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ABSTRACT
Asteroseismology is a powerful tool to infer fundamental stellar properties. The use of these asteroseismic-inferred properties
in a growing number of astrophysical contexts makes it vital to understand their accuracy. Consequently, we performed a
hare-and-hounds exercise where the hares simulated data for six artificial main-sequence stars and the hounds inferred their
properties based on different inference procedures. To mimic a pipeline such as that planned for the PLATO mission, all hounds
used the same model grid. Some stars were simulated using the physics adopted in the grid, others a different one. The maximum
relative differences found (in absolute value) between the inferred and true values of the mass, radius, and age were 4.32, 1.33,
and 11.25 per cent, respectively. The largest systematic differences in radius and age were found for a star simulated assuming
gravitational settling, not accounted for in the model grid, with biases of −0.88 per cent (radius) and 8.66 per cent (age). For
the mass, the most significant bias (−3.16 per cent) was found for a star with a helium enrichment ratio outside the grid range.
Moreover, an ∼7 per cent dispersion in age was found when adopting different prescriptions for the surface corrections or
shifting the classical observations by ±1σ . The choice of the relative weight given to the classical and seismic constraints also
impacted significantly the accuracy and precision of the results. Interestingly, only a few frequencies were required to achieve
accurate results on the mass and radius. For the age the same was true when at least one l = 2 mode was considered.

Key words: asteroseismology – methods: statistical – stars: evolution – stars: fundamental parameters – stars: oscillations.

1 IN T RO D U C T I O N

Stellar characterization is a matter of fundamental importance
in the general astrophysical context. Exoplanet research (e.g.
Winn & Fabrycky 2015; Santos & Buchhave 2018) and Galactic
archaeology (e.g. Miglio et al. 2017) are examples of areas where
studies often rely on the knowledge of fundamental stellar properties,
such as the stellar mass, radius, and age. The advent of space-based
asteroseismology has greatly enhanced the precision with which
these stellar properties can be inferred (Chaplin et al. 2014; Silva
Aguirre et al. 2017), leading to strong and long-lasting synergies
between asteroseismology and these other fields of research. An
example of such synergy is provided by the ESA mission PLAnetary

� E-mail: mcunha@astro.up.pt

Transits and Oscillations of stars (PLATO; Rauer et al. 2014), where
the hunt for terrestrial planets is planned to go hand-in-hand with
the characterization of their host stars through asteroseismology.
In this context, it is fundamental to understand to what precision
and accuracy stellar properties may be derived from space-based
asteroseismic data such as that planned to be acquired by PLATO.

Earlier works based on data collected by the Kepler satel-
lite (Gilliland et al. 2010) have been particularly informative concern-
ing the precision of asteroseismic-inferred stellar properties. Chaplin
et al. (2014) showed that access to just two seismic global constraints,
namely, the frequency of maximum oscillation power νmax and
the large frequency separation �ν, enables the inference of stellar
masses, radii, and ages with typical uncertainties of ∼5.4, ∼2.2, and
∼25 per cent, respectively, when spectroscopic constraints are simul-
taneously available. These uncertainties are further reduced to aver-
ages of ∼4 per cent in mass, ∼2 per cent in radius, and ∼10 per cent
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in age, when a significant number of individual mode frequencies are
detected, as shown by Silva Aguirre et al. (2017) in a study of the 66
stars in the Kepler Legacy sample. Importantly, in both studies the un-
certainties quoted are not the statistical errors from a single pipeline,
but consider the results from different evolutionary codes combined
with a variety of model physics, and different analysis methods.

While the Kepler legacy is extremely valuable in the context of
the preparation for the PLATO mission, the results presented in
the works mentioned above do not inform us on the accuracy of
the asteroseismic inferences. Consistency checks against the results
from independent methods are possible in some cases (Bruntt et al.
2010; Huber et al. 2012; Sahlholdt & Silva Aguirre 2018). However,
to truly test the accuracy of the asteroseismic results one would need
access to independently derived stellar properties whose statistical
and systematic errors are significantly smaller than the uncertainties
on the asteroseismic inferences. That may be possible for the mass
and radius, from the study of eclipsing binaries (e.g. Torres, Andersen
& Giménez 2010; Serenelli et al. 2021) and for the mass alone,
from the study of some double-lined spectroscopic binaries (e.g.
Halbwachs et al. 2020). Unfortunately, with very few exceptions,
at the present date such accurate measurements are not available
for stars having, simultaneously, asteroseismic data. Asteroseismic
observation of a number of such benchmark stars following the
launch of PLATO should enable future tests to the accuracy of the
asteroseismic inferences.

An alternative way to access the accuracy of the asteroseismic
inference procedures is to resort to simulated data. Any tests based
on simulated data are limited by one’s ability to produce realistic
representations of the real data sets. Therefore, they cannot evaluate
the impact of physical processes not included in the models used to
simulate the data that may be at play in stars. Nevertheless, these tests
are useful to understand the biases that are introduced in the inferred
stellar properties by known sources of systematic errors, which can
be accounted for in the simulations. Exercises of this type have been
performed earlier both based on simulated data sets including only
global seismic observations (Stello et al. 2009) and simulated data
sets including individual-mode frequencies (Reese et al. 2016). Nev-
ertheless, in both cases the underlying stellar models and associated
models’ physics varied according to the modeller’s choice, hindering
a direct comparison of the different inference procedures.

