constitute the dominant contribution, even in
the presence of mode coupling. This yields simultaneous ana-
lytical expressions for the excitation rate, the damping rate, and
the modal surface effect associated with any given mode, as an
explicit function of the statistical properties of the underlying
turbulent velocity field in their most general form, and allows us
to separate the contributions to these quantities. To illustrate the
usefulness of the present formalism, we apply it to a simplified
case in Sect. 4.4, where the relative importance of the physical
contributions to both mode damping and the modal surface effect
can be quantified. Finally, we summarise our findings and draw
our conclusions in Sect. 5.

2. The stochastic wave equation

In this section we summarise the results obtained in
Philidet et al. (2021, hereafter referred to as Paper I). Paper I
established a stochastic linear wave equation for solar-like
acoustic modes, which consistently encompass the effect of the
turbulence, and therefore naturally contains the information on
the coupling between turbulence and oscillations. As such, this
linear wave equation is stochastic by nature (i.e. it contains an
intrinsically random part), and the stochastic part represents the
effect of the random turbulent fluctuations on the behaviour of
solar-like p-modes. To derive the linear stochastic wave equa-
tion, we adopt the three following steps.

First, we consider a Lagrangian stochastic model of turbu-
lence, whereby the flow is represented by a large set of individual
fluid particles. As a first step, these fluid particles are only charac-
terised by their position and velocity. This Lagrangian stochastic
model is then modified to yield stochastic differential equations
for Eulerian variables, which are more suited to the description of
oscillations. This operation leads us to two stochastic differential
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equations governing the evolution of the fluid displacement ξ(x, t)
and velocity u(x, t) (see Eqs. (25) and (26) of Paper I).

Second, these two equations rely on the estimate of the
instantaneous ensemble average of several fluid quantities –
namely the density, pressure, velocity and Reynolds-stress
tensor. These instantaneous ensemble averages are estimated
directly from the set of fluid particles, in a similar fashion to the
smoothed particle hydrodynamics (SPH) formalism. In particu-
lar, this step requires the introduction of a kernel function K(r),
which serves as a spatial weighting function designed to filter
the neighbouring fluid particles for the estimation of the local
instantaneous ensemble averages. This step leads us to explicit
expressions for these averages, as a function of ξ(x, t) and u(x, t)
only (see Eqs. (32)–(35) in Paper I).

Third, we then treat the turbulent part of the displacement
variable ξt (resp. ut for the velocity variable) as an external input,
while the residual ξosc ≡ ξ − ξt (resp. uosc ≡ u − ut) repre-
sent the oscillatory component of these variables, including their
coupling with turbulence. We note that the equations themselves
are not split into turbulence equations and oscillation equations,
so that we retain one system of equations for both at the same
time, instead of two separate sets. The full system of equations
– namely the fluid equations obtained in step (1) and the mean
field expressions obtained in step (2) – is then linearised in terms
of the two wave variables ξosc and uosc. This is done by adopt-
ing a certain number of hypotheses and approximations, all of
which are explicitly itemised in Paper I (see hypotheses H1 to
H5 in Sect. 3.1 therein, as well as H6 to H8 in Sect. 4 therein).
Of particular importance is the adiabatic approximation, which
we adopted as a first step, and whereby we considered any fluid
parcel to conserve its entropy during its evolution. This freed us
from having to include an entropy or energy equation in the sys-
tem, and we instead adopted a polytropic relation between gas
pressure and density. In the following, this is what we mean by
‘adiabatic’. By contrast, we do not consider the oscillations to be
adiabatic in the mechanical sense of the term, meaning that they
can still exchange energy with the background, thus allowing the
contributions of both the driving and the damping of the modes
to be included (see discussion in Sect. 4).

Ultimately, this allows us to establish the following linear
stochastic wave equation for solar-like acoustic modes in the pres-
ence of turbulent convection (see Eqs. (42) and (43) in Paper I):

∂ξosc

∂t
− uosc − (ξosc · ∇)ut − (ξt · ∇)uosc = (ξt · ∇)ut, (1)

∂uosc

∂t
− Ld

1 − Ls
1 = L0. (2)

The vectors L0, Ld
1, and Ls

1 are given by (see Eqs. (44)–(46) in
Paper I)

Ld
1,i =

1
ρ0

(
1
ρ0
∂i p0 − ∂ic2

0

)
I

(
ξosc, j∂ jKx

)
+

c2
0

ρ0
I

(
ξosc, j∂ j∂iKx

)
+ Gi j,0

(
uosc, j −

1
ρ0
I

(
uosc, jKx

))
, (3)

Ls
1,i = −uosc, j∂ jut,i − ut, j∂ juosc,i −Gi j,0

1
ρ0
I

(
ξosc,k∂k

(
ut, jKx

))
+

 ∂Gi j

∂ũ′′k u′′l
ũ′′k u′′l (1) +

∂Gi j

∂(∂kũl)
∂kũl(1) +

1
2
∂Gi j

∂ε
ωtũ′′i u′′i (1)

 ut, j

+
1
4

√
2C0ωt

ũ′′i u′′i 0

ũ′′i u′′i (1)ηi (4)

and

L0,i = −
1
ρ0
∂ j

(
ρ0ut,iut, j − ρ0ut,iut, j

)
, (5)

where we have defined

I( f ) ≡
∫

d3y ρ0(y) f (y). (6)

The indices ‘0’ and ‘1’ refer to equilibrium values and fluc-
tuations around the equilibrium values, respectively. The nota-
tion ∂i denotes the ith component of the gradient operator, and
we have used Einstein summation convention. The dimension-
less quantity C0 denotes the Kolmogorov constant, for which
a commonly accepted experimental value is C0 = 2.1 (e.g.,
Haworth & Pope 1986). We have introduced the centred kernel
function Kx(y) ≡ K(y−x), and the perturbations of the Reynolds-
stress tensor and mean shear tensor are given by (see Eqs. (47)
and (48) in Paper I)

ρ0ũ′′i u′′j (1)
= −ũ′′i u′′j 0

I
(
ξosc,k∂kKx)

+ I
(
ξosc,k∂k

(
ut,iut, jKx

)
+ ut,iuosc, jKx + ut, juosc,iKx

)
(7)

and

ρ0(∂iũ j)(1) = −I
(
uosc, j∂iKx + ξosc,k∂k

(
ut, j∂iKx

))
−

1
ρ0
∂iρ0 I

(
uosc, jKx + ξosc,k∂k

(
ut, jKx

))
. (8)

The quantities ρ0, p0, and γ are the equilibrium density, equi-
librium gas pressure, and polytropic exponent, respectively, and
c2

0 ≡ p0γ/ρ0 is the equilibrium sound speed squared. Finally, by
construction, ηi(x, t) is defined as a multivariate Gaussian pro-
cess whose values at two distinct locations are completely uncor-
related, and which verifies

η = 0, (9)

ηi(x, t)η j(x, t′) = δ(t − t′)δi j, (10)

where δi j is the Kronecker symbol, δ is the Dirac distribution,
and . denotes the ensemble average.

Equations (1) and (2) put together govern the time evolu-
tion of the wave variables ξosc and uosc as an explicit function
of either the wave variables themselves or the turbulent fields ξt
and ut. More specifically, Eq. (2) is split three ways. Ld

1 contains
all the terms that are linear in the wave variables, but indepen-
dent of the turbulent fields (they are therefore deterministic). Ls

1
contains all the terms that are linear in the wave variables, and
also depend on the turbulent fields (they are therefore stochas-
tic). Finally, L0 contains all the terms that are independent of the
wave variables, and encompass all the inhomogeneous forcing
terms.

Formally, the oscillations can be described in a Hilbert space
of infinite dimension, where the ket |z〉, in Dirac notation, is
defined as1

|z〉 ≡
∣∣∣∣ {ωξosc(x); uosc(x)

}
x∈V

〉
, (11)

1 We note that the oscillatory displacement, ξosc, is multiplied by the
angular frequency, ω, of the mode under consideration such that all
components of |z〉 have the same dimension, i.e. that of a velocity. This
frequency must not be confused with the turbulent frequency ωt intro-
duced in the wave equation (see Paper I for more details).
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whereV is the volume of the star, andω refers to the angular fre-
quency of the mode under consideration. Then, Eqs. (1) and (2)
can be rewritten in the following way:

d|z〉
dt

= Ld |z〉 +Ls(t)|z〉 + |θ(t)〉, (12)

where the deterministic, time-independent linear operator Ld is
given by

|Ld |z〉 =
∣∣∣∣ {ωuosc; Ld

1

}
x∈V

〉
, (13)

the stochastic, time-dependent linear operator Ls(t) is given by

|Ls(t)|z〉 =
∣∣∣∣ {ω(ξosc · ∇)ut + ω(ξt · ∇)uosc; Ls

1

}
x∈V

〉
, (14)

the stochastic vector |θ(t)〉 is given by

|θ(t)〉 =
∣∣∣∣ {ω(ξt · ∇)ut; L0

}
x∈V

〉
, (15)

and we recall that the vectors Ld
1, Ls

1, and L0 are given respec-
tively by Eqs. (3)–(5). We note that, since the space dependence
of the wave variables is already contained in the infinite dimen-
sion of the Hilbert space where the oscillations are described, |z〉
only depends on time, such that d/dt is a total time derivative.

The impact of turbulent convection on the frequency and the
damping rate of the acoustic modes is contained within the lin-
ear stochastic operator Ls(t), whereas the driving of the acous-
tic modes is contained within the additive noise vector |θ(t)〉.
Because of their stochastic nature, a large portion of these two
quantities is actually incoherent or statistically uncorrelated with
the acoustic modes themselves, and therefore incapable of effi-
ciently impacting the oscillations. It is therefore necessary to fil-
ter in the part of these stochastic perturbations that does lead
to a significant impact on the modes. A naive way to do this
would be to simply take the ensemble average of Eq. (12) (or,
equivalently, of Eqs. (1) and (2)). However, this would not work,
because even the zero-mean stochastic part of the turbulent per-
turbations, being auto-correlated over timescales comparable to
the period of the modes, can impact the behaviour of the oscilla-
tions. It is therefore necessary to incorporate the effective impact
of the finite memory time of the stochastic perturbations on the
oscillations. This can be done in the framework of the sim-
plified amplitude equation formalism (Stratonovich et al. 1965;
Buchler & Goupil 1984; Buchler et al. 1993).

3. The simplified amplitude equations

The goal of this section is to use the simplified amplitude equa-
tion formalism to properly account for the effect of convective
noise on the excitation and damping rates of the normal modes
of oscillation. To do so, we proceeded in a two-step approach.

First, the linear stochastic wave equation is transformed into
a finite set of stochastic differential equations governing the evo-
lution of the complex amplitudes of the normal modes of oscil-
lation. This is done by treating the stochastic part of the wave
equation as perturbations to an otherwise deterministic wave
equation. This leads to a set of coupled amplitude equations
(Buchler & Goupil 1984). We present this first step in Sect. 3.1.

The amplitude equations contain a stochastic part that, as
mentioned above, has a finite memory time. In a second step,
these are substituted for simplified amplitude equations, which
are also stochastic differential equations governing the evolution
of the complex amplitude of the modes, but whose stochastic

part, unlike the original amplitude equations, has zero memory
time, and therefore has no long-term impact on the oscillations.
This step involves two procedures. First the original stochastic
amplitude equations are substituted for an equation for the prob-
ability density function (PDF) of the complex amplitude of the
modes, in the form of a Fokker-Planck equation. We present this
Fokker-Planck equation in Sect. 3.2. Then another set of stochas-
tic differential equations is constructed, under the constraints
that (1) it must reduce to the exact same Fokker-Planck equa-
tion, while (2) only involving Markov processes (i.e. stochastic
processes with zero memory time). We derive these simplified
amplitude equations in Sect. 3.3.

3.1. The full amplitude equations

The stochastic amplitude equations are obtained in two steps
(Stratonovich et al. 1965): first deterministic amplitude equa-
tions are derived as if there were no stochastic perturbations;
then the stochastic part is treated in a perturbative framework,
and stochastic corrections are added to the deterministic ampli-
tude equations after the fact. The non-perturbed wave equation
is obtained by setting both Ls(t) and |θ(t)〉 to zero in Eq. (12),
which yields

d|z〉
dt

= Ld |z〉. (16)

The linear operator Ld can be diagonalised, and any vector |z〉
can be decomposed on a basis of eigenvectors for Ld. Because
this linear operator is real, the associated eigenvalues are either
real or come in pairs of complex conjugates. Each such pair of
eigenvectors with complex-conjugated eigenvalues correspond
to a single mode of oscillation of the system; we denote them as
|Ψµ〉 and |Ψ†µ〉 (where the exponent notation µ is used to index
the different modes) and their associated eigenvalues as κµ± jωµ,
where j denotes the imaginary unit.

Without loss of generality, we consider that the eigenvectors
are normalised to unity,

〈Ψµ|Ψµ〉 = 〈Ψ†µ|Ψ†µ〉 = 1, (17)

where 〈.|.〉 refers to the scalar product in the |z〉 Hilbert space.
This scalar product needs to be specified. A necessary condi-
tion is that distinct eigenvectors |Ψµ〉 of the non-perturbed wave
equation (Eq. (16)) – that is, eigenvectors of the linear operator
Ld – must be orthogonal to one another in the sense of this scalar
product. For adiabatic, non-radial oscillations, this is verified by
the following scalar product (Unno et al. 1989):

〈ψ|φ〉 ≡

∫
d3x ρ0(x)

(
ψξ(x) · φ?ξ (x) + ψu(x) · φ?u (x)

)
, (18)

where ψξ(x) (resp. ψu(x)) is the part of |ψ〉 associated with
the oscillatory displacement (resp. velocity) at location x. For
any eigenvector |Ψ〉 of the problem, these two quantities are
simply the normalised displacement and velocity eigenfunc-
tions. Because of the normalisation condition (Eq. (17)), they
are related to the non-normalised eigenfunctions ξosc and uosc
through (see Sect. B.4 for more details)

Ψ
µ
u = jΨµξ =

uµosc√
2Iω2

µ

= j
ξµosc√
2Iµ

, (19)

where Iµ is the inertia of the mode, defined by

Iµ ≡

∫
d3x ρ0(x)

∣∣∣ξµosc(x)
∣∣∣2 . (20)
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The general solution of Eq. (16) is (Buchler et al. 1993)

|z(t)〉 =

∑
µ

1
2

aµ(t) exp jωµt |Ψµ〉 + c.c, (21)

where ‘c.c’ denotes the complex conjugate. In general, |z〉 would
be written as an arbitrary linear combination of |Ψµ〉 and |Ψ†µ〉;
however, if |z〉 is initially real, Eq. (16) shows that it will remain
real at all later times (becauseLd itself is real), so the |Ψ†µ〉 com-
ponent of |z〉 is necessarily the complex conjugate of its |Ψµ〉

component. As for aµ(t), it denotes the slowly varying complex
amplitude of the mode µ. In the general case, plugging the solu-
tion given by Eq. (21) into Eq. (16), one finds the following, very
simple amplitude equation for aµ(t):

daµ
dt

= κµaµ. (22)

As expected, while the imaginary part ωµ of the eigenvalue asso-
ciated with the mode represents its oscillatory angular frequency,
its real part κµ represents the rate at which its amplitude varies –
either a growing rate or a damping rate, depending on the intrin-
sic stability of the mode in the absence of turbulence. However,
in the present adiabatic case, since the operator Ld is Hermi-
tian, we actually have κµ = 0. The quantity κµ therefore contains
the contribution of all non-adiabatic effects to the damping of
the modes. As it contributes to defining the variation timescale
of the mode amplitudes, we keep this term; however, we do not
consider it more explicitly, as our present goal is to estimate the
additional contribution coming from the interaction with turbu-
lent convection.

Turning now to the full, stochastically perturbed wave equa-
tion (Eq. (12)), the addition of the two terms Ls(t)|z〉 and |θ(t)〉
leads to the following modifications to the amplitude equations
(Buchler et al. 1993):

daµ
dt

= κµaµ + c1µ exp− jωµt +

∑
ν
c2µν aν exp− j(ωµ−ων)t

+

∑
ν
c3µν a?ν exp− j(ωµ+ων)t, (23)

where

c1µ ≡ 2〈Ψµ|θ〉, c2µν ≡ 〈Ψ
µ|Ls|Ψν〉 and c3µν ≡

〈
Ψµ|Ls|Ψ†ν

〉
. (24)

The form of the stochastic linear operator Ls(t) and stochastic
vector |θ(t)〉 being completely specified by Eqs. (14) and (15),
respectively, and the scalar product being defined by Eq. (18),
the stochastic processes ci(t) (i = 1, 2, 3) constitute ‘knowns’ of
the system. These are given by

c1µ = 2 I
(
ωµΨ

µ
ξ,iξt, j∂ jut,i + Ψ

µ
u,iL0,i

)
(25)

c3µν = I
(
Ψ
µ
ξ,iΨ

ν
ξ, j∂ jut,i + ωµΨ

µ
ξ,iξt, j∂ jΨ

ν
u,i + Ψ

µ
u,iL

s,ν
1,i

)
, (26)

where Ls,ν
1,i is obtained by replacing ξosc and uosc by the eigen-

functions Ψνξ and Ψνu in Eq. (4).
It will be more practical, in the following, to separate the

complex amplitude of the modes into their amplitude Aµ(t) and
phase Φµ(t), both being real functions of time, such that

aµ(t) = Aµ(t) exp jΦµ(t) . (27)

In place of a single complex stochastic equation for the evolution
of aµ(t), we obtain two real stochastic equations for the evolution

of Aµ(t) and Φµ(t), which take the following form:

dAµ

dt
≡ Gµ(Aν,Φν, t)

= κµAµ + Re
[
c1µ exp− j(ωµt+Φµ)

+

∑
ν
Aνc2µν exp− j(ωµ−ων)t− j(Φµ−Φν)

+

∑
ν
Aνc3µν exp− j(ωµ+ων)t− j(Φµ+Φν)

]
, (28)

and

dΦµ

dt
≡ Hµ(Aν,Φν, t)

=
1
Aµ

Im
[
c1µ exp− j(ωµt+Φµ) +

∑
ν
Aνc2µν exp− j(ωµ−ων)t− j(Φµ−Φν)

+

∑
ν
Aνc3µν exp− j(ωµ+ων)t− j(Φµ+Φν)

]
, (29)

where Re and Im denote the real and imaginary parts, respec-
tively. We warn the reader that the function Gµ(Aν,Φν, t) defined
by the right-hand side of Eq. (28) must not be confused with the
drift tensor Gi j appearing in Eqs. (3) and (4).

3.2. The Fokker-Planck equation for mode amplitude

A fundamental hypothesis we need to make concerning Ls(t)
and |θ(t)〉 is that their correlation timescale is very small com-
pared to the timescale over which the amplitude and the phase
of the mode typically vary. In the context of solar-like oscilla-
tions, the correlation timescale of these stochastic perturbations
correspond to the turnover time of the turbulent eddies, which,
close to the surface of the star, is similar to the period of the
p-modes (i.e. ∼5 min). On the other hand, the amplitude and
phase of the modes vary over typical timescales that correspond
to their life time, which is indeed much longer than their period
(τ ∼ 3 h for the shortest-lived solar modes). As such, this hypoth-
esis is largely verified in solar-like oscillators. Consequently, all
the turbulent perturbations in the wave equation (Eq. (12)) can
be approximated by Markov processes (in the sense that their
memory time, while finite, is much smaller than the evolution
timescale of the amplitude of the modes), and subsequently, so
can the stochastic processes Aµ(t) and Φµ(t). It is then possible
to replace the set of 2N (where N is the total number of modes)
stochastic differential equations on these quantities (i.e. Eqs. (28)
and (29)) with an equivalent, single Fokker-Planck equation gov-
erning the evolution of their joint PDF w(Aµ,Φµ, t), but whose
coefficients are carefully defined to incorporate in a rigorous
manner the effect of the finite memory time of the processes
Aµ(t) and Φµ(t). The Fokker-Planck equation takes the general
form (Stratonovich et al. 1965)

∂w
∂t

= −
∂wGµ
∂Aµ

−
∂wHµ

∂Φµ
+

1
2
∂2wDµν

∂Aµ∂Aν
+

1
2
∂2wEµν
∂Aµ∂Φν

+
1
2
∂2wFµν
∂Φµ∂Φν

, (30)

where Gµ and Hµ represent the probability fluxes in (Aµ,Φµ)
space, and Dµν, Eµν and Fµν are the elements of the 2N ×
2N probability diffusion matrix. The explicit computation of
the probability fluxes and diffusion coefficients is detailed in
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Appendix A, and these coefficients read

Gµ = Aµ

[
κµ +

∑
ν,µ

Re
(
α(a)

2µν

)
+ α(R)

2µ +

∑
ν
Re

(
α(a)

3µν

)]
+

1
2Aµ

[
Re

(
α1µ

)
+

∑
ν,µ

A2
νRe

(
α(b)

2µν

)
+

∑
ν
A2
νRe

(
α(b)

3µν

)]
, (31)

Hµ =

∑
ν,µ

Im
(
α(a)

2µν

)
+

∑
ν
Im

(
α(a)

3µν

)
, (32)

Dµν = δµν

[
Re

(
α1µ

)
+

∑
λ,µ

A2
λRe

(
α(b)

2µλ

)
+2A2

µα
(R)
2µ +

∑
λ
A2
λRe

(
α(b)

3µλ

)]
+

1
2

(1 − δµν)AµAν

[
Re

(
α(a)

2µν

)
+ Re

(
α(a)

3µν

)
+ sym.

]
, (33)

Eµν = 0, (34)

Fµν = δµν

 1
A2
µ

Re
(
α1µ

)
+

1
A2
µ

∑
λ,µ

A2
λRe

(
α(b)

2µλ

)
+ 2 α(I)

2µ +
1

A2
µ

∑
λ
A2
λRe

(
α(b)

3µλ

)
1
2

(1 − δµν)
[
Re

(
α(a)

3µν

)
− Re

(
α(a)

2µν

)
+ sym.

]
, (35)

where ‘sym.’ refers to a swapping between indices µ and ν, and
we have introduced the following autocorrelation spectra:

α1µ ≡

∫ 0

−∞

dτ
〈
c1µcτ?1µ

〉
exp jωµτ, (36)

α(a)
2µν ≡

∫ 0

−∞

dτ
〈
c2µνcτ2νµ

〉
exp j(ωµ−ων)τ, (37)

α(b)
2µν ≡

∫ 0

−∞

dτ
〈
c2µνcτ?2µν

〉
exp j(ωµ−ων)τ, (38)

α(R)
2µ ≡

∫ 0

−∞

dτ
〈
Re

(
c2µµ

)
Re

(
cτ2µµ

)〉
, (39)

α(I)
2µ ≡

∫ 0

−∞

dτ
〈
Im

(
c2µµ

)
Im

(
cτ2µµ

)〉
, (40)

α(a)
3µν ≡

∫ 0

−∞

dτ
〈
c3µνcτ?3νµ

〉
exp j(ωµ+ων)τ, (41)

α(b)
3µν ≡

∫ 0

−∞

dτ
〈
c3µνcτ?3µν

〉
exp j(ωµ+ων)τ . (42)

It can already be seen, without having to specify the stochas-
tic processes ci(t), that their autocorrelation spectra are indepen-
dent of the two stochastic variables A and Φ. Furthermore, under
the assumption that the turbulence characterising the convective
motions at the top of the envelope of solar-like oscillators is sta-
tionary, the autocorrelation functions appearing in the definition
of these coefficients are only dependent on the time increment τ,
and not on the absolute time t. As such, the αi are also indepen-
dent of time t. All things considered, they are therefore simply
complex constants.

3.3. The equivalent simplified amplitude equations

As we have mentioned above, either the stochastic differential
equations (Eqs. (28) and (29)) together or the Fokker-Planck
equation (Eq. (30)), both of which are equivalent to one another,
can be used to model the time evolution of the real amplitude
and phase of the modes. However, both are equally impracti-
cal to use, albeit for different reasons. Numerically integrating
the stochastic equations proves extremely expensive, because a
large range of very different timescales must be resolved. Indeed,
the total integration time must far exceed the typical timescale
of the slowly varying mode amplitude. But at the same time,
the rapidly varying phase ωt appearing in Eqs. (28) and (29)
must be accurately resolved. Finally, the whole range of mem-
ory timescales associated with the processes ci(t) must also be
resolved, which is problematic, as it corresponds to the range of
timescales in the turbulent cascade, and is therefore very wide in
high Reynolds number flows. Consequently, the numerical inte-
gration of Eqs. (28) and (29) requires an unreasonably small time
step compared to the total integration time.

By contrast, the Fokker-Planck equation (Eq. (30)) does not
have this timescale problem. Indeed, in computing its probability
fluxes and diffusion coefficients, we have filtered out all rapidly
oscillating features (see Appendix A for more details), and as
such, the numerical integration of the Fokker-Planck equation
does not require these very short timescales to be resolved. How-
ever, it poses other difficulties inherent to the integration of
Fokker-Planck equations in general. Indeed, because the PDF w
is a function of the entire parameter space (i.e. not only of time,
but also of the stochastic variables Aµ and Φµ), its numerical inte-
gration would require the discretisation of all three variables. For
that reason, it is usually very impractical to directly integrate the
Fokker-Planck equation in time.

Fortunately, while a given stochastic differential equation is
equivalent to a single Fokker-Planck equation, the opposite is not
true. Indeed, there exists an infinite number of stochastic mod-
els for the mode amplitudes Aµ and phases Φµ that possess the
same Fokker-Planck equation (Eq. (30)) and therefore contain
the exact same statistical information as Eqs. (28) and (29) while
having a much simpler form. They are the simplified amplitude
equations (Stratonovich et al. 1965; see also Buchler et al. 1993)

dAµ =

Gµ − 1
2

∑
λν

∂D1/2
µλ

∂Aν
D

1/2
λν

 dt +

∑
ν
D1/2
µν ◦ dWAν, (43)

dΦµ =

Hµ −
1
2

∑
λν

∂F 1/2
µλ

∂Φν
F

1/2
λν

 dt +

∑
ν
F 1/2
µν ◦ dWΦν, (44)

where D1/2 and F 1/2 are the square-root of the positive def-
inite matrices2 D and F , and dWAν and dWΦν are the incre-
ment over dt of independent Wiener processes, that is, Gaussian
processes with zero mean and autocorrelation 〈dWAµdWAν〉 =
〈dWΦµdWΦν〉 = δµνdt. The symbol ◦ is the differential notation
of the Stratonovich stochastic integral. We note that, in order for
the equivalence between the Fokker-Planck equation (Eq. (30))
and the stochastic differential equations (Eqs. (43) and (44)) to
be justified, a sufficient condition is that the probability fluxesGν
and Hν, as well as the elements of the diffusion matrix Dµν and
Fµν, only depend on time t and on the variables Aµ and Φµ them-
selves. In fact, in the present case, the situation is even simpler,

2 Because the ‘off-diagonal’ matrix E is zero, the square-root of the
blocksD and F correspond to the blocks of the square-root of the total
diffusion matrix. We note that this would not be the case if E had not
been zero.
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since these coefficients actually only depend on the real ampli-
tudes Aν.

These equations are much more practical to handle than
either the exact amplitude equations derived in Sect. 3.1 or the
Fokker-Planck equation derived in Sect. 3.2, in the sense that
they allow us to circumvent the problems outlined above. Indeed,
similarly to the Fokker-Planck equation, all rapidly oscillat-
ing terms have been averaged out, which means that the short
timescales ∼ω−1 need not be resolved. Furthermore, the stochas-
tic part of these equations now has zero memory – because the
effect of the finite width of the turbulent cascade timescale range
has been properly and rigorously incorporated in the coefficients
of the Fokker-Planck equation – which also drastically reduces
the range of timescales that we need to resolve. In addition,
Eqs. (43) and (44) are much easier to integrate numerically than
the corresponding Fokker-Planck equation, as only the time vari-
able needs to be discretised. The only cost is that a large number
of independent realisations must be integrated in order to recon-
struct the moments of the amplitude and phase of the modes.

4. Single-mode case

The final result of Sect. 3 consists in the coupled simplified
amplitude equations (Eqs. (43) and (44)). One important aspect
of these equations is the fact that they are coupled: even in
the limit of small amplitudes, where the modes behave lin-
early, the non-linear nature of the turbulent convection with
which they are coupled makes it possible to transfer energy from
mode to mode, and for their respective phases to evolve in a
dependent manner. This was already noted by previous stud-
ies concerning mode scattering in solar-like oscillators (e.g.,
Goldreich & Murray 1994) or non-linear mode interactions (e.g.,
Kumar & Goldreich 1989). This can potentially have an impact
on the energy distribution across the p-mode spectrum of the
star, and may also impact their frequency and their lifetime. That
being said, as a first application of the present formalism, we
temporarily discard the question of mode coupling and instead
focus on the single-mode case. The coupled-mode case, to which
we briefly return at the end of Sect. 5, will be the subject of a later
paper in this series.