In this work, we use simulated data to establish the accuracy
limit with which stellar properties may be derived from given sets
of asteroseismic data. Our goal is to compare the performances of
different grid-based inference methods used by the asteroseismic
community. Specifically, we perform a hare-and-hounds exercise,
where the hares produce simulated data for a set of targets and the
hounds try to recover the true properties of these targets. All hounds
were asked to use the same grid of stellar models and frequencies,
such as to mimic the future PLATO pipeline. Consequently, the
differences in the inferences made by different hounds result solely
from the differences in the methods employed. Nevertheless, some
of the targets were simulated using a physics setup differing from
the one used to build the grid of models, or adopting parameter
values outside the grid parameter space. Therefore, in those cases,
the differences between the inferred values and the true values reflect
also the biases that are introduced in the grid-based inference problem
when fixing the physics of the models in a grid.

The remainder of this paper is organized as follows: in Sec-
tion 2, we introduce the hare-and-hounds exercise, specifying the
characteristics of the grid of models adopted for the inferences,
the properties of the simulated stars and the simulation procedure.
Section 3 highlights the main differences between the grid-based

inference methods considered in the exercise. Section 4 discusses
the results from the exercise, comparing the inferences made based
on different procedures. Sections 5–8 then assess the impact on
the results from considering different prescriptions for the surface
corrections, changing the relative weight given to the classical and
seismic observations, degrading the quality of the seismic data, and
shifting the uncertainties in the classical observations. Finally, in
Section 9 we summarize our conclusions.

2 SETTI NG THE EXPERI MENT

2.1 Grid of models

We used the Modules for Experiments in Stellar Astrophysics (MESA

version 10108; Paxton et al. 2011, 2013, 2015, 2018) to compute
the stellar model grid. The MESA code provides several options for
various input physics. We used it with Opacity Project (OP) high-
temperature opacities (Badnell et al. 2005; Seaton 2005) supple-
mented with low-temperature opacities of Ferguson et al. (2005).
The metallicity mixture from Grevesse & Sauval (1998) was used.
We used the OPAL equation of state (Rogers & Nayfonov 2002).
The reaction rates were from NACRE (Angulo et al. 1999) for all
reactions except 14N(p, γ )15O and 12C(α, γ )16O, for which updated
reaction rates from Imbriani et al. (2005) and Kunz et al. (2002) were
used, respectively. For overshoot, we used the prescription of Herwig
(2000). The Eddington T–τ relation (Eddington 1926) was used for
atmospheric boundary conditions. The initial helium mass fraction,
Yini, was derived from the initial metal mass fraction, Zini, through a
helium-to-heavy metal enrichment law

Yini = dY

dZ
Zini + Y0, (1)

with a big bang nucleosynthesis value for the helium mass fraction of
Y0 = 0.248. The formalism for convection was used from Cox & Giuli
(1968). The model oscillation frequencies, νnl, where n is the radial
order and l the degree, were calculated using the Aarhus adiabatic
oscillation package (ADIPLS; Christensen-Dalsgaard 2008) with
isothermal atmosphere boundary condition.

We generated a hybrid stellar model grid with a total of 9000 evo-
lutionary tracks containing about 3.5 million models; the mass and
initial metallicity were sampled uniformly in pre-defined ranges (M
∈ [0.8, 1.5] M� and [Fe/H]i ∈ [−0.5, 0.5] dex) using a quasi-random
number generator (Sobol 1967), whereas mixing length, overshoot
and helium-to-metal enrichment ratio were sampled uniformly from
pre-defined sets of values (αmlt ∈ {1.6, 1.7, 1.8, 1.9, 2.0}, fov ∈ {0.0,
0.015, 0.030}, and dY/dZ ∈ {1, 2, 3}). The model profiles have about
2000 mesh points.

2.2 Simulated stars

The hares produced data for six simulated stars – hereafter, the targets
– named Patch, Zebedee, Fred, Gerald, Zippy, and George. Their
location in the HR diagram is shown in Fig. 1. Their main properties
are listed in Table 1 and their simulated classical and global seismic
constraints are shown in Table 2. The simulated individual mode
frequencies are listed in Tables A1 and A2, in Appendix A.

Patch, Zebedee, and Fred were generated with the default physics
used to construct the grid (Section 2.1), but parameters were allowed
to differ from the values in the grid. For the other three targets, the
adopted model physics has been modified as follows. For George, we
used an atmospheric T–τ relation fit to the empirical solar atmosphere
model C by Vernazza, Avrett & Loeser (1981) implemented in MESA
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Figure 1. Location in the asteroseismic HR diagram of the six targets
produced by the hares. The uncertainties in Teff are indicated by grey
horizontal bars while the uncertainties in �ν are smaller than the symbols.
Solar metallicity evolutionary tracks (black lines) with masses in the range
0.8–1.6 M� constructed using a mixing length parameter (αmlt) of 1.8 and
without element diffusion, are also shown for guidance.

as the solar Hopf grey option (see section A.5 of Paxton et al.
2013). For Zippy, we included convective overshoot with a step-like
diffusion profile at the convective core boundary only, rather than
the exponentially decaying profile at all boundaries used in the other
models. The diffusion coefficient of convective mixing was extended
from 0.001Hp below the convective boundary to 0.2Hp above, where
Hp is the pressure scale height. For Gerald, we included the effects
of gravitational settling implemented using the method by Thoul,
Bahcall & Loeb (1994). Finally, for two of the targets, one of the
parameters was beyond the grid limits. In particular, for Fred, an
enrichment ratio of dY/dZ = 0.77 was adopted and for George the
overshoot was taken to be fov = 0.0939.