4.1. Simplified amplitude equations in the single-mode case

In the single-mode case, we obtain

dA =

(
G −

1
4
∂D

∂A

)
dt +

√
D ◦ dWA, (45)

dΦ =

(
H −

1
4
∂F

∂Φ

)
dt +

√
F ◦ dWΦ, (46)

where the probability fluxes and diffusion matrix elements
become

G = A
[
κ + α(R)

2 +
3
2

Re (α3)
]

+
Re (α1)

2A
, (47)

H = Im (α3) , (48)

D = A2
[
2α(R)

2 + Re (α3)
]

+ Re (α1) , (49)

F = 2α(I)
2 + Re (α3) +

Re (α1)
A2 , (50)

and the αi are defined by

α1 ≡

∫ 0

−∞

dτ
〈
c1cτ?1

〉
exp jωτ, (51)

α(R)
2 ≡

∫ 0

−∞

dτ
〈
Re (c2) Re

(
cτ2

)〉
, (52)

α(I)
2 ≡

∫ 0

−∞

dτ
〈
Im (c2) Im

(
cτ2

)〉
, (53)

α3 ≡

∫ 0

−∞

dτ
〈
c3cτ?3

〉
exp2 jωτ, (54)

ω now being the angular frequency of the single mode under
consideration. Plugging Eqs. (47)–(50) into Eqs. (45) and (46),
we obtain

dA =

(
A (κ + Re (α3)) +

Re (α1)
2A

)
dt

+
(
A2

[
2α(R)

2 + Re (α3)
]

+ Re (α1)
)1/2
◦ dWA, (55)

dΦ = Im (α3) dt +

(
2α(I)

2 + Re (α3) +
Re (α1)

A2

)1/2

◦ dWΦ. (56)

Alternatively, we can merge these two equations into a single
stochastic differential equation on the complex amplitude a =
A exp( jΦ) of the mode, which yields3

da =

[
a (κ + α3) +

Re (α1)
a?

]
dt

+ a
(
2α(R)

2 + Re (α3) +
Re (α1)
|a|2

)1/2

◦ dWA

+ ja
(
2α(I)

2 + Re (α3) +
Re (α1)
|a|2

)1/2

◦ dWΦ. (57)

While Eqs. (55) and (56) – or, equivalently, Eq. (57) – feature
all of the above autocorrelation spectra, αi, the first terms on
their respective right-hand sides (which, as will be discussed in
more detail in Sects. 4.2 and 4.3, governs the mean evolution
of the mode amplitudes) only depend on α1 and α3. These two
autocorrelation spectra can be computed by plugging the explicit
expressions of Ls

1 (Eq. (4)) and L0 (Eq. (5)) into the expressions
for c1(t) and c3(t) (Eqs. (25) and (26)), and then the latter into
Eqs. (51) and (54). Since c1(t) and c3(t) depend on the turbulent
velocity field, ut, their autocorrelation spectrum can be described
in terms of the autocorrelation spectrum of the turbulent velocity
itself. We introduce

Cω,k( f1; f2) ≡
∫ 0

−∞

dτ
∫

d3δx
〈

f1 f τ,δx2

〉
exp j(ωτ−k·δx), (58)

where

f τ,δx ≡ f (X + δx,T + τ). (59)

Then we can define the second-order turbulent velocity spectrum
as

φ(2)
i j (k, ω) ≡ Cω,k(ut,i; ut, j), (60)

3 Since the diffusion part of the stochastic differential equation is inter-
preted in the Stratonovich sense, the usual chain rule of differentiation
applies.
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as well as the following fourth-order spectra

φ(4a)
i jkl (k, ω) ≡ Cω,k(ut,i; ut, jut,kut,l), (61)

φ(4b)
i jkl (k, ω) ≡ Cω,k(ut,iut, j; ut,kut,l), (62)

φ(4c)
i jklmn(k, ω) ≡ Cω,k(ut,i∂mut, j; ut,k∂nut,l), (63)

φ(4d)
i jklm(k, ω) ≡ Cω,k(ut,i∂mut, j; ut,kut,l). (64)

The derivation of the autocorrelation spectra α1 and α3 is
detailed in Appendix B, and we eventually obtain

α1 =
2
I
I

(
ρ0k jklξosc,iξ

?
osc,kφ

(4b)
i jkl (k, ω)

)
, (65)

and

α3 =
1

4I2I

(
ρ0F(1)

i F(1)?
j φ(2)

i j (2k, 2ω)

+ ρ0F(2)
i j F(2)?

kl φ(4b)
i jkl (2k, 2ω) + ρ0F(3a)

i jm F(3a)?
kln φ(4c)

i jklmn(2k, 2ω)

+2ρ0 Re
[
F(1)

i F(3b)?
jkl φ(4a)

i jkl (2k, 2ω) + F(3a)
i jm F(2)?

kl φ(4d)
i jklm(2k, 2ω)

])
,

(66)

where we recall that the operator I is defined by Eq. (6), k is the
(space-dependent) wave vector of the mode, and the functions
F(1), F(2), F(3a) and F(3b) are given by4

F(1)
i = 4 jk jξosc,iξosc, j + jkiξosc, jξosc, j +

Gi j,0

ω
kkξosc, jξosc,k

+
∂Gi j

∂ũ′′k u′′l

ũ′′k u′′l 0

ω
kmξosc,mξosc, j +

∂Gi j

∂(∂kũl)
jkkξosc, jξosc,l

+
∂Gi j

∂ε

ωtũ′′i u′′i 0

2ω
kmξosc, jξosc,m, (67)

F(2)
i j =

 ∂Gki

∂ũ′′j u′′l
+

∂Gki

∂ũ′′l u′′j

 ξosc,lξosc,k +
∂Gki

∂ε
ωtξosc, jξosc,k, (68)

F(3a)
i jk =

∂Gli

∂(∂kũ j)
1
ω

jkmξosc,lξosc,m (69)

and

F(3b)
i jk = −

∂Gli

∂ũ′′j u′′k

1
ω

kmξosc,lξosc,m −
1
2
∂Gli

∂ε

ωt

ω
kmξosc,lξosc,mδ jk. (70)

These four functions can be broken down into several con-
tributions, thus allowing us to separate the effect of each physi-
cal process to the turbulence–oscillation coupling. In the present
case, one can identify the turbulent pressure contribution, repre-
sented by the advection term in the stochastic velocity equation
(see Eq. (26) in Paper I), and which is responsible for the entirety
of α1, as well as the first two terms on the right-hand side of
Eq. (67). On the other hand, all the other contributions to α3 stem
from the Gi j term in the stochastic velocity equation, which we
recall encompasses the collective effect of the buoyancy force,
the fluctuating gas pressure force, and the turbulent dissipation
(see Paper I, and more specifically Appendix A therein, for more
details). We also note that, Eqs. (65) and (66) being written in the
form of spatial integrals spanning across the entire volume of the
star, this formalism allows us to determine which regions of the
star are most responsible for the coupling between the turbulent
motions and the oscillatory motions.
4 The subscript j, used as a coordinate index, must not be confused
with the in-line notation j, which refers to the imaginary unit.

4.2. Mode driving

Multiplying Eq. (55) by 2A and taking the ensemble average, we
obtain the following evolution equation for the mean5 energy of
the mode Em(t) ≡ 〈A(t)2〉:

dEm

dt
= 2Em

(
κ + Re(α3)

)
+ Re(α1). (71)

We note that, because WA(t) is a Wiener processes, the diffusion
part of Eq. (55) (i.e. the second, stochastic term on its right-hand
side) is necessarily of zero mean, even when the diffusion coef-
ficient depends explicitly on the stochastic variables themselves
(e.g., Gardiner 1994). The right-hand side of Eq. (71) contains
a linear contribution that corresponds to the linear damping of
the mode and an additive term, P ≡ Re (α1), which corresponds
to the excitation rate of the mode (i.e the amount of energy
injected into the mode per unit time). We focus on the latter
for the moment. It can be seen that P only contains contribu-
tions from the turbulence-induced stochastic perturbation of the
wave equation (Eq. (12)), in the sense that if c1(t) was identically
zero,Pwould also be zero. This is in accordance with the widely
acknowledged picture of solar-like oscillations being stochasti-
cally excited by highly turbulent motions of the plasma at the top
of the convection zone.

Using Eq. (54), the excitation rate P of the mode becomes

P =
2
I

∫
d3X ρ2

0k jklRe
(
ξosc,iξ

?
osc,kφ

(4b)
i jkl (k, ω)

)
, (72)

where k and ω denote the wave vector and angular frequency
of the mode. This expression is fully similar to the formulation
obtained by previous models for the excitation of solar-like oscil-
lations (see, for instance, Samadi & Goupil 2001; Chaplin et al.
2005), which gives further support to the consistency and valid-
ity of the method presented here. First, it is inversely propor-
tional to the inertia of the mode: the larger the mass flow entailed
by an oscillating mode, the harder it is to get the flow to actually
move. Secondly, it appears that the efficiency of mode driving
by turbulence is directly related to the spectrum of the fourth-
order moment of turbulent velocity. This is in accordance with
widely accepted results of past studies. Finally, the integrand is
weighted by a quantity that takes the form of the product of two
different components of the wave vector and two different com-
ponents of the modal fluid displacement. Qualitatively, it can be
seen that this is closely related to the square of the mode com-
pressibility |∇ · ξosc|. In other words, the turbulence drives the
mode much more efficiently in regions where the compressibil-
ity of the mode is high. This is also not surprising, as the turbu-
lent pressure must actually be able to transfer mechanical work
to the mode in order to give it energy, and mechanical work is
only transferable if the flow undergoes successive compression
and dilatation phases.

4.3. Mode damping and the modal surface effect

We now turn to the first term on the right-hand side of Eq. (71).
Solar-like oscillations being intrinsically stable, it gives the
damping rate of the mode:

ηtot ≡ −
(
κ + Re(α3)

)
. (73)

5 It must be understood that in this context, the word ‘mean’ refers to
ensemble average, and not time average. As such, Em is susceptible to
depend on time.
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The total damping rate, ηtot, is directly related to the observed
linewidth at half maximum Γobs of the resonant peak correspond-
ing to the mode in the Fourier power spectrum, through

Γobs = ηtot/π. (74)

In the Sun, Γobs typically has the order of a few µHz, while the
eigenfrequency of the modes is much larger (∼3000 µHz at the
maximum spectral height). Eq. (73) shows that the total damp-
ing rate of the mode – and therefore its observed linewidth –
consists of two different contributions. The first one corresponds
to the non-turbulent, deterministic contribution κ. It represents
the effect of the non-adiabatic energy exchanges between the
p-modes and the background in which they develop. Explicitly
modelling κ requires the inclusion of non-adiabatic effects in the
model, through an energy equation, which is outside the scope
of this study (see the discussion in Sect. 5 however). The sec-
ond one represents the contribution from turbulence, and encom-
passes a whole array of individual physical contributions from
turbulent pressure, turbulent dissipation or convective enthalpy
flux for instance. In the following, we only investigate this sec-
ond contribution, and which we denote as ηturb.

As a side note, we remark that taking dEm/dt = 0 in Eq. (71)
(i.e. assuming that the transient has died away and that the mode
has reached a stationary state) yields the following expression
for the stationary average energy of the mode:

Estat ≡
P

2ηtot
. (75)

This is in perfect accordance with Eq. (5) of Goldreich & Keeley
(1977a) for instance, and reflects the well-established picture of
the equilibrium energy of the mode resulting from a balance
between driving and damping processes.

In parallel, taking the ensemble average of Eq. (56), we
obtain the following simple evolution equation for the mean
phase Φm(t) ≡ 〈Φ(t)〉:

dΦm

dt
= Im (α3) , (76)

which is easily integrated to yield

Φm(t) = Im(α3) t + Φm,0, (77)

where Φm,0 is an arbitrary initial average phase. In turn, this
yields the following expression for the average global phase of
the mode φ(t) ≡ ωt + Φm(t):

φ(t) =
(
ω + Im(α3)

)
t + Φm,0. (78)

This amounts to a systematic shift, δω, in the angular frequency
of the mode compared to the angular frequency in the absence
of turbulence. This shift actually represents what is commonly
referred to as the modal – or ‘intrinsic’ – part of the surface effect
(Balmforth 1992b), that is, the contribution of turbulent convec-
tion not to the equilibrium structure but to the propagation of the
waves themselves.

All in all, the turbulence-induced damping rate and the modal
surface effect turn out to correspond respectively to the real and
imaginary parts of the same complex autocorrelation spectrum
α3, according to

ηturb = −Re (α3) , (79)
δω = Im (α3) . (80)

This is not quite surprising, as the damping rate and oscillatory
frequency of a mode are themselves simply two sides of the com-
plex eigenvalue associated with the mode – more specifically, its
real and imaginary parts. This is further illustrated by the fact
that, in the first term on the right-hand side of Eq. (57), the lin-
ear contribution (i.e. the one proportional to a) involves directly
the complex quantity α3. This is a very interesting output of
this model as mode excitation on the one hand and mode damp-
ing and the surface effect on the other hand are usually treated
separately. Furthermore, while mixing-length formalisms allow
mode damping rates and the surface effect to be investigated
simultaneously, they must nevertheless be the subject of separate
fitting procedures, owing to the large number of free parameters
involved (see for example Houdek et al. 2017). By contrast, the
model presented here allows us to treat all three aspects – mode
excitation, in addition to mode damping and the surface effect –
in the same consistent framework, and without having to resort
to separate procedures.

Using the expression for α3 given by Eq. (66), we find

ηturb = −
1

4I2

∫
d3X ρ2

0 Re(F ), (81)

δω =
1

4I2

∫
d3X ρ2

0 Im(F ), (82)

where we have defined

F ≡ F(1)
i F(1)?

j φ(2)
i j (2k, 2ω)︸                     ︷︷                     ︸

second−order

+ F(2)
i j F(2)?

kl φ(4b)
i jkl (2k, 2ω)︸                      ︷︷                      ︸

fourth−order

+ F(3a)
i jm F(3a)?

kln φ(4c)
i jkl (2k, 2ω)︸                        ︷︷                        ︸

fourth−order

+ 2 Re

F(1)
i F(3b)?

jkl φ(4a)
i jkl (2k, 2ω)︸                       ︷︷                       ︸

fourth−order

+ F(3a)
i jm F(2)?

kl φ(4d)
i jkl (2k, 2ω)︸                       ︷︷                       ︸

fourth−order

 , (83)

and we recall that the wave vector, k, and the angular frequency,
ω, are those of the mode under consideration.

Some general results can be drawn from Eqs. (81) and (82).
First it can be seen that both quantities go as I−2: similarly to
the excitation rate P, the higher the mass flow pertaining to the
oscillation, the harder it is to take energy from it. This is due to
the fact that the wave variable ξosc appears to the fourth power
in Eqs. (81) and (82). Since the inertia of the mode depends on
the square of ξosc, the normalisation condition on the eigenfunc-
tion naturally involves the square of the inertia (see Sect. B.4 for
more details). This is similar to the work integral formulation of
the damping rate (e.g., Samadi et al. 2015), where the wave vari-
ables appear to the second power, and therefore the damping rate
goes as I−1 instead. We note that the reason why the integrals
on the right-hand side of Eqs. (81) and (82) involve the fourth
power of the wave variables is that we compute the mean effect
of the damping on the mode, which corresponds to the autocor-
relation of the instantaneous damping: since the latter depends
on the square of the wave variables, the autocorrelation depends
on their fourth power.