To produce the artificial observations – i.e. individual mode
frequencies, global asteroseismic parameters, and their uncertainties,
for each star – we followed the approach and recipe of Reese et al.
(2016). Full details of the procedures may be found in that paper,
but to summarize: The fundamental properties of each artificial star
were used as input to scaling relations, which calculated the expected
underlying parameters of the oscillation spectrum and the intrinsic
background arising from granulation. For the base exercise, all
artificial stars were assumed to be observed continuously for a period
of 2 yr at an apparent visual magnitude of V = 9, which, coupled to a
model for the PLATO noise performance defined the expected noise
level for each star. With the appearance of the underlying (so-called
limit) spectrum defined, we used analytical relations to calculate the

probability of detection for each mode, and the expected precision
in their frequencies.

Frequencies of those modes flagged as detectable were perturbed
by adding a random Gaussian perturbation of standard deviation
equal to the expected frequency precision, and passed to the
list of simulated observed outputs. This list was augmented by
observational estimates of the global asteroseismic parameters νmax

and �ν, both computed using scaling relations, with the central
values perturbed based on assumed measured precisions of 5 and
2 per cent, respectively.

The non-seismic observations – luminosity L, effective tempera-
ture Teff, and metallicity [Fe/H] – were created in a similar manner,
by perturbing the true values assuming measured precisions of 3
per cent, 85 K, and 0.09 dex, respectively.

Finally, to mimic the systematic differences known to exist
between model and observed frequencies as a result of the deficient
modelling of the surface layers of stars, a surface effect was added to
the artificial frequency data using the one-term (or ‘cubic’ correction)
by Ball & Gizon (2014) (hereafter BG-1term). We started with the co-
efficient found by fitting Model S (Christensen-Dalsgaard et al. 1996)
to low-degree mode frequencies from BiSON (Broomhall et al. 2009;
Davies et al. 2014) and, for each simulated star, multiplied the coef-
ficient by a random number drawn uniformly between 0.98 and 1.02.

3 ME T H O D S

The targets’ properties were inferred by five modellers, hereafter,
the hounds, through a series of grid-based inference methods. All
hounds used the same grid of models and frequencies (described in
Section 2.1). The goal was to understand how the differences in the
optimization methods employed by the hounds to explore the grid
impact on the results. The hounds produced probability distributions
for the stellar properties reporting, in each case, the mean of the
distribution, a 1σ uncertainty on the mean and the values of the 16th,
50th, and 84th percentiles. Some hounds submitted different sets of
results that were either inferred with different methods or with the
same method but applying different weights to the observations or
different prescriptions for the surface corrections. In those cases,
one method and one associated set of results was elected for the
comparison discussed in Section 4.1, prior to the true values of the
targets’ properties being revealed. The elected methods were chosen
such as to guarantee that the approaches showcased were as diverse
as possible. The list of hounds is presented in Table 3 and the detailed
description of the methods is presented in Appendix B.

3.1 Key differences

The inference methods discussed in this work differ in a few key
aspects. One of these concerns the way the parameter space is
sampled. In most cases, the sampling is limited to the grid points. In

Table 1. Properties of the targets.

Targets ID Mass (M�) Radius (R�) Age (Gyr) Yini Zini αmlt fov Physics Notes

Patch Pa 0.8644 0.9557 9.898 0.25906 0.00784 1.931 0.0115 Default
Zebedee Ze 1.0165 0.9646 3.085 0.26786 0.01734 1.872 0.0223 Default
Fred Fr 1.4318 1.7225 1.839 0.26055 0.01638 1.688 0.0066 Default dY/dZa

Gerald Ge 1.0242 1.2053 8.039 0.27566 0.02111 1.967 0.0274 Gravitational settling
Zippy Zi 1.1278 1.3965 4.223 0.27784 0.01245 1.880 – Step overshootingb

George Go 1.3430 1.7069 3.757 0.28049 0.03001 1.770 0.0939 VAL C atmosphere f a
ov

aThe value is outside the grid parameter space.
bSee Section 2.2 for details.
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Table 2. Classical and global seismic parameters of the targets. The model luminosity, effective temperature, and surface iron abundance, as well as the model
νmax and �ν determined through the scaling relations, are marked by the superscript ‘true’. Each of these quantities is followed by the simulated value and 1σ

error provided to the hounds (see text for details).