Secondly, while the driving source is a fourth-order quantity
in terms of the turbulent velocity (see Eq. (72) for the excitation
rate P), the damping rate and the modal surface effect, by con-
trast, have both a second-order and a fourth-order dependence in
terms of the turbulent velocity. These are explicitly broken down
in Eq. (83).

Finally, it is possible to separate the different physical contri-
butions to the turbulent damping rate ηturb and the modal surface
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effect δω. To that end, we decomposed the function F1
i (defined

by Eq. (67)) into three different terms, in the following way:

F(1)
i = F(1)

i,pt + F(1)
i,G + F(1)

i,δG, (84)

where

F(1)
i,pt ≡ 4 jk jξosc,iξosc, j + jkiξosc, jξosc, j, (85)

F(1)
i,G ≡

Gi j,0

ω
kkξosc, jξosc,k, (86)

F(1)
i,δG ≡

∂Gi j

∂ũ′′k u′′l

ũ′′k u′′l 0

ω
kmξosc,mξosc, j +

∂Gi j

∂(∂kũl)
jkkξosc, jξosc,l

+
∂Gi j

∂ε

ωtũ′′i u′′i 0

2ω
kmξosc, jξosc,m. (87)

The first term represents the effect of turbulent pressure; the sec-
ond term represents the joint effect of the pressure-rate-of-strain
correlation and the dissipation of turbulent kinetic energy into
heat, both of which are collectively modelled by means of the
drift tensor, Gi j; and the third term stems from the variations in
the drift tensor, Gi j, under the influence of both the turbulence
and the oscillations. By contrast, the functions F(2)

i j , F(3a)
i jk , and

F(3b)
i jk , defined by Eqs. (68)–(70), respectively, entirely originate

from the modulation of the drift tensor. Then Eqs. (81) and (82)
can be rewritten in the following way:

ηturb = ηpt + ηG + ηδG + ηcross, (88)
δω = δωpt + δωG + δωδG + δωcross, (89)

where the various physical contributions to the total damping
rate are given by

ηpt ≡ −
1

4I2

∫
d3X ρ2

0 Re
(
Fpt

)
, (90)

ηG ≡ −
1

4I2

∫
d3X ρ2

0 Re (FG) , (91)

ηδG ≡ −
1

4I2

∫
d3X ρ2

0 Re (FδG) , (92)

ηcross ≡ −
1

4I2

∫
d3X ρ2

0 Re (Fcross) , (93)

those of the modal surface effect are given by

δωpt ≡
1

4I2

∫
d3X ρ2

0 Im
(
Fpt

)
, (94)

δωG ≡
1

4I2

∫
d3X ρ2

0 Im (FG) , (95)

δωδG ≡
1

4I2

∫
d3X ρ2

0 Im (FδG) , (96)

δωcross ≡
1

4I2

∫
d3X ρ2

0 Im (Fcross) , (97)

and we have defined

Fpt ≡ F(1)
i,ptF

(1)?
j,pt φ(2)

i j , (98)

FG ≡ F(1)
i,GF(1)?

j,G φ(2)
i j , (99)

FδG ≡ F(1)
i,δGF(1)?

j,δG φ(2)
i j + F(2)

i j F(2)?
kl φ(4b)

i jkl + F(3a)
i jm F(3a)?

kln φ(4c)
i jkl

+ 2 Re
(
F(1)

i,δGF(3b)?
jkl φ(4a)

i jkl + F(3a)
i jm F(2)?

kl φ(4d)
i jkl

)
, (100)

Fcross ≡


µ,ν∑

µ,ν=‘pt’, ‘G’, ‘δG’

F(1)
i,µ F(1)?

j,ν

 φ(2)
i j

+ 2 Re
(
F(1)

i,ptF
(3b)?
jkl φ(4a)

i jkl + F(1)
i,GF(3b)?

jkl φ(4a)
i jkl

)
. (101)

All the functions F(1), F(2) and F(3) are implicitly evaluated at X,
and all the turbulent spectra φ(2) and φ(4) are implicitly evaluated
at (2k, 2ω), even though we dropped the notation for the sake of
clarity. The contributions labelled ‘pt’, ‘G’, and ‘δG’ have the
same meaning as in Eq. (84), and those labelled ‘cross’ are cross
terms between these different contributions. This decomposition
shows that the first two contributions only depend on the second-
order turbulent velocity spectrum, while the others depend on
both the second- and fourth-order spectra.

4.4. Contributions of turbulent dissipation and redistribution
versus turbulent pressure

In Sect. 4.3 we derived general expressions for the various phys-
ical contributions to mode damping (see Eqs. (90)–(93)) and the
modal surface effect (see Eqs. (94)–(97)). The resulting expres-
sions are valid for any specification of the drift tensor Gi j, and
regardless of whether the mode is radial or not. While we post-
pone more realistic applications of these expressions to a later
paper in this series, it is still worthwhile to examine their out-
put in the following simple case. First, we assume that the drift
tensor is constant, in the sense that it does not depend on the
Reynolds-stress tensor, ũ′′k u′′l , the mean shear tensor, ∂kũl, or the
turbulent dissipation rate, ε

∂Gi j

∂ũ′′k u′′l
=

∂Gi j

∂(∂kũl)
=
∂Gi j

∂ε
= 0. (102)

Physically, this means that the rate at which the different com-
ponents of the turbulent motions exchange energy, or are dissi-
pated into heat, is fixed. We note that this assumption is not very
realistic, but that it allows for a simple illustration of the use-
fulness of this formalism. However, we do not specify how the
behaviour of these different components compare to each other,
meaning that we do not make any assumption regarding the rela-
tive value of the different components of Gi j. Secondly, we con-
sider a radial mode, such that both the displacement eigenfunc-
tion and the wave vector of the mode are radial:

ξosc = ξr er, (103)
k = kr er. (104)

Then Eqs. (90)–(92) reduce to

ηpt ≡ −
1

4I2

∫
d3X 25ρ2

0k2
r |ξr |

4 Re
(
φ(2)

rr

)
, (105)

ηG ≡ −
1

4I2

∫
d3X ρ2

0k2
r |ξr |

4 GirG jr

ω2 Re
(
φ(2)

i j

)
, (106)

ηδG = 0, (107)

and Eqs. (94)–(96) become

δωpt ≡
1

4I2

∫
d3X 25ρ2

0k2
r |ξr |

4 Im
(
φ(2)

rr

)
, (108)

δωG ≡
1

4I2

∫
d3X ρ2

0k2
r |ξr |

4 GirG jr

ω2 Im
(
φ(2)

i j

)
, (109)

δωδG = 0. (110)
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We note that, to keep the discussion simple, we omit the crossed
contributions ηcross and δωcross in the following. The only remain-
ing contributions to both the damping rate of the modes and
their modal surface effect are the contribution of turbulent pres-
sure, and the contribution of the drift tensor Gi j, which we recall
here jointly models the pressure-rate-of-strain correlations and
the turbulent dissipation.

These simplified expressions allow us to roughly estimate
which process contributes predominantly to both the damping
rate and the modal surface effect, depending on the frequency
regime. Under the assumption that the region of the star where
the damping of the modes and the surface effects occur is a thin
subsurface layer, then we can write

ηpt

ηG
≡ Rη ∼

25ω2Re
(
φ(2)

rr

)
GirG jrRe

(
φ(2)

i j

) , (111)

δωpt

δωG
≡ Rδω ∼

25ω2Im
(
φ(2)

rr

)
GirG jrIm

(
φ(2)

i j

) . (112)

Explicitly expanding the index summation in the denominator,
we obtain

GirG jrφ
(2)
i j = 2G2

hrφ
(2)
hh + G2

rrφ
(2)
rr , (113)

where the index ‘h’ refers to an arbitrary horizontal direction.
Then

Rη =
25ω2

G2
rr

(
1 + 2Φ2

GΦu,η

)−1

, (114)

Rδω =
25ω2

G2
rr

(
1 + 2Φ2

GΦu,δω

)−1

, (115)

where the anisotropy factors are defined by

Φu,η ≡

∣∣∣∣∣∣∣∣
Re

(
φ(2)

hh

)
Re

(
φ(2)

rr

)
∣∣∣∣∣∣∣∣ , (116)

Φu,δω ≡

∣∣∣∣∣∣∣∣
Im

(
φ(2)

hh

)
Im

(
φ(2)

rr

)
∣∣∣∣∣∣∣∣ , (117)

ΦG ≡

∣∣∣∣∣Grh

Grr

∣∣∣∣∣ . (118)

The anisotropy factors Φu,η and Φu,δω concern the turbulent
velocity field. By contrast, the anisotropy factor ΦG concerns the
drift tensor Gi j, and physically represents the ratio between the
rate at which vertical and horizontal turbulent motions exchange
energy, and the rate at which the vertical motions are dissipated
into heat.

Regardless of the relative weight of the different components
of Gi j, their order of magnitude is always ∼ε/k = ωt (e.g., Pope
1994), where we recall that ε is the turbulent dissipation rate,
k is the turbulent kinetic energy, and the ratio between the two
defines the turbulent frequency ωt already introduced above. We
note that in the present model, ωt is assumed constant, but not
necessarily uniform. Physically, it represents the lifetime of the
energy-bearing eddies in the turbulent cascade, and corresponds
to the autocorrelation timescale of granulation. Typically, close
to the surface of the Sun, this timescale is τconv ∼ 300−500 s
(e.g., Samadi et al. 2015), in which case ωt ∼ 0.01−0.02 rad.s−1.

In particular, in the Simplified Langevin Model, every diagonal
component of the drift tensor is equal to (e.g., Pope 2000)

Gii = −

(
1
2

+
3
4

C0

)
ωt, (119)

where C0 = 2.1 is the Kolmogorov constant. Then, we finally
obtain

Rη/δω =
25ω2

ω2
t

(
1
2

+
3
4

C0

)−2 (
1 + 2Φ2

GΦu,η/δω

)−1

. (120)

In the following, we consider indifferently either one of the
two ratios Rη or Rδω, which we simply denote as R. The turbu-
lent velocity anisotropy factor will indifferently refer to Φu,η or
Φu,δω, which we simply denote as Φu. It can be thought of as rep-
resenting the ratio between the squared horizontal and vertical
turbulent velocities, and can therefore be related to the perhaps
more familiar anisotropy factor Φ introduced by Gough (1977)
through

Φ ∼ 1 + 2Φu. (121)

In Fig. 1, we plot the ratio R between the two contributions to
either mode damping or the modal surface effect, as a function
of mode frequency. While the turbulent frequency ωt is fixed
(we set it to ωt = 0.03 rad.s−1), we vary the two anisotropy
factors Φu and ΦG (see caption). As expected from Eq. (120),
the turbulent pressure contribution tends to dominate for high-
frequency modes, while the joint effect of the pressure-rate-of-
strain correlation and of the turbulent dissipation tends to prevail
for low-frequency modes. However, the threshold between these
two regimes drastically depends on Φu and ΦG. More specifi-
cally, for low values of ΦG, this threshold is on the low-frequency
edge of the solar damping plateau, around 2 mHz, and does not
depend on Φu. For higher values of ΦG – and in particular for
ΦG = 1, which corresponds to a vertical-horizontal turbulent
energy redistribution rate similar to the vertical turbulent dissi-
pation rate –, this threshold is shifted to higher frequencies, and
has a much stronger dependence on Φu.

To better illustrate the effect of varying the model param-
eters, we plot in Fig. 2 the same ratio R, but this time as a
function of the drift tensor anisotropy factor ΦG (left panel) and
turbulent frequency ωt (right panel), for a fixed mode frequency
ν = νmax = 3 mHz. These figures show that, if the turbulent
velocity anisotropy factor is fixed to the value observed in large-
eddy simulations (i.e. Φu = 0.5; (e.g., Samadi et al. 2003)), then
the turbulent pressure contribution dominates for ΦG . 1 and
νt ≡ ωt/(2π) . 5 mHz, respectively. On the other hand, for a
higher anisotropy factor ΦG or a higher turbulent frequency νt,
the turbulent dissipation plays a much more important role in
both mode damping and the modal surface effect. While we only
considered a simplified case for illustration purposes, this still
tends to show how important it is to account for turbulent dis-
sipation in a realistic way when modelling the lifetime of the
modes, or when trying to correct the surface effect.

Naturally, this picture is a simplistic one, as it stems primar-
ily from hypothesis (H7) in Paper I: the reduction of the turbulent
cascade to a single timescale, ω−1

t . In a more realistic picture,
one can assume that within the continuous range of turbulent
timescales, some eddies act on the modes through turbulent
pressure, and others through turbulent dissipation and pressure-
rate-of-strain correlation, depending on the criteria given by
Eq. (120) with ω−1

t being replaced with their lifetime. Never-
theless, the results showcased in Figs. 1 and 2 illustrate how the
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Fig. 1. Ratio between the two physical contributions to either mode damping or the modal surface effect (turbulent pressure vs. turbulent dissipation
and redistribution of kinetic energy), as a function of mode frequency. Each panel corresponds to a fixed value of the drift tensor anisotropy, ΦG,
and the colour code refers to the turbulent velocity anisotropy factor, Φu. In particular, Φu = 1 corresponds to the isotropic case, and Φu = 0.5
corresponds to the anisotropy measured in 3D large-eddy simulations (e.g., Samadi et al. 2003). The turbulent frequency is set to ωt = 0.03 rad.s−1.
The region filled in red corresponds to the solar damping plateau, and the vertical dashed red line marks the frequency of maximum spectral height
in the Sun, νmax. The horizontal line marks the threshold R = 1: above this line, the turbulent pressure contribution dominates, and below this line
the joint effect of turbulent dissipation and pressure-rate-of-strain correlation prevails. The vertical axis is logarithmic.

(a) (b)

Fig. 2. Left: ratio between the two physical contributions to either mode damping or the surface effect (turbulent pressure vs. turbulent dissipation
and redistribution of kinetic energy), as a function of the drift tensor anisotropy factor, ΦG, for a mode of frequency ν = νmax = 3 mHz. The
turbulent velocity anisotropy is set to Φu = 0.5 and the turbulent frequency to ωt = 0.03 rad.s−1. The vertical dashed line marks the limit ΦG = 1:
to the left, the dissipation of the vertical turbulent motions prevails over the redistribution of turbulent kinetic energy between horizontal and
vertical motions, and vice versa to the right. The horizontal dashed line is the same as in Fig. 1. Right: same ratio, as a function of the turbulent
frequency, ωt, for a mode of frequency ν = νmax = 3 mHz. The two anisotropy factors are set to Φu = 0.5 and ΦG = 1.0. The horizontal dashed
line is the same as in Fig. 1. (a) R as a function of ΦG (b) R as a function of ωt

formalism presented in this paper allows us to break down the
relative importance of the various physical contributions to mode
damping and the modal surface effect.

5. Conclusions

This series of papers aims to investigate Lagrangian stochas-
tic models of turbulence for the study of the coupling between
solar-like oscillations and turbulent convection, as an alterna-

tive to more traditional methods based on mixing-length theory
for example. In Paper I (Philidet et al. 2021) we established a
linear stochastic wave equation designed to govern the oscil-
lations while encompassing the full effect of the turbulence
thereon. In this second paper we exploit this wave equation
to obtain stochastic equations that govern the coupled evolu-
tion of the complex amplitudes of all the modes of the sys-
tem simultaneously. As a first application of these equations,
we consider the single-mode case, which yields explicit and
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simultaneous expressions for the excitation rate (Eq. (72)), the
damping rate (Eq. (81)), and the modal – or ‘intrinsic’ – surface
effect (Eq. (82)) associated with any radial or non-radial solar-
like p-mode, directly as a function of the statistical properties of
the underlying turbulent velocity field.

The expressions for the excitation rate, damping rate, and
modal surface effect provide a useful insight into the physical
origin of the energetic aspects of the solar-like oscillations (at
least those stemming from mechanical work), as well as the dis-
crepancy between observed and theoretical p-mode frequencies.
The main conclusions are as follows.
1. The seismic observables – amplitudes, linewidths, and the

modal surface effect – all simultaneously arise in a coher-
ent manner from the same formalism. Furthermore, they are
explicitly related to the statistical properties of the underly-
ing turbulent convection.

2. The excitation rate of the mode (Eq. (72)) reduces to the
same theoretical formulation obtained by previous studies
on the subject (e.g., Samadi & Goupil 2001; Chaplin et al.
2005), which further supports the validity of this formalism.

3. We also recover the fact that the damping rate and modal sur-
face effect (Eqs. (81) and (82)) are simply the real and imag-
inary part of the same complex quantity. This means that it
is necessary to treat them not as separate phenomena, but as
two aspects of the same physical process, which should be
reflected in the way they are theoretically predicted or empir-
ically treated.

4. Our formalism allows for the separation of the different
physical contributions to both the damping rate (Eq. (88))
and the modal surface effect (Eq. (89)). In the present quasi-
adiabatic formalism (i.e. under the assumption that fluid par-
ticles conserve their entropy during their motion), we can
separate the effect of the turbulent pressure from the joint
effect of the pressure-rate-of-strain correlation and that of the
turbulent dissipation.

5. We apply this formalism to a simple case where the relative
importance of these two contributions (turbulent pressure vs.
pressure-rate-of-strain correlation and turbulent dissipation)
can be quantified (Eq. (120)) in terms of (1) the turbulent fre-
quency, (2) the degree of anisotropy of the Reynolds-stress
tensor, and (3) the degree of anisotropy of the drift ten-
sor, Gi j (i.e. the ratio between the turbulent energy vertical–
horizontal redistribution rate and its dissipation rate). We
show that the turbulent pressure tends to dominate for high-
frequency modes, and that the turbulent dissipation and
pressure-rate-of-strain correlation tend to prevail for low-
frequency modes.

We stress that the Lagrangian stochastic model of turbulence
from which we started in Paper I, and which we have contin-
ued to adopt in the present study, was deliberately oversimpli-
fied so as to provide a proof-of-concept to illustrate the validity
of this formalism and its relevance for the study of turbulence–
oscillation coupling in the context of solar-like oscillators. In
particular, among the various simplifying assumptions that we
adopted in Paper I, two of them stand out. The first is hypothesis
H6, according to which the individual fluid particles conserve
their entropy over time. This hypothesis is substantially dras-
tic in the context of solar-like oscillations, as the local thermal
timescale actually has the same order of magnitude as the period
of the modes, especially in the superadiabatic region. There-
fore, this approximation needs to be dropped to obtain realistic
expressions for the driving rate, damping rate, and modal sur-
face effect associated with solar-like oscillations. This can be
done from the start by adding a stochastic differential equation

for the internal energy associated with the individual fluid parti-
cles in the Lagrangian stochastic model. The second is hypoth-
esis H7, according to which the lifetime of the turbulent eddies
is assumed to be constant in time – albeit not necessarily uni-
form – and is parameterised by the turbulent frequency, ωt. This
is an equally drastic approximation, as the range of timescales
associated with the turbulent eddies is actually very large due
to the very high Reynolds number characteristic of stellar tur-
bulent convection at the top of the convective envelope. Like
the quasi-adiabatic approximation, obtaining a realistic analyt-
ical prescription for the excitation rate, damping rate, and modal
surface effect will require this assumption to be discarded. This
can be done by treating ωt as a physical property of each indi-
vidual fluid particle separately. In doing so, it would also be
necessary to add a stochastic differential equation for the tur-
bulent frequency associated with a given fluid particle in the
Lagrangian stochastic model from the start. Adding turbulent
frequency and internal energy to the set of wave variables used to
describe the solar-like oscillations is therefore an essential task
in the development of this formalism, and will be the subject of
a future paper in this series. While it does not constitute a con-
ceptual challenge, and while many studies in the fluid dynam-
ics community have already been devoted to the inclusion of
turbulent frequency in turbulence modelling (e.g., Pope & Chen
1990; Pope 1991), the application to solar-like oscillations is
likely to involve many more theoretical developments and yield
much more complex relations: it may become necessary, at some
point, to proceed towards a numerical resolution of these equa-
tions instead.

It will also be necessary, in the long run, to discard the
assumption that the PDF of the turbulent flow is Gaussian.
Indeed, the Lagrangian stochastic model from which we started
in Paper I is originally constructed under the implicit assumption
that the equivalent Fokker-Planck equation yields a multivariate
Gaussian PDF. By contrast, as shown by 3D hydrodynamic sim-
ulations, stellar turbulent convection is characterised by a typical
structure composed of upflows and downdrafts, each separately
exhibiting Gaussian turbulence, such that the total flow has a
bimodal distribution. Because of the asymmetry between the
upflows and the downdrafts – the latter being colder and more
turbulent than the former – the total distribution is not Gaussian.
A possible solution that would allow the non-Gaussian nature of
turbulence to be accounted for would be to use a two-flow model,
where the distribution is determined by the mean and variance
of two Gaussian distributions, or equivalently by the first four
moments of the whole distribution. It is possible to implement
two-flow prescriptions in Lagrangian stochastic models (see for
instance Rodean 1996) by using different sets of stochastic dif-
ferential equations to model the evolution of the fluid particles,
depending on whether their vertical velocity is positive or neg-
ative and on whether their temperature is higher or lower than
the local mean temperature. Concretely, this would influence the
relation between the turbulent fluctuations – especially the tur-
bulent velocity – and the perturbations Ls and |θ〉 to the wave
equation. This would constitute an important step towards mak-
ing the present approach more realistic, and its results quanti-
tatively applicable to solar-like oscillators and thus suitable for
comparison with observations.

As a final, important note, we recall that the results pre-
sented from Sect. 4 onwards, and in particular the interpre-
tation of the various terms in the averaged simplified ampli-
tude equations in terms of mode excitation, mode damping, and
the surface effect, were obtained by neglecting mode coupling,
that is, by reducing the coupled amplitude and phase equations
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(Eqs. (43) and (44)) to two equations on the amplitude and phase
of a single mode (Eqs. (55) and (56)). While such coupling is
deemed negligible in solar-type, main-sequence stars, where it
is usually assumed that modes can be studied in isolation from
one another, this assumption is in fact not warranted by any
a priori physical argument. This is a most important caveat of
the findings presented in this study; in the future, it will be
necessary to go beyond the single-mode case, and instead con-
sider the full, coupled system of equations, especially when it
comes to applying the present formalism to the case of a more
evolved star. A later paper in this series will be dedicated to this
task.
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Appendix A: Derivation of the Fokker-Planck
equation

In this appendix, we detail the derivation of the probability fluxes
Gµ andHµ and the components of the diffusion matrixDµν, Eµν
and Fµν appearing in the joint-amplitude-phase Fokker-Planck
equation (Eq. 30). In order to account for the finite memory time
of Gµ(Aν,Φν, t) and Hµ(Aν,Φν, t) (defined as the right-hand sides
of Eqs. 28 and (29), respectively), Stratonovich et al. (1965)
showed that one can define effective probability fluxes and dif-
fusion coefficients in the following way:

Gµ = 〈Gµ〉 +

∑
ν

{
∂Gµ

∂Aν
; Gτ

ν

}
+

∑
ν

{
∂Gµ

∂Φν
; Hτ

ν

}
, (A.1)

Hµ = 〈Hµ〉 +

∑
ν

{
∂Hµ

∂Aν
; Gτ

ν

}
+

∑
ν

{
∂Hµ

∂Φν
; Hτ

ν

}
, (A.2)

Dµν =

{
Gµ ; Gτ

ν

}
+

{
Gν ; Gτ

µ

}
, (A.3)

Eµν =

{
Gµ ; Hτ

ν

}
+

{
Hν ; Gτ

µ

}
, (A.4)

Fµν =

{
Hµ ; Hτ

ν

}
+

{
Hν ; Hτ

µ

}
, (A.5)

where 〈.〉 denotes an ensemble average, and the bilinear operator
{. ; .} is defined by

{
f1 ; f τ2

}
≡

∫ 0

−∞

dτ
[〈

f1(t) f2(t + τ)
〉
−

〈
f1(t)

〉 〈
f2(t + τ)

〉]
.

(A.6)

We can rewrite each of the stochastic processes c1µ(t), c2µν(t) and
c3µν(t) in the following polar form:

c1µ = C1µ exp jφ1µ , (A.7)

c2µν = C2µν exp jφ2µν , (A.8)

c3µν = C3µν exp jφ3µν , (A.9)

where the functions Ci(t) and φi(t) are both real. Then the right-
hand sides of Eqs. 28 and (29) can be rewritten

Gµ(Aλ,Φλ, t) = κµAµ + C1µ cos
(
ωµt + Φµ − φ1µ

)
+

∑
λ
AλC2µλ cos

(
(ωµ − ωλ)t + Φµ − Φλ − φ2µλ

)
+

∑
λ
AλC3µλ cos

(
(ωµ + ωλ)t + Φµ + Φλ − φ3µλ

)
(A.10)

and

Hµ(Aλ,Φλ, t) = −
1
Aµ

C1µ sin
(
ωµt + Φµ − φ1µ

)
−

1
Aµ

∑
λ
AλC2µλ sin

(
(ωµ − ωλ)t + Φµ − Φλ − φ2µλ

)
−

1
Aµ

∑
λ
AλC3µλ sin

(
(ωµ + ωλ)t + Φµ + Φλ − φ3µλ

)
.

(A.11)

Their respective derivatives with respect to Aν and Φν are

∂Gµ

∂Aν
= δµνκµ + C2µν cos

(
(ωµ − ων)t + Φµ − Φν − φ2µν

)
+ C3µν cos

(
(ωµ + ων)t + Φµ + Φν − φ2µν

)
, (A.12)

∂Gµ

∂Φν
= −δµνC1µ sin

(
ωµt + Φµ − φ1µ

)
− δµν

∑
λ
AλC2µλ sin

(
(ωµ − ωλ)t + Φµ − Φλ − φ2µλ

)
+ AνC2µν sin

(
(ωµ − ων)t + Φµ − Φν − φ2µν

)
− δµν

∑
λ
AλC3µλ sin

(
(ωµ + ωλ)t + Φµ + Φλ − φ3µλ

)
− AνC3µν sin

(
(ωµ + ων)t + Φµ + Φν − φ3µν

)
, (A.13)

∂Hµ

∂Aν
=
δµν

A2
µ

C1µ sin
(
ωµt + Φµ − φ1µ

)
+
δµν

A2
µ

∑
λ
AλC2µλ sin

(
(ωµ − ωλ)t + Φµ − Φλ − φ2µλ

)
−

1
Aµ

C2µν sin
(
(ωµ − ων)t + Φµ − Φν − φ2µν

)
+
δµν

A2
µ

∑
λ
AλC3µλ sin

(
(ωµ + ωλ)t + Φµ + Φλ − φ3µλ

)
−

1
Aµ

C3µν sin
(
(ωµ + ων)t + Φµ + Φν − φ3µν

)
, (A.14)

and

∂Hµ

∂Φν
= −

δµν

Aµ
C1µ cos

(
ωµt + Φµ − φ1µ

)
−
δµν

Aµ

∑
λ
AλC2µλ cos

(
(ωµ − ωλ)t + Φµ − Φλ − φ2µλ

)
+

Aν

Aµ
C2µν cos

(
(ωµ − ων)t + Φµ − Φν − φ2µν

)
−
δµν

Aµ

∑
λ
AλC3µλ cos

(
(ωµ + ωλ)t + Φµ + Φλ − φ3µλ

)
−

Aν

Aµ
C3µν cos

(
(ωµ + ων)t + Φµ + Φν − φ3µν

)
. (A.15)

Plugging these into Eqs. A.1–A.5, it may seem at first glance
that the expansion of the bilinear operators { ... ; ... } involves a
large number of terms, all of which can be put in the following
general form{

Cα cos
(
Ωαt + φα

)
; Cτ

β cos
(
Ωβ(t + τ) + φτβ

)}
, (A.16)

with various amplitudes Cα/β, angular frequencies Ωα/β and
phases φα/β (we note that sines can always be written as cosines
by redefining their phase). Plugging this general form into
Eq. A.6, we find{

Cα cos
(
Ωαt + φα

)
; Cτ

β cos
(
Ωβ(t + τ) + φτβ

)}
=

∫ 0

−∞

dτ
〈
CαCτ

β cos
(
Ωαt + φα

)
cos

(
Ωβ(t + τ) + φτβ

)〉
=

1
2

∫ 0

−∞

dτ
〈
CαCτ

β cos
(
(Ωα + Ωβ)t + Ωβτ + φα + φτβ

)〉
+

1
2

∫ 0

−∞

dτ
〈
CαCτ

β cos
(
(−Ωα + Ωβ)t + Ωβτ − φα + φτβ

)〉
.

(A.17)
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The first term oscillates in time t with an angular frequency
Ωβ + Ωα, while the second one oscillates with an angular fre-
quency Ωβ − Ωα. However, since we are interested in the long-
term variations in the complex amplitude of the modes, which
occur on timescales much larger than ω−1

λ , all terms oscillating
at frequencies comparable to any ωλ can be averaged out. This
means that Eq. A.17 only yields non-vanishing contributions if
either Ωα = Ωβ or Ωα = −Ωβ. By redefining the phase inside
the cosine, we can always restrict ourselves to the first case.
Otherwise stated, this means that the only terms that can ‘inter-
act’ through the operator { ... ; ... } to yield a non-oscillating
contribution are those that share the same frequency in the first
place. This can happen either because the two frequencies are
rigorously identical or because there is an accidental resonance

of the type
∑

i niωi = 0, where the sum concerns two or more
modes, and ni are integers. In the following we refer to the first
kind of contribution as ‘cross terms’ and to the second kind as
‘resonances’. We treat each kind separately in the following two
sections.

A.1. Cross terms

The contributions from the cross terms in the curly bracket
operators appearing on the right-hand sides of Eqs. A.1–
A.5 are given by Eqs. A.19–A.24 below6. It can be
seen that in each of the individual curly brackets therein,
the frequencies in both cosines/sines are indeed rigorously
identical.