Targets L/Ltrue� L/L� T true
eff (K) Teff (K) [Fe/H]true [Fe/H] νtrue

max (μHz) νmax (μHz) �νtrue (μHz) �ν (μHz)

Patch 1.0737 1.03 ± 0.03 6014.4260 5991 ± 85 − 0.3329 − 0.28 ± 0.09 2865 2906 ± 143 134.4 132.9 ± 2.7
Zebedee 0.9982 0.98 ± 0.03 5878.4143 5886 ± 85 0.0238 0.10 ± 0.09 3345 3254 ± 167 143.8 136.5 ± 2.8
Fred 5.3753 5.42 ± 0.16 6701.0619 6714 ± 85 − 0.006 − 0.04 ± 0.09 1384 1393 ± 69 71.5 67.0 ± 1.4
Gerald 1.5481 1.50 ± 0.05 5868.5382 5814 ± 85 0.0375 0.03 ± 0.09 2160 2207 ± 108 103.3 106.3 ± 2.1
Zippy 2.8445 2.85 ± 0.09 6347.5330 6357 ± 85 − 0.1172 − 0.17 ± 0.09 1704 1660 ± 85 86.9 86.4 ± 1.7
George 3.8169 3.67 ± 0.11 6179.4857 6195 ± 85 0.2779 0.35 ± 0.09 1377 1284 ± 68 70.2 68.8 ± 1.4

Table 3. Inference methods employed by the different hounds. The first five rows concern the elected methods compared in Fig. 3. The additional methods
listed (IRν and VAint) are variants used in specific tests only (see text for details). A detailed description of the methods is provided in Appendix B.

Hounds ID Colour Surface/correctiona Observations Weightsb Interpolation/Sampling

SB Black Dependent/BG-2term Teff, L, [Fe/H], νnl 3:1 and 2 lowest νnl (all l) No/Grid
JO Green Dependent/BG-2term Teff, L, [Fe/H], νmax, νnl , εl(νnl) c 5:2 and 5 lowest νn0 [3:3] No/Grid
DR Blue Dependent/Various Teff, L, [Fe/H], νnl 3:3 [3:1;3:N] Yes/MCMC
IRε Brown Independent Teff, L, [Fe/H], εl(νnl) 3:3 [3:1;3:N] and lowest νn0 No/Grid
VA Magenta Dependent/BG-2term Teff, L, [Fe/H], νnl 3:1 [3:3;3:N] No/Grid

IRν Orange Dependent/Various Teff, L, [Fe/H], νnl 3:3 [3:1;3:N] No/Grid
VAint – Dependent/BG-2term Teff, L, [Fe/H], νnl 3:1 Yes/20xGrid

aWhenever various surface corrections are considered, the elected case (Fig. 3) adopted the Ball & Gizon (2014) two-term correction (BG-2term).
bWhenever several weights are listed, the one adopted for the elected case (Fig. 3) is shown outside the squared brackets.
cFor the results shown in Fig. 2, only a subset of these observations was considered, namely: Teff, L, [Fe/H], and νnl.

one case (variant VAint in Table 3) interpolation is carried out prior to
the fitting, such that the number of evolutionary tracks is increased
by a factor of 20 with respect to the original grid, and the frequency
resolution along any given track is increased to guarantee a maximum
of 1 μHz variation of the l = 0 mode of lowest radial order observed
between consecutive models. The interpolation is performed in a
region of the grid selected according to the observed values of
effective temperature, metallicity, and large frequency separation. In
all these methods, the seismic and classical constraints are fitted to
the corresponding data counterparts at each grid point (or at a subset
of those), being it the original grid, or the grid that follows from the
interpolation. In contrast, in one case (DR) the sampling is based on
a Markov chain Monte Carlo (MCMC) approach (e.g. Metropolis
et al. 1953; Hastings 1970). Here, the model observables also need
to be computed between grid points, which is again achieved with
recourse to interpolation.

Another aspect in which the inference methods may differ con-
cerns the way the stellar properties and their uncertainties are com-
puted. In most cases they are derived directly from the mass, radius,
and age probability distributions inferred from the fits. However,
in one method (JO), Monte Carlo (MC) simulations are performed
by varying the non-seismic and global asteroseismic observations
within their errors. In each simulation, the means of the probability
distributions are collected to build distributions for the mean values.
The reported values and uncertainties for the mass, radius, and age are
then derived from the probability distributions of the posterior means.

In addition to the above, depending on the seismic quantities
considered in the fits, the methods may be considered surface
dependent or independent, in the sense that they may either include
or not include a parametrized surface correction to the model
frequencies. In most cases, the individual observed frequencies were
fitted to the model counterparts. In order to proceed this way, the
model frequencies were first corrected for surface effects (Kjeldsen,
Bedding & Christensen-Dalsgaard 2008; Ball & Gizon 2014; Sonoi

et al. 2015). While having the advantage of setting significant
constraints on global properties such as the stellar radius and mean
density, inferences based on fitting individual frequencies may be
subject to biases associated with a possibly improper treatment of
surface effects. An alternative provided by one of the methods (IRε)
is to apply a surface-independent approach, by which the seismic data
is first combined in such a way as to produce a new set of data (in this
case, the phases εl; see Appendix B for a definition) that enables the
search for models with an interior structure similar to that of the star,
without having to parametrize the effect of the outer layers on the seis-
mic data (Roxburgh & Vorontsov 2003; Roxburgh 2015, 2016). As a
consequence of their limited sensitivity to the outer layers, surface-
independent methods have little constraining power on the stellar
radius and mean density. To overcome that, the frequency of the radial
mode of lowest radial order is also fitted. As the surface correction
is smallest at low frequencies, the expectation is that fitting this
mode without employing a surface correction will provide enough
additional information to the otherwise surface-independent method
to constrain the stellar radius and density, without biasing the results.

For any given method, the hounds considered a set of observations
to fit, including global and individual seismic constraints (individual
frequencies and/or individual phases derived from those frequen-
cies). In most cases, the global constraints consisted of L, Teff, and
[Fe/H]. In one case (JO), νmax, and εc [the radial mode phase offset
at νmax, in the sense of Ong & Basu (2019)] were also added to the
global constraints. For the chosen set of observations, the hounds
then considered either one or several options for the relative weight
given to the global and individual seismic constraints. For a case of
a fit to three global constraints and N individual frequencies, a 3:N
weight means that each of the observations is given the same weight,
while a 3:3 weight means that the three global constraints together are
given the same weight as the N individual frequencies together, and a
3:1 weight means that all N frequencies together are given the same
weight as one global constraint. Whenever several options were con-
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sidered for the weight, the one chosen for the method elected for com-
parison in Section 4.1 is listed outside the square brackets in Table 3.

3.2 Impact on the probability distributions

The key differences discussed above impact the probability distri-
butions inferred from the fits. This is illustrated in Fig. 2 where the
probability distributions inferred for the properties of Zebedee are
shown for five different methods (JO, DR, IRε , VA, and VAint). Here,
we chose to show probability mass functions, which are defined
for discrete variables. These were computed from the probability
distributions for each property by considering an interval of ±4σ

centred on the mean value, binning in 76 equal-size bins, and
normalizing, such that the probability for each bin and property
can be directly read from the corresponding y-axis in Fig. 2.

To assure that the differences in the inferences in this comparison
stem only from the differences in the methods, all hounds applied
the same relative weight and surface correction scheme (where
applicable) and the star was chosen among the ones having the
same physics as the grid. We did not include the results from the
methods SB and IRν in the comparison because they do not differ in
a fundamental way from the method employed by VA.

The top panels of Fig. 2 show in black the results from the method
employed by the hound JO. The MC simulations used in this method
ensure the smoothness of the distributions for the inferred stellar
properties. The uncertainties in this case are smaller than the uncer-
tainties in the properties inferred by all other hounds, most noticeable
for the age where the next smallest uncertainty (DR) is a factor of ∼3
larger. Part of the reason could be that the perturbations to the individ-
ual frequencies were not considered in the MC simulations, to avoid
the associated increase in computational time. To verify the impact of
this approximation, a new MC simulation was performed, by decreas-
ing the number of realizations but including perturbations to the in-
dividual frequencies. The results are highlighted in green in the same
panels and show no significant change in the mass and radius distri-
butions. However, the distribution for the age is found to be wider,
with an associated uncertainty in age 1.7 times larger than in the case
shown in black. Given the computational time involved in the MC
simulations when the individual frequencies are perturbed, we can
conclude that while this method may be appropriate to model individ-
ual stars, it is not sufficiently efficient to be considered for a pipeline
aimed at processing the data collected on many thousands of stars.

The second row in Fig. 2 shows the results from the method
adopted by the hound DR. This method is unique in its sampling
strategy, employing an MCMC approach coupled with interpolation
on the grid. This approach results in distributions for the stellar
properties that are also relatively smooth. The uncertainties are
only slightly smaller than those found by the hound VA (fourth
row) using the same set of constraints, without interpolation or the
MCMC scheme. The main difference between the results of these two
methods is in the smoothness of the distributions, with the probability
distributions by VA showing significantly more structure.

The third row in Fig. 2 shows the results from one of the methods
adopted by the hound IR (IRε), the only surface-independent method
discussed in this work. Just as in the case of VA (fourth row),
the IRε method does not perform grid interpolation, nor MCMC
sampling. Therefore, the differences seen in the distributions of the
properties inferred by these two methods likely follow mostly from
the differences in the way the seismic data is used to constrain the
models. In fact, the surface-independent method IRε has significant
constraining power on the age and a small constraining power on the
radius, which is constrained mostly by the classical parameters and

the frequency of the lowest frequency mode, as described before.
In contrast, the individual frequencies fitted in the VA method have
significant constraining power on all three stellar properties.

Finally, the last two rows in Fig. 2 compare the results from the
method adopted by the hound VA and a variant of it VAint, including
grid interpolation. When interpolation is considered, the probability
distributions become smoother and their bimodal shape tends to
disappear. The uncertainties also decrease somewhat, becoming
closer to those derived by the hound DR.

4 R E S U LT S F O R TH E E L E C T E D ME T H O D S

This section compares the results from the five methods elected
for comparison, considering the six targets simulated for our hare-
and-hounds exercise. The accuracy and precision of our grid-based
inferences, as well as the biases detected when considering the results
from all hounds will be discussed in Section 4.1, while the origin of
the most significant discrepancies will be assessed in Section 4.2.