{
∂Gµ

∂Aν
; Gτ

ν

}
=

{
C2µν cos

(
(ωµ − ων)t + Φµ − Φν − φ2µν

)
; AµCτ

2νµ cos
(
(ωµ − ων)(t + τ) + Φµ − Φν + φτ2νµ

)}
+

{
C3µν cos

(
(ωµ + ων)t + Φµ + Φν − φ3µν

)
; AµCτ

3νµ cos
(
(ωµ + ων)(t + τ) + Φµ + Φν − φ

τ
3νµ

)}
, (A.19)

{
∂Gµ

∂Φν
; Hτ

ν

}
=

{
− δµνC1µ sin

(
ωµt + Φµ − φ1µ

)
; −

δµν

Aµ
Cτ

1µ sin
(
ωµ(t + τ) + Φµ − φ

τ
1µ

)}
+

∑
λ

{
− δµνAλC2µλ sin

(
(ωµ − ωλ)t + Φµ − Φλ − φ2µλ

)
; −

Aλ

Aµ
Cτ

2µλ sin
(
(ωµ − ωλ)(t + τ) + Φµ − Φλ − φ

τ
2µλ

)}
+

{
AνC2µν sin

(
(ωµ − ων)t + Φµ − Φν − φ2µν

)
;

Aµ

Aν
Cτ

2νµ sin
(
(ωµ − ων)(t + τ) + Φµ − Φν + φτ2νµ

)}
+

∑
λ

{
− δµνAλC3µλ sin

(
(ωµ + ωλ)t + Φµ + Φλ − φ3µλ

)
; −

Aλ

Aµ
Cτ

3µλ sin
(
(ωµ + ωλ)(t + τ) + Φµ + Φλ − φ

τ
3µλ

)}
+

{
− AνC3µν sin

(
(ωµ + ων)t + Φµ + Φν − φ3µν

)
; −

Aµ

Aν
Cτ

3νµ sin
(
(ωµ + ων)(t + τ) + Φµ + Φν − φ

τ
3νµ

)}
, (A.20)

{
∂Hµ

∂Aν
; Gτ

ν

}
=

δµνA2
µ

C1µ sin
(
ωµt + Φµ − φ1µ

)
; δµνCτ

1µ cos
(
ωµ(t + τ) + Φµ − φ

τ
1µ

)
+

∑
λ

δµνA2
µ

AλC2µλ sin
(
(ωµ − ωλ)t + Φµ − Φλ − φ2µλ

)
; AλCτ

2µλ cos
(
(ωµ − ωλ)(t + τ) + Φµ − Φλ − φ

τ
2µλ

)
+

{
−

1
Aµ

C2µν sin
(
(ωµ − ων)t + Φµ − Φν − φ2µν

)
; AµCτ

2νµ cos
(
(ωµ − ων)(t + τ) + Φµ − Φν + φτ2νµ

)}
+

∑
λ

δµνA2
µ

AλC3µλ sin
(
(ωµ + ωλ)t + Φµ + Φλ − φ3µλ

)
; AλCτ

3µλ cos
(
(ωµ + ωλ)(t + τ) + Φµ + Φλ − φ

τ
3µλ

)
+

{
−

1
Aµ

C3µν sin
(
(ωµ + ων)t + Φµ + Φν − φ3µν

)
; AµCτ

3νµ cos
(
(ωµ + ων)(t + τ) + Φµ + Φν − φ

τ
3νµ

)}
, (A.21)

{
∂Hµ

∂Φν
; Hτ

ν

}
=

{
−
δµν

Aµ
C1µ cos

(
ωµt + Φµ − φ1µ

)
; −

δµν

Aµ
Cτ

1µ sin
(
ωµ(t + τ) + Φµ − φ

τ
1µ

)}
+

∑
λ

{
−
δµν

Aµ
AλC2µλ cos

(
(ωµ − ωλ)t + Φµ − Φλ − φ2µλ

)
; −

Aλ

Aµ
Cτ

2µλ sin
(
(ωµ − ωλ)(t + τ) + Φµ − Φλ − φ

τ
2µλ

)}
+

{
Aν

Aµ
C2µν cos

(
(ωµ − ων)t + Φµ − Φν − φ2µν

)
;

Aµ

Aν
Cτ

2νµ sin
(
(ωµ − ων)(t + τ) + Φµ − Φν + φτ2νµ

)}
6 In addition, we also have Eµν = 0. Indeed, all the integrands appearing in {Gµ; Hτ

ν } are odd functions of τ. Therefore, since {Hν; Gτ
µ} = {Gµ; H−τν },

we simply obtain

Eµν = {Gµ; Hτ
ν } + {Gµ; H−τν } = 0 . (A.18)
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+

∑
λ

{
−
δµν

Aµ
AλC3µλ cos

(
(ωµ + ωλ)t + Φµ + Φλ − φ3µλ

)
; −

Aλ

Aµ
Cτ

3µλ sin
(
(ωµ + ωλ)(t + τ) + Φµ + Φλ − φ

τ
3µλ

)}
+

{
−

Aν
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C3µν cos

(
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)
; −

Aµ

Aν
Cτ

3νµ sin
(
(ωµ + ων)(t + τ) + Φµ + Φν − φ

τ
3νµ

)}
, (A.22)

{
Gµ ; Gτ

ν

}
=

{
C1µ cos

(
ωµt + Φµ − φ1µ

)
; δµνCτ

1µ cos
(
ωµ(t + τ) + Φµ − φ

τ
1µ

)}
+ δµν

∑
λ

{
AλC2µλ cos

(
(ωµ − ωλ)t + Φµ − Φλ − φ2µλ

)
; AλCτ

2µλ cos
(
(ωµ − ωλ)(t + τ) + Φµ − Φλ − φ

τ
2µλ

)}
+ (1 − δµν)

{
AνC2µν cos

(
(ωµ − ων)t + Φµ − Φν − φ2µν

)
; AµCτ

2νµ cos
(
(ωµ − ων)(t + τ) + Φµ − Φν + φτ2νµ

)}
+ δµν

∑
λ

{
AλC3µλ cos

(
(ωµ + ωλ)t + Φµ + Φλ − φ3µλ

)
; AλCτ

3µλ cos
(
(ωµ + ωλ)(t + τ) + Φµ + Φλ − φ

τ
3µλ

)}
+ (1 − δµν)

{
AνC3µν cos

(
(ωµ + ων)t + Φµ + Φν − φ3µν

)
; AµCτ

3νµ cos
(
(ωµ + ων)(t + τ) + Φµ + Φν − φ

τ
3νµ

)}
, (A.23)

{
Hµ ; Hτ

ν

}
=

{
−

1
Aµ

C1µ sin
(
ωµt + Φµ − φ1µ

)
; −

δµν

Aµ
Cτ

1µ sin
(
ωµ(t + τ) + Φµ − φ

τ
1µ

)}
+ δµν

∑
λ

{
−

Aλ

Aµ
C2µλ sin

(
(ωµ − ωλ)t + Φµ − Φλ − φ2µλ

)
; −

Aλ

Aµ
Cτ

2µλ sin
(
(ωµ − ωλ)(t + τ) + Φµ − Φλ − φ

τ
2µλ

)}
+ (1 − δµν)

{
−

Aν

Aµ
C2µν sin

(
(ωµ − ων)t + Φµ − Φν − φ2µν

)
;

Aµ

Aν
Cτ

2νµ sin
(
(ωµ − ων)(t + τ) + Φµ − Φν + φτ2νµ

)}
+ δµν

∑
λ

{
−

Aλ

Aµ
C3µλ sin

(
(ωµ + ωλ)t + Φµ + Φλ − φ3µλ

)
; −

Aλ

Aµ
Cτ

3µλ sin
(
(ωµ + ωλ)(t + τ) + Φµ + Φλ − φ

τ
3µλ

)}
+ (1 − δµν)

{
−

Aν

Aµ
C3µν sin

(
(ωµ + ων)t + Φµ + Φν − φ3µν

)
; −

Aµ

Aν
Cτ

3νµ sin
(
(ωµ + ων)(t + τ) + Φµ + Φν − φ

τ
3νµ

)}
.

(A.24)

Applying the same procedure underlined in Eq. A.17,
Eqs. A.19–A.24 become{
∂Gµ

∂Aν
; Gτ

ν

}
=

1
2

(
1 − δµν

)
Aµ

∫ 0

−∞

dτ Re
(〈

c2µνcτ2νµ
〉

exp j(ωµ−ων)τ
)

+ δµνAµ

∫ 0

−∞

dτ
〈
Re

(
c2µµ

)
Re

(
cτ2µµ

)〉
+

1
2

Aµ

∫ 0

−∞

dτ Re
(〈

c3µνcτ?3νµ

〉
exp j(ωµ+ων)τ

)
, (A.25)

{
∂Gµ

∂Φν

; Hτ
ν

}
=

1
2
δµν

Aµ

∫ 0

−∞

dτ Re
(〈

c1µcτ?1µ

〉
exp jωµτ

)
+

1
2
δµν

Aµ

∑
λ,µ

A2
λ

∫ 0

−∞

dτ Re
(〈

c2µλcτ?2µλ

〉
exp j(ωµ−ωλ)τ

)
+ δµνAµ

∫ 0

−∞

dτ
〈
Im

(
c2µµ

)
Im

(
cτ2µµ

)〉
+

1
2

(
1 − δµν

)
Aµ

∫ 0

−∞

dτ Re
(〈

c2µνcτ2νµ
〉

exp j(ωµ−ων)τ
)

− δµνAµ

∫ 0

−∞

dτ
〈
Im

(
c2µµ

)
Im

(
cτ2µµ

)〉
+

1
2
δµν

Aµ

∑
λ
A2
λ

∫ 0

−∞

dτ Re
(〈

c3µλcτ?3µλ

〉
exp j(ωµ+ωλ)τ

)
+

1
2

Aµ

∫ 0

−∞

dτ Re
(〈

c3µνcτ?3νµ

〉
exp j(ωµ+ων)τ

)
, (A.26)

{
∂Hµ

∂Aν
; Gτ

ν

}
= −

1
2
δµν

A2
µ

∫ 0

−∞

dτ Im
(〈

c1µcτ?1µ

〉
exp jωµτ

)
−

1
2
δµν

A2
µ

∑
λ,µ

A2
λ

∫ 0

−∞

dτ Im
(〈

c2µλcτ?2µλ

〉
exp j(ωµ−ωλ)τ

)
− δµν

∫ 0

−∞

dτ
〈
Im

(
c2µµ

)
Re

(
cτ2µµ

)〉
+

1
2

(
1 − δµν

) ∫ 0

−∞

dτ Im
(〈

c2µνcτ2νµ
〉

exp j(ωµ−ων)τ
)

+ δµν

∫ 0

−∞

dτ
〈
Im

(
c2µµ

)
Re

(
cτ2µµ

)〉
−

1
2
δµν

A2
µ

∑
λ
A2
λ

∫ 0

−∞

dτ Im
(〈

c3µλcτ?3µλ

〉
exp j(ωµ+ωλ)τ

)
+

1
2

∫ 0

−∞

dτ Im
(〈

c3µνcτ?3νµ

〉
exp j(ωµ+ων)τ

)
, (A.27)

{
∂Hµ

∂Φν
; Hτ

ν

}
=

1
2
δµν

A2
µ

∫ 0

−∞

dτ Im
(〈

c1µcτ?1µ

〉
exp jωµτ

)
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+
1
2
δµν

A2
µ

∑
λ,µ

A2
λ

∫ 0

−∞

dτ Im
(〈

c2µλcτ?2µλ

〉
exp j(ωµ−ωλ)τ

)
− δµν

∫ 0

−∞

dτ
〈
Re

(
c2µµ

)
Im

(
cτ2µµ

)〉
+

1
2

(
1 − δµν

) ∫ 0

−∞

dτ Im
(〈

c2µνcτ2νµ
〉

exp j(ωµ−ων)τ
)

+ δµν

∫ 0

−∞

dτ
〈
Re

(
c2µµ

)
Im

(
cτ2µµ

)〉
+

1
2
δµν

A2
µ

∑
λ
A2
λ

∫ 0

−∞

dτ Im
(〈

c3µλcτ?3µλ

〉
exp j(ωµ+ωλ)τ

)
+

1
2

∫ 0

−∞

dτ Im
(〈

c3µνcτ?3νµ

〉
exp j(ωµ+ων)τ

)
, (A.28)

{
Gµ ; Gτ

ν

}
=

1
2
δµν

∫ 0

−∞

dτ Re
(〈

c1µcτ?1µ

〉
exp jωµτ

)
+

1
2
δµν

∑
λ,µ

A2
λ

∫ 0

−∞

dτ Re
(〈

c2µλcτ?2µλ

〉
exp j(ωµ−ωλ)τ

)
+ δµνA2

µ

∫ 0

−∞

dτ
〈
Re

(
c2µµ

)
Re

(
cτ2µµ

)〉
+

1
2

(
1 − δµν

)
AµAν

∫ 0

−∞

dτ Re
(〈

c2µνcτ2νµ
〉

exp j(ωµ−ων)τ
)

+
1
2
δµν

∑
λ
A2
λ

∫ 0

−∞

dτ Re
(〈

c3µλcτ?3µλ

〉
exp j(ωµ+ωλ)τ

)
+

1
2

(
1 − δµν

)
AµAν

∫ 0

−∞

dτ Re
(〈

c3µνcτ?3νµ

〉
exp j(ωµ+ων)τ

)
, (A.29)

and{
Hµ ; Hτ

ν

}
=

1
2
δµν

A2
µ

∫ 0

−∞

dτ Re
(〈

c1µcτ?1µ

〉
exp jωµτ

)
+

1
2
δµν

A2
µ

∑
λ,µ

A2
λ

∫ 0

−∞

dτ Re
(〈

c2µλcτ?2µλ

〉
exp j(ωµ−ωλ)τ

)
+ δµν

∫ 0

−∞

dτ
〈
Im

(
c2µµ

)
Im

(
cτ2µµ

)〉
−

1
2

(
1 − δµν

) ∫ 0

−∞

dτ Re
(〈

c2µνcτ2νµ
〉

exp j(ωµ−ων)τ
)

+
1
2
δµν

A2
µ

∑
λ
A2
λ

∫ 0

−∞

dτ Re
(〈

c3µλcτ?3µλ

〉
exp j(ωµ+ωλ)τ

)
+

1
2

(
1 − δµν

) ∫ 0

−∞

dτ Re
(〈

c3µνcτ?3νµ

〉
exp j(ωµ+ων)τ

)
. (A.30)

In turn, plugging these expressions into Eqs. A.1–A.5 yields
the final expressions for the probability flux and diffusion matrix
elements, as given in the main body of this paper (Eqs. 31–35).