To quantify the accuracy, precision, and bias, we define a set of
quantities and averages, as described below. The accuracy of the
inferred properties is determined by comparing them with the true,
known values. For each case i (i.e. fixed target and method), we thus
define measures of the relative and normalized differences to the
truth, respectively,

di
rel = pfit

i − pexact

pexact
≡

(
δp

p

)
i

, (2)

and

di
norm = pfit

i − pexact

σ fit
i

, (3)

where pfit
i represents a stellar property inferred from a given fit,

σ fit
i the associated uncertainty, and pexact the corresponding true

value. The notation δp/p, introduced in equation (2), will be used
in Figs 3–9. Ideally, one would wish

∣∣di
norm

∣∣ to be smaller than one in
∼68 per cent of the cases and

∣∣di
rel

∣∣ to be smaller than the accuracy
requirement on the inference.

Moreover, following Reese et al. (2016), we define the average
relative and normalized errors, respectively

εrel =
√

1

N

∑
i

(
di

rel

)2
, (4)

and

εnorm =
√

1

N

∑
i

(
di

norm

)2
, (5)

where the sum is taken over all targets, for a fixed method, or over
all methods, for a fixed target, depending on the case considered.

Following the same authors, the relative and normalized biases are
measured, respectively, through

brel = 1

N

∑
i

di
rel, (6)

and

bnorm = 1

N

∑
i

di
norm, (7)

with the sum taken over the targets or the methods, as above.
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PLATO hare and hounds for MS stars 5869

Figure 2. Probability mass functions for the mass (left), radius (middle), and age (right) of Zebedee. From top to bottom, the rows show the results for four
hounds, respectively: JO, DR, IRε , and VA. The bottom row shows the results of the hound VA when interpolation on the grid is considered (see text for details).
The green highlight in the top panels shows the distributions by JO when the frequencies are also perturbed in the MC simulations (see text for details). All
hounds applied a 3:3 weight and, where applicable, the BG-2term correction. The red vertical lines mark the true values of the parameters. The results shown
inside the panels correspond to the mean and 1σ uncertainties of the inferred properties (in the top panels the values are for the results in black; for the results
in green we found M/M� = 1.002 ± 0.011, R/R� = 0.960 ± 0.004, and Age/Gyr = 2.934 ± 0.201). We note that the probability mass function is defined for
discrete variables. Here, that is achieved by binning each property in 76 bins (see text for details). Thus, it is the sum of the probability mass function values
over all bins (rather than the area under the curve) that is equal to one.

MNRAS 508, 5864–5885 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/4/5864/6385759 by C
N

R
S - ISTO

 user on 14 April 2023



5870 M. S. Cunha et al.

Figure 3. Relative differences between the stellar properties inferred for each target and the corresponding true values (as defined in equation 2). For the
corresponding values, expressed as a percentage, see di

rel in Tables 4–6. Left-hand panel: relative mass difference. Middle panel: relative radius difference.
Right-hand panel: relative age differences. Targets are identified according to their ID and hounds according to their colour, listed in Tables 1 and 3, respectively.
For each target, 5 inferences are shown, corresponding to the results elected for the 5 hounds.

Figure 4. Inferences for a single hound (DR) when considering different prescriptions for the surface corrections. Panels as in Fig. 3. For each target, five
inferences are shown in the following order, from left to right: (1) Ball & Gizon (2014) two-term correction (blue), (2) Ball & Gizon (2014) one-term correction
(purple), (3) Kjeldsen et al. (2008) (cadet), (4) Sonoi et al. (2015) (light blue), and (5) No correction (dark blue).

Figure 5. Impact of the weighting scheme on the relative differences between the stellar properties and the corresponding true values. Panels as in Fig. 3.
Results are shown for the two targets generated with the same physics as the grid and with parameters within the grid ranges. Four different inference methods
are shown, following the colour scheme and Hound ID given in Table 3. For each inference method, we show results for three different weighting schemes,
namely, from thickest to thinnest linewidth, 3:1, 3:3, and 3:N.
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PLATO hare and hounds for MS stars 5871

Figure 6. Inferences made by the hounds VA (top panels) and DR (bottom panels) when considering different weights. Panels as in Fig. 3. For each target and
property, two inferences are shown: for a 3:3 weight (left) and a 3:N weight (right). Note the significant decrease in the error bars when each observation is
given the same weight (i.e. 3:N case), specially for the targets Gerald and Zippy whose physics setup differs from that adopted while constructing the grid.

Figure 7. Inferences made by the hound IR with two methods, IRν (top) and IRε (bottom) for the target Patch, when fitting different lengths of the seismic data
set. Panels as in Fig. 3. From left to right in each panel, the data sets are composed of L, Teff, [Fe/H], and the frequency sets listed in Table 7, namely: (1) No
frequencies; (2) 2 l = 0 and 2 l = 1 modes; (3) 2 l = 0 and 2 l = 2 modes; (4) 2 l = 0, 2 l = 1, and 2 l = 2 modes; (5) 8 l = 0 and 9 l = 1 modes; (6) 8 l = 0, 9 l
= 1, and 6 l = 2 modes (full data set). In each data set, the frequencies included were centred on νmax.
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5872 M. S. Cunha et al.

Figure 8. Comparison of the stellar parameters inferred for Zebedee when considering the original (thicker lines) and degraded (thinner lines) data sets,
respectively. Panels as in Fig. 3. Four different inference methods are shown, following the colour scheme and Hound ID given in Table 3.

Figure 9. Inferences for a single hound (SB) when a 1σ shift in the classical parameters is considered. Panels as in Fig. 3. For each target, seven inferences are
shown in the following order, from left to right: (1) results with unchanged classical parameters (black), (2) [Fe/H] shifted by −1σ (purple,thick), (3) [Fe/H]
shifted by +1σ (purple,thin), (4) L shifted by −1σ (green, thick), (5) L shifted by +1σ (green, thin), (6) Teff shifted by −1σ (grey, thick), (7) Teff shifted by
+1σ (grey, thick).

Finally, the precision on a given property, in a given case is
considered in relative terms through

σ i
rel = σ fit

i

pexact
, (8)

representing the 1σ error bar on the quantity di
rel. The average

precision for a given target or method, σ rel, is obtained by averaging
σ i

rel over all methods or targets, respectively. A larger value of σ rel

implies a less precise inference.
In the computation of the quantities defined above, the values

of the inferred properties were taken to be the means and standard
deviations derived from the corresponding probability distributions.
Comparison of the means and the 50th percentiles show that they
provide very close point estimates for the stellar properties. In most
cases, the difference between the two does not exceed 0.2σ , with only
a few cases reaching 0.6σ . Only in the case of the target George, the
difference was found to be yet larger, for one of the hounds.

As guidance, in Section 4.1 we compare the relative quantities (dif-
ferences, error, biases, and precision) with the accuracy requirements
set by PLATO for a G0V star of magnitude V = 10, respectively,
15, 2, and 10 per cent on stellar mass, radius, and age (hereafter,
the reference values).1 These follow from the requirements set on
the mass, radius, and age determination of the exoplanets to be
characterized by the mission (Rauer et al. 2014).2

1ESA PLATO Science Requirements Document (PTO-EST-SCI-RS-
0150 SciRD 8 0).
2https://sci.esa.int/web/plato/-/42277-science

4.1 Accuracy and precision of the elected methods

The mass, radius, and age inferred for the six targets using the method
elected for each hound are shown in Fig. 3 and a summary of the
corresponding results is given in Tables 4 –6. Most hounds reported
having a problem when attempting to fit George, suggesting that the
target falls outside the parameter space covered by the grid. This
example shows how problems with the grid can be flagged based on
the solutions found, at least when no alternative (degenerate) good
solutions exist within the parameter space. For completeness, we
report the results from fitting George in Fig. 3 and Tables 4–6 but do
not consider them in the computation of the bias, average errors, and
average precision for each hound (last three columns in Tables 4–6)
and will also disregard them in the analysis of results that follows
below. For the remaining five targets, the accuracy and precision of
the inferred mass, radius, and age are, with one single exception,
within the reference values.

For the mass, the most significant relative difference, max
(∣∣di

rel

∣∣),
is found for Fred and amounts to 4.32 per cent. This is well within
the reference value of 15 per cent for stellar mass. Fred is also
the target showing the highest average relative error (3.24 per cent)
and the most significant relative bias (−3.16 per cent) on mass. In
fact, an inspection of Fig. 3 and Tables 4–6 shows that all hounds
inferred a mass slightly smaller (between ∼2 and 4 per cent) than
the true mass for this target. Moreover, in most cases the inferred
value for the mass of Fred is slightly more than 1σ away from
the true value, resulting in a normalized average error of 1.19. The
next most significant mass discrepancy is found for Gerald, with
an average relative error on the mass of only 2.58 per cent and an
average normalized error of 1.25. Also for this target, the mass has
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PLATO hare and hounds for MS stars 5873

Table 4. True and inferred stellar masses for the six targets, all given in units of the solar mass. Also shown are the relative di
rel and normalized di

norm differences
(cf. equations 2 and 3, respectively). For each hound, the relative and normalized biases (computed considering all targets, except George) are shown in the 9th
column, the average relative εrel and average normalized εnorm errors are shown in the 10th column, and the average precision is given the 11th (last) column.
The last five rows show, for each target, the biases, average errors, and average precision, considering the results from all hounds.

Hares Patch Zebedee Fred Gerald Zippy George
Mass 0.8644 1.0165 1.4318 1.0242 1.1278 1.3430

brel (per cent)a εrel (per cent)a σ rel (per cent)a

Hounds bnorm
a εnorm

a

SB Mass 0.853(0.020) 1.000(0.030) 1.370(0.046) 0.992(0.027) 1.115(0.030) 1.326(0.022)
di

rel (per cent) − 1.32 − 1.62 − 4.32 − 3.14 − 1.13 − 1.27 − 2.31 2.61

di
norm − 0.57 − 0.55 − 1.34 − 1.19 − 0.43 − 0.77 − 0.82 0.90

σ i
rel (per cent) 2.31 2.95 3.21 2.64 2.66 1.64 2.75

JO Mass 0.860(0.012) 1.006(0.011) 1.397(0.027) 1.014(0.014) 1.121(0.021) 1.3414(0.0051)
di

rel (per cent) − 0.46 − 1.06 − 2.44 − 0.96 − 0.56 − 0.12 − 1.10 1.31

di
norm − 0.33 − 0.95 − 1.27 − 0.71 − 0.31 − 0.31 − 0.71 0.80

σ i
rel (per cent) 1.39 1.11 1.92 1.35 1.83 0.37 1.52

DR Mass 0.861(0.014) 1.008(0.018) 1.398(0.036) 1.002(0.012) 1.143(0.021) 1.3512(0.0073)
di