A.2. Resonances

To illustrate the emergence of these resonance terms in the coef-
ficients of the Fokker-Planck equation, we consider the curly

bracket operator acting on the second term on the right-hand
side of ∂Gµ/∂Aν and the third term on the right-hand side of Gν.
These two terms oscillate at frequencies ωµ − ων and ων − ωλ,
respectively. As we saw before, the resulting curly bracket only
yields non-zero contributions to the long-term evolution of the
mode amplitudes and phases if these two frequencies are either
equal or opposite. Obviously, for λ = µ the two frequencies are
the exact opposite of each other: from this stems one of the cross
terms accounted for in the previous section (more specifically,
the first term on the right-hand side of Eq. A.19). But there may
also be another mode λ for which the two above frequencies
coincide (i.e. ωµ + ωλ − 2ων = 0). To be perfectly accurate,
this resonance condition only needs to be verified to within the
sum of the inverse lifetimes of all the modes involved (i.e. about
10 µHz close to the frequency of maximum spectral height νmax
for the Sun). Following the lead of Kumar & Goldreich (1989)
for instance, we argue that given the high density of modes per
unit frequency in the solar p-mode spectrum, the sums over
frequencies can be treated as integrals, and the resonance con-
dition enforced with a Dirac distribution. The resulting contribu-
tion then reads∫

dωλ δ
(
ωµ + ωλ − 2ων

)
Aλ

×

{
C2µν cos

(
(ωµ − ων)t + Φµ − Φν − φ2µν

)
;

Cτ
2νλ cos

(
(ωµ − ων)(t + τ) + Φν − Φλ − φ2νλ

)}
=

1
2

∫
dωλ δ

(
ωµ + ωλ − 2ων

)
Aλ∫ 0

−∞

dτ Re
(〈

c2µνcτ?2νλ

〉
exp j(2Φν−Φλ−Φµ) exp j(ωµ−ων)τ

)
.

(A.31)

It can be seen that the major difference between this contribu-
tion and those computed in the previous section is the additional
factor exp j(2Φν−Φλ−Φµ) inside the integral (this factor being rigor-
ously equal to unity in each of the cross terms above). Under
the hypothesis that the phase differences between the modes
are fairly independent from one pair of modes to another, it
is reasonable to assume that all these resonance terms cancel
each other out, thus yielding a total net contribution that can be
neglected compared to the cross terms computed in the previous
section.

Appendix B: Derivation of the coefficients αi

The evolution equations on the mean mode energy and phase,
given by Eqs. 71 and 76, only depend on the constant, complex
values of the coefficients α1 and α3. We recall here, for clarity,
that they are defined as the complex autocorrelation spectra of
the stochastic processes c1(t) and c3(t) evaluated at angular fre-
quencies ω and 2ω, respectively, where ω is the angular eigen-
frequency of the mode, such that (see Eqs. 51 and 54)

α1 =

∫ 0

−∞

〈
c1(t)c?1 (t + τ)

〉
exp jωτ dτ , (B.1)

α3 =

∫ 0

−∞

〈
c3(t)c?3 (t + τ)

〉
exp2 jωτ dτ . (B.2)

In turn, these stochastic processes are given by (see Eqs. 25
and 26)

c1 = 2 I
(
ωΨξ,iξt, j∂ jut,i + Ψu,iL0,i

)
(B.3)
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c3 = I
(
Ψξ,iΨξ, j∂ jut,i + ωΨξ,iξt, j∂ jΨu,i + Ψu,iLs

1,i

)
, (B.4)

where we recall that the operator I is given by Eq. 6, Ψξ and
Ψu are the normalised displacement and velocity eigenfunctions
respectively, and we have (see Eqs. 4 and 5)

Ls
1,i = −Ψu, j∂ jut,i − ut, j∂ jΨu,i −

Gi j,0

ωρ0
I

(
Ψξ,k∂k

(
ut, jKx

))
+

 ∂Gi j

∂ũ′′k u′′l
ũ′′k u′′l (1) +

∂Gi j

∂(∂kũl)
∂kũl(1) +

1
2
∂Gi j

∂ε
ωtũ′′i u′′i (1)

 ut, j

+
1
4

√
2C0ωt

ũ′′i u′′i 0

ũ′′i u′′i (1)ηi (B.5)

and

L0,i = −
1
ρ0
∂ j

(
ρ0ut,iut, j − ρ0ut,iut, j

)
, (B.6)

and the perturbations of the Reynolds-stress tensor and mean
shear tensor are given by (see Eqs. 7 and 8)

ρ0ũ′′i u′′j (1)
= −ũ′′i u′′j 0

I

(
Ψξ,k

ω
∂kKx

)
+ I

(
Ψξ,k

ω
∂k

(
ut,iut, jKx

)
+ ut,iΨu, jKx + ut, jΨu,iKx

)
(B.7)

and

ρ0(∂iũ j)(1) = −I

(
Ψu, j∂iKx +

Ψξ,k

ω
∂k

(
ut, j∂iKx

))
−

1
ρ0
∂iρ0I

(
Ψu, jKx +

Ψξ,k

ω
∂k

(
ut, jKx

))
. (B.8)

The apparition of the factor ω−1 in conjunction with every occur-
rence of Ψξ stems from the fact that the latter is defined in terms
of ωξosc rather than simply ξosc.

B.1. Contribution of the turbulent displacement field

In Paper I we used a certain number of approximations to derive
our formalism. One of these approximations – which we labelled
(H3) – consisted in adopting the anelastic approximation for tur-
bulence, in the sense that we considered ρt � ρ0, where ρt is the
turbulent fluctuation of density, and ρ0 is the equilibrium den-
sity. Using the continuity equation, this amounts to neglecting
the quantity ∇ ·

(
ρ0ξt

)
. As we will now see, this allows us to

discard the first term on the right-hand side of Eq. B.3 and the
second term on the right-hand side of Eq. B.4. Considering the
former and performing an integration by part, we can put it in
the following form:

c1 = [...] + 2
∫
S

d2x ρ0Ψξ,iut,i ξt · n

− 2
∫

d3x ut,i∇ ·
(
ρ0Ψξ,iξt

)
. (B.9)

The surface integral (i.e. the first term on the right-hand side)
systematically vanishes, on account of the product ρ0Ψξ vanish-
ing on the surface of the star. Furthermore, the typical length
scale over which ξt varies is much smaller than the wavelength
of the mode. This allows us to pull Ψξ,i out of the gradient in
the last term, and we recognise ∇ ·

(
ρ0ξt

)
, which we neglected

on account of our hypothesis (H3). The same procedure can be
applied to the second term on the right-hand side of Eq. B.4.
As a result, in Eqs. B.3 and B.4, the only source of stochasticity
comes from the turbulent velocity field ut and the Wiener process
η, with no contribution from the turbulent displacement field ξt.

B.2. Derivation of α1

Plugging Eq. B.6 into Eq. B.3, neglecting the first term on the
right-hand side (see Section B.1 for a justification), and perform-
ing an integration by parts, the quantity c1(t) can be rewritten in
the following way:

c1 = −2
∫

d3x ∂ j
(
ρ0Ψu,i

) [
ut,iut, j

]′
, (B.10)

where the surface contribution of the integration by part van-
ishes, because it involves ρ0Ψu at the outer boundary of the star,
where the oscillation is evanescent. This allows for a simple phys-
ical interpretation of this integral: in broad strokes, the quan-
tity ∂ j

(
ρ0Ψu,i

)
/ρ0 corresponds to the local compressibility of the

mode, while the quantity
[
ρ0ut,iut, j

]′
corresponds to the instan-

taneous fluctuating turbulent pressure. The product between the
two can therefore be interpreted as a local instantaneous ‘pdV’
mechanical work exerted by the turbulent pressure on the mode;
integrating over the entire stellar volume yields the total instan-
taneous work c1; and forming the autocorrelation function of c1
yields the effective work exerted on the mode over a large number
of cycles, which corresponds to the excitation rate of the mode.

We remark that only the fluctuation of the turbulent pressure
around its equilibrium state appears in this integral. Expanding
it into the difference between the total turbulent pressure and its
equilibrium value leads to four different integrals. However, it is
readily seen that only one of them – the one not involving the
equilibrium turbulent pressure at all – will have a non-zero ω-
component in its Fourier transform in time, and therefore will
contribute to α1. As such,

[
ut,iut, j

]′
can be replaced by ut,iut, j.

Then, forming the autocorrelation function of c1, we obtain〈
c1(t)c?1 (t + τ)

〉
= 4

"
d3xd3x′ ∂ j

(
ρ0Ψu,i

)∣∣∣
x ∂l

(
ρ0Ψ?

u,k

)∣∣∣∣
x′

×
〈
ut,iut, j(x, t)ut,kut,l(x′, t + τ)

〉
. (B.11)

In the scope of the Jeffreys-Wentzel-Kramers-Brillouin
(JWKB) approximation, the velocity eigenfunction can be
locally approximated by the following expression

Ψu,i(x) = Ψu,i,0(x) exp jk(x)·x , (B.12)

where Ψu,0(x) is the slowly varying amplitude in space of the
velocity eigenfunction, and k(x) is the space-dependent wave
vector of the mode. Both Ψu,0 and k are slowly varying func-
tions of space (meaning that they vary on length scales much
larger than |k|−1). As such, we have

∂ j
(
ρ0Ψu,i

)
∼ jk j(x)ρ0(x)Ψu,i,0(x) exp jk(x)·x , (B.13)

so

〈
c1(t)c?1 (t + τ)

〉
= 4

"
d3xd3x′

[
ρ0k jΨu,i,0(x)ρ0klΨ

?
u,k,0(x′)

× exp j(k(x)·x−k(x′)·x′)
〈
ut,iut, j(x, t)ut,kut,l(x′, t + τ)

〉]
.

(B.14)

Then, we implement the following change of variables:

X ≡ x , (B.15)
δx ≡ x′ − x , (B.16)
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where X and δx represent the slow and fast space variables,
respectively. The implementation of this change of variables in
Eq. B.14 allows us to completely decouple the slowly vary-
ing contributions of Ψu,0 and k on the one hand, and the
rapidly varying contributions of exp( jk · x) and the turbu-
lent velocity two-point correlation products on the other. We
obtain7

〈
c1(t)c?1 (t + τ)

〉
= 4

"
d3Xd3δx

[
ρ2

0k jklΨu,i,0Ψ
?
u,k,0(X)

× exp− jk(X)·δx
〈
ut,iut, j (X, t) ut,kut,l (X + δx, t + τ)

〉]
.

(B.17)

Taking advantage of the scale decoupling, we can separate the
integrals over X and δx,

〈
c1(t)c?1 (t + τ)

〉
= 4

∫
d3X ρ2

0k jklΨu,i,0Ψ
?
u,k,0(X)∫

d3δx exp− jk(X)·δx
〈
ut,iut, j (X, t) ut,kut,l (X + δx, t + τ)

〉
.

(B.18)

Finally, using Eq. B.1, and taking advantage of the definition of
the operator I (see Eq. 6), the autocorrelation spectrum α1 can
thus be expressed as

α1 = 4 I
(
ρ0k jklΨu,i,0Ψ?

u,k,0φ
(4b)
i jkl (k, ω)

)
, (B.19)

where φ(4b)
i jkl is the fourth-order correlation spectrum of the turbu-

lent velocity ut, defined as

φ(4b)
i jkl (k, ω) ≡ Cω,k(ut,iut, j ; ut,kut,l) , (B.20)

and the operator Cω,k is defined by

Cω,k( f1 ; f2) ≡
∫ 0

−∞

dτ
∫

d3δx
〈

f1 f δx,τ2

〉
exp j(ωτ−k·δx) , (B.21)

and

f δx,τ(X,T ) ≡ f (X + δx,T + τ) . (B.22)

Naturally, φ(4b)
i jkl also depends on the slow variable X and time t,

even though they do not appear explicitly in Eq. B.19.

B.3. Derivation of α3

Plugging Eq. B.5 into Eq. B.4 (from which the second term on
the right-hand side was discarded, as per the argument developed
in Section B.1), we obtain

c3 = I

(
Ψξ,iΨξ, j∂ jut,i − Ψu,iΨu, j∂ jut,i − Ψu,iut, j∂ jΨu,i

−
1
ρ0

Ψu,i
Gi j,0

ω

∫
d3y ρ0Ψξ,k∂k

(
ut, jKx

)
+ Ψu,iut, j

∂Gi j

∂ũ′′k u′′l
ũ′′k u′′l (1)

+ Ψu,iut, j
∂Gi j

∂(∂kũl)
(∂kũl)(1) +

1
2

Ψu,iut, j
∂Gi j

∂ε
ωtũ′′i u′′i (1)

+ Ψu,i

ũ′′i u′′i (1)

2ω

√
2C0ωt

ũ′′i u′′i 0

ηi

 , (B.23)

where the perturbation of the Reynolds-stress tensor ũ′′k u′′l (1)
and mean shear tensor (∂kũl)(1) are given by Eqs. B.7 and B.8,
respectively.

We consider the first four terms on the right-hand side of
Eq. B.23. They can be rearranged with integrations by part to
yield

c3a =

∫
d3x ut,i

(
− ∂ j

(
ρ0Ψξ,iΨξ, j

)
+ ∂ j

(
ρ0Ψu,iΨu, j

)
− ρ0Ψu,i∂ jΨu,i

)
, (B.24)

c3b =

∫
d3x Ψu,i

Gi j,0

ω
I

(
ut, jKx∂k

(
ln ρ0Ψξ,k

))
. (B.25)

The last term can be further simplified by permuting the integral
over x and the integral defining the operator I (see Eq. 6), which
yields

c3b =

∫
d3y ut, j∂k

(
ρ0Ψξ,k

) ∫
d3x Ψu,i(x)

Gi j,0

ω
Ky(x) , (B.26)

where we have used the isotropy of the kernel function K to write
Kx(y) = Ky(x). It can be seen that the integral over x corresponds
to the kernel estimate at point y of the quantity Ψu,iGi j,0/(ωρ0),
which only involves quantities that are not stochastic. As such,
this kernel estimation equals the actual value of this quantity at
y, and c3d(t) reduces to

c3b =

∫
d3y

Gi j,0

ω
ut, jΨu,i∂k

(
ρ0Ψξ,k

)
. (B.27)

As for the fifth, sixth, and seventh terms on the right-hand
side of Eq. B.23, we can expand them in the following way. For
the sake of clarity, we define the following symbol:∫

xy
≡

∫
d3x

∫
d3y . (B.28)

Then the fifth term on the right-hand side of Eq. B.23 can be split
into

c3c =

∫
xy

ut, j(x)Ψu,i(x)
∂Gi j

∂ũ′′k u′′l

∣∣∣∣∣∣∣
x

ũ′′k u′′l 0

ω
∂m

(
ρ0Ψξ,m

)∣∣∣∣
y

Kx(y) , (B.29)

c3d =

∫
xy

ut, j(x)ut,k(y)Ψu,i(x)
∂Gi j

∂ũ′′k u′′l

∣∣∣∣∣∣∣
x

ρ0(y)Ψu,l(y)Kx(y) , (B.30)

c3e =

∫
xy

ut, j(x)ut,l(y)Ψu,i(x)
∂Gi j

∂ũ′′k u′′l

∣∣∣∣∣∣∣
x

ρ0(y)Ψu,k(y)Kx(y) (B.31)

and

c3 f = −

∫
xy

ut, j(x)ut,k(y)ut,l(y)Ψu,i(x)
1
ω

∂Gi j

∂ũ′′k u′′l

∣∣∣∣∣∣∣
x

∂m

(
ρ0Ψξ,m

)∣∣∣∣
y

Kx(y) ; (B.32)

the sixth term can be split into

c3g =

∫
xy

ut, j(x)Ψu,i(x)
∂Gi j

∂(∂kũl)

∣∣∣∣∣∣
x
∂i

(
ρ0Ψu,l

)∣∣∣
y Kx(y) ,

(B.33)

7 The Jacobian of the change of variable (x, x′) 7→ (X, δx) is straight forwardly estimated, and happens to equal unity.
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c3h = −

∫
xy

ut, j(x)
ρ0(y)
ρ0(x)

Ψu,i(x)
∂Gi j

∂(∂kũl)

∣∣∣∣∣∣
x
∂kρ0|x Ψu,l(y)Kx(y) ,

(B.34)

c3i =

∫
xy

ut, j(x)ut,k(y)Ψu,i(x)
1
ω

∂Gi j

∂(∂lũk)

∣∣∣∣∣∣
x
∂m

(
ρ0Ψu,m

)∣∣∣
y ∂lKx

∣∣∣
y

(B.35)

and

c3 j =

∫
xy

ut, j(x)ut,k(y)
1

ωρ0(x)
Ψu,i(x)

∂Gi j

∂(∂lũk)

∣∣∣∣∣∣
x

∂l (ρ0)|x ∂m
(
ρ0Ψu,m

)∣∣∣
y Kx(y) ; (B.36)

and the seventh term can be split into

c3k =

∫
xy

ut, j(x)Ψu,i(x)
∂Gi j

∂ε

∣∣∣∣∣∣
x

ωtũ′′n u′′n 0(x)
2ω

∂m

(
ρ0Ψξ,m

)∣∣∣∣
y

Kx(y) ,

(B.37)

c3l =

∫
xy

ut, j(x)ut,k(y)ωtΨu,i(x)
∂Gi j

∂ε

∣∣∣∣∣∣
x
ρ0(y)Ψu,k(y)Kx(y) ,

(B.38)

c3m = −

∫
xy

ut, j(x)ut,k(y)ut,k(y)Ψu,i(x)
1
2
ωt

ω

∂Gi j

∂ε

∣∣∣∣∣∣
x

∂m

(
ρ0Ψξ,m

)∣∣∣∣
y

Kx(y)δkl . (B.39)

Finally, in the last term on the right-hand side of Eq. B.23, the
quantity under the integral is proportional to the stochastic pro-
cess ηi(x, t), which, by construction, is δ-correlated in both space
and time. In particular, its correlation length scale is infinites-
imally small compared to that of the turbulent velocity ut(x, t).
But as we saw in Section B.2, it is precisely the spatial coherence
of the stochastic perturbations to the wave equation that explains
its ability to impact the complex amplitude of the modes. As
such, this part will not actually contribute to the final expression
of α3, or to the stochastic amplitude equations in any way, and
will be discarded in the following.

Formally, c3(t) can be written as a sum of contributions that
are first-, second-, or third-order in terms of the turbulent veloc-
ity, ut,

c3(t) =

∫
xy

[
f1,i(x, y)ut,i(x, t) + f2,i j(x, y)ut,i(x, t)ut, j(y, t)

+ f3,i jk(x, y)ut,i(x, t)ut, jut,k(y, t)
]
, (B.40)

where

f1,i(x, y) ≡
[
− ∂ j

(
ρ0Ψξ,iΨξ, j

)
+ ∂ j

(
ρ0Ψu,iΨu, j

)
+ ρ0Ψu, j∂iΨu, j

+
G ji,0

ω
Ψu, j∂k

(
ρ0Ψξ,k

)]∣∣∣∣∣∣
x
δ(x − y)

+

Ψu, j(x)
∂G ji

∂ũ′′k u′′l

∣∣∣∣∣∣∣
x

ũ′′k u′′l 0

ω
∂m

(
ρ0Ψξ,m

)∣∣∣∣
y

+ Ψu, j(x)
∂G ji

∂(∂kũl)

∣∣∣∣∣∣
x
∂k

(
ρ0Ψu,l

)∣∣∣
y

−
ρ0(y)
ρ0(x)

Ψu, j(x)
∂G ji

∂(∂kũl)

∣∣∣∣∣∣
x
∂k (ρ0)|x Ψu,l(y)

+Ψu, j(x)
∂G ji

∂ε

∣∣∣∣∣∣
x

ωtũ′′n u′′n 0(x)
2ω

∂m

(
ρ0Ψξ,m

)∣∣∣∣
y

 Kx(y) ,

(B.41)

f2,i j(x, y) ≡

Ψu,k(x)
∂Gki

∂ũ′′j u′′l

∣∣∣∣∣∣∣
x

ρ0(y)Ψu,l(y)

+ Ψu,k(x)
∂Gki

∂ũ′′l u′′j

∣∣∣∣∣∣∣
x

ρ0(y)Ψu,l(y)

+
1

ωρ0(x)
Ψu,k(x)

∂Gki

∂(∂lũ j)

∣∣∣∣∣∣
x
∂l (ρ0)|x ∂m

(
ρ0Ψu,m

)∣∣∣
y

+ωtΨu,k(x)
∂Gki

∂ε

∣∣∣∣∣
x
ρ0(y)Ψu, j(y)

]
Kx(y)

+ Ψu,k(x)
1
ω

∂Gki

∂(∂lũ j)

∣∣∣∣∣∣
x
∂m

(
ρ0Ψu,m

)∣∣∣
y ∂l

(
Kx)∣∣∣

y (B.42)

and

f3,i jk(x, y) ≡ −

 1
ω

Ψu,l(x)
∂Gli

∂ũ′′j u′′k

∣∣∣∣∣∣∣
x

∂m

(
ρ0Ψξ,m

)∣∣∣∣
y

+
1
2
ωt

ω
Ψu,l(x)

∂Gli

∂ε

∣∣∣∣∣
x
∂m

(
ρ0Ψξ,m

)∣∣∣∣
y
δ jk

]
Kx(y) .

(B.43)

Forming the autocorrelation product of c3(t) from Eq. B.40,
we see that the expansion involves correlation products of the
turbulent velocity field ut of various orders, ranging from 2 to
6. In the following, we make the assumptions, often used in the
context of Gaussian turbulence, that 1) these moments can be cut
at fourth order, and 2) the contribution of the third-order moment
can be neglected compared to that of the second- or fourth-order.
With this approximation in mind, we then proceed to adopt the
JWKB approximation in the same form as in Section B.2 (see
Eq. B.12), which yields

〈c3(t)c?3 (t + τ)〉 =

∫
d3Xd3δxd3δy1d3δy2

exp
(

j k · (−2δx + δy1 − δy2)
)
ρ2

0


(
F(1a)

i F(1a)?
j δ(δy1)δ(δy2)

+ F(1a)
i F(1b)?

j δ(δy1)K(δy2) + F(1b)
i F(1a)?

j K(δy1)δ(δy2)

+ F(1b)
i F(1b)?

j K(δy1)K(δy2)
) 〈

ut,i(X)uτt, j(X + δx)
〉

+

(
F(1a)

i F(3b)?
jkl δ(δy1)K(δy2) + F(1b)

i F(3b)?
jkl K(δy1)K(δy2)

)
×

〈
ut,i(X)uτt, j(X + δx)uτt,kuτt,l(X + δx − δy2)

〉
+

(
F(1a)?

i F(3b)
jkl K(δy1)δ(δy2) + F(1b)?

i (F(3b)
jkl K(δy1)K(δy2)

)
×

〈
uτt,i(X + δx)ut, j(X)ut,kut,l(X − δy1)

〉
+

(
F(2)

i j F(2)?
kl K(δy1)K(δy2) + F(3a)

i jm F(2)?
kl ∂mK(δy1)K(δy2)
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+ F(2)
i j F(3a)?

klm K(δy1)∂mK(δy2) + F(3a)
i jm F(3a)?

kln ∂mK(δy1)∂nK(δy2)
)

×
〈
ut,i(X)ut, j(X − δy1)uτt,k(X + δx)uτt,l(X + δx − δy2)

〉 ,
(B.44)

where the subscript τ means that the turbulent velocity field is
evaluated at time t + τ, and we have introduced

F(1a)
i = 4 jk jΨu,i,0Ψu, j,0 + jkiΨu, j,0Ψu, j,0 +

Gi j,0

ω
kkΨu, j,0Ψu,k,0 ,

(B.45)

F(1b)
i =

∂Gi j

∂ũ′′k u′′l

ũ′′k u′′l 0

ω
kmΨu,m,0Ψu, j,0 +

∂Gi j

∂(∂kũl)
jkkΨu, j,0Ψu,l,0

+
∂Gi j

∂ε

ωtũ′′n u′′n 0

2ω
kmΨu, j,0Ψu,m,0 , (B.46)

F(2)
i j =

 ∂Gki

∂ũ′′j u′′l
+

∂Gki

∂ũ′′l u′′j

 Ψu,l,0Ψu,k,0 +
∂Gki

∂ε
ωtΨu, j,0Ψu,k,0 ,

(B.47)

F(3a)
i jk =

∂Gli

∂(∂kũ j)
1
ω

jkmΨu,l,0Ψu,m,0 , (B.48)

F(3b)
i jk = −

∂Gli

∂ũ′′j u′′k

1
ω

kmΨu,l,0Ψu,m,0 −
1
2
∂Gli

∂ε

ωt

ω
kmΨu,l,0Ψu,m,0δ jk .

(B.49)

Equation B.44 can be drastically simplified by remarking
that any integral involving the product of a function f with the
kernel function K correspond, by construction, to the ensemble
average of said function f (see Paper I for more details). Sim-
ilarly, if the integral is weighted by the gradient of the kernel
function, then it corresponds to the ensemble average of the gra-
dient of f (with a minus sign). But every quantity appearing in
Eq. B.44 is either already an ensemble average or an equilibrium
quantity, or else the normalised velocity eigenfunctionΨu. None
of these are stochastic quantities, which means they are equal to
their own ensemble average. This allows us to perform the kind
of simplification illustrated by Eq. 50 of Paper I, and we eventu-
ally find

〈c3(t)c3(t + τ)〉 =

∫
d3X

∫
d3δx ρ2

0 exp−2 jk·δx


F(1)

i F(1)?
j

〈
ut,i(X)uτt, j(X + δx)

〉
+ F(1)

i F(3b)?
jkl

〈
ut,i(X)uτt, ju

τ
t,kuτt,l(X + δx)

〉
+ F(1)?

i F(3b)
jkl

〈
uτt,i(X)ut, jut,kut,l(X + δx)

〉
+ F(2)

i j F(2)?
kl

〈
ut,iut, j(X)uτt,kuτt,l(X + δx)

〉
+ F(3a)

i jm F(3a)?
kln

〈
ut,i∂mut, j(X + δx)uτt,k∂nuτt,l(X + δx)

〉
+ F(3a)

i jm F(2)?
kl

〈
ut,i∂mut, j(X)uτt,kuτt,l(X + δx)

〉
+ F(2)

i j F(3a)?
klm

〈
ut,iut, j(X)uτt,k∂muτt,l(X + δx)

〉 , (B.50)

where we defined F(1) ≡ F(1a) + F(1b).

Finally, plugging this into Eq. B.2, we find the following
expression:

α3 =

∫
d3X ρ2

0

(
F(1)

i F(1)?
j φ(2)

i j (2k, 2ω)

+ 2Re
[
F(1)

i F(3b)?
jkl φ(4a)

i jkl (2k, 2ω)
]

+ F(2)
i j F(2)?

kl φ(4b)
i jkl (2k, 2ω)

+ F(3a)
i jm F(3a)?

kln φ(4c)
i jkl (2k, 2ω) + 2Re

[
F(3a)

i jm F(2)?
kl φ(4d)

i jkl (2k, 2ω)
])
,

(B.51)

where we recall that the wave vector k and the angular frequency,
ω, are those of the mode under consideration, and we have
defined the following spectra on the same template as Eq. B.21:

φ(2)
i j (k, ω) ≡ Cω,k(ut,i ; ut, j) , (B.52)

φ(4a)
i jkl (k, ω) ≡ Cω,k(ut,i ; ut, jut,kut,l) , (B.53)

φ(4b)
i jkl (k, ω) ≡ Cω,k(ut,iut, j ; ut,kut,l) , (B.54)

φ(4c)
i jklmn(k, ω) ≡ Cω,k(ut,i∂mut, j ; ut,k∂nut,l) , (B.55)

φ(4d)
i jklm(k, ω) ≡ Cω,k(ut,i∂mut, j ; ut,kut,l) . (B.56)

We note, as we did in Section B.2, that F(1), F(2), F(3a), and
F(3b) are also functions of X, and that φ(2)

i j , φ(4a)
i jkl , φ(4b)

i jkl , φ(4c)
i jkl , and

φ(4d)
i jkl also depend on both X and t, even though these depen-

dences do not appear explicitly in Eq. B.51.

B.4. Mode normalisation and final form of αi

The last remaining modification to the explicit expressions of α1
and α3 concerns the normalisation condition on the mode |Ψ〉.
Indeed, we need to relate Ψu,0(x) to the actual modal velocity
fluctuation uosc(x), as it can be obtained through an oscillation
code for instance. By construction of the ket |Ψ〉, we have this
very simple proportionality relation:

Ψu =
uosc
√

2Iω2
, (B.57)

where the proportionality factor 1/
√

2ω2I is given by the con-
dition that |Ψ〉 must be normalised to unity, such that

〈Ψ|Ψ〉 = 1 . (B.58)

Plugging Eqs. 11 and 18 into Eq. B.58, this becomes∫
d3x ρ0(x)

( ∣∣∣Ψξ ∣∣∣2 + |Ψu|
2
)

= 1 , (B.59)

and since Ψu = jΨξ,

2
∫

d3x ρ0(x) |Ψu(x)|2 = 1 . (B.60)

Finally, plugging Eq. B.57, we find

I =
1
ω2

∫
d3x ρ0(x) |uosc(x)|2 =

∫
d3x ρ0(x)

∣∣∣ξosc(x)
∣∣∣2 , (B.61)

which we recognise as the inertia of the mode. We then find
the relation between Ψu,0 and uosc by plugging Eq. B.12 into
Eq. B.57. In turn, plugging Eq. B.57 into Eqs. B.19 and B.51,
we find the final expressions for α1 and α3 reproduced in the
main body of the paper (Eqs. 65 and 66).
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