rel (per cent) − 0.39 − 0.84 − 2.36 − 2.17 1.37 0.61 − 0.88 1.61

di
norm − 0.24 − 0.47 − 0.94 − 1.85 0.73 1.12 − 0.55 1.01

σ i
rel (per cent) 1.62 1.77 2.51 1.17 1.86 0.54 1.79

IR ε Mass 0.861(0.018) 1.003(0.027) 1.382(0.040) 1.008(0.026) 1.126(0.030) 1.387(0.041)
di

rel (per cent) − 0.39 − 1.33 − 3.48 − 1.58 − 0.16 3.28 − 1.39 1.82

di
norm − 0.19 − 0.50 − 1.25 − 0.62 − 0.06 1.07 − 0.52 0.67

σ i
rel (per cent) 2.08 2.66 2.79 2.54 2.66 3.05 2.55

VA Mass 0.858(0.020) 0.999(0.028) 1.386(0.041) 0.984(0.028) 1.120(0.031) 1.343(0.019)
di

rel (per cent) − 0.74 − 1.72 − 3.20 − 3.93 − 0.69 0.00 − 2.06 2.43

di
norm − 0.31 − 0.62 − 1.12 − 1.43 − 0.25 0.00 − 0.75 0.88

σ i
rel (per cent) 2.37 2.79 2.86 2.74 2.73 1.45 2.70

brel (per cent) − 0.66 − 1.31 − 3.16 − 2.36 − 0.24 0.50
bnorm − 0.33 − 0.62 − 1.18 − 1.16 − 0.06 0.22
εrel (per cent) 0.75 1.36 3.24 2.58 0.89 1.60
εnorm 0.35 0.64 1.19 1.25 0.42 0.79
σ rel (per cent) 1.95 2.26 2.66 2.09 2.35 1.41

aAverages performed excluding the results for George (see text for details).

been systematically underestimated, with a resulting relative bias of
−2.36 per cent.

For the radius, the most significant relative difference is found
for Gerald, amounting to 1.33 per cent (to be compared with the
reference value of 2 per cent). Nevertheless, the average relative
error for Gerald is only 0.96 per cent, reflecting that most hounds
found a relative difference in radius whose magnitude is below 1 per
cent for this target. On the other hand, the radius normalized average
error is 1.27 for Gerald, indicating that for some hounds the inferred
radius is more than 1σ away from the true radius of this target, as
can be confirmed through inspection of Fig. 3. Nevertheless, Gerald
is a true exception. For the other four targets, and for all five hounds,
the magnitude of the relative difference in radius is below 1.02 per
cent and the magnitude of the normalized differences is below 1.

For the age, the most significant relative difference is again found
for Gerald, amounting to 11.25 per cent. This is the only target
(George excluded) for which the absolute value of the relative
difference in age found by one of the hounds exceeds the 10 per
cent reference value. Nevertheless, the relative differences found by
the other four hounds for the age of Gerald are below 10 per cent,
the final average relative error being 8.96 per cent. Gerald is also

the only target with an average normalized age error larger than 1,
reflecting the fact that the age inferred by most hounds differs more
than 1σ from the true value. Also worth noting is the relative bias
in the age inferred for this target (8.66 per cent), with all hounds
overestimating its age. This is not surprising, given the bias towards
lower masses found in the results for Gerald, as discussed above.
Somewhat significant biases in age, of −4.06 and 4.43 per cent, are
also found for Zebedee and Fred, respectively. However, in these
cases, the true age values are within 1σ of the ages inferred by all
hounds.

Finally, the results presented in Tables 4–6 show that the average
precision for each target, σ rel, is typically within twice the average
relative error. The most notable exception is Patch for which we find
that the σ rel values for the radius and age are approximately 3 and
5 times larger than the corresponding values of εrel, respectively.
Moreover, for the ages of Zebedee and Fred, we note that four and
three out of the five hounds, respectively, find a σ i

rel larger than 10 per
cent. Nevertheless, neither of these stars is a good representative of
the PLATO reference star. Zebedee, while having a mass of ∼1 M�,
is much younger than our sun, and Fred, with a mass of ∼1.4 M�, is
significantly more massive.
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5874 M. S. Cunha et al.

Table 5. True and inferred stellar radii for the six targets, all given in units of the solar radius. Rows and columns as in Table 4.

Hares Patch Zebedee Fred Gerald Zippy George
Radius 0.9557 0.9646 1.7225 1.2053 1.3965 1.7069

brel (per cent)a εrel (per cent)a σ rel (per cent)a

Hounds bnorm
a εnorm

a

SB Radius 0.9507(0.0095) 0.957(0.011) 1.716(0.011) 1.189(0.012) 1.385(0.014) 1.705(0.013)
di

rel (per cent) − 0.52 − 0.78 − 0.36 − 1.33 − 0.85 − 0.13 − 0.77 0.84

di
norm − 0.52 − 0.65 − 0.21 − 1.32 − 0.84 − 0.17 − 0.71 0.80

σ i
rel (per cent) 0.99 1.19 1.73 1.00 1.01 0.77 1.18

JO Radius 0.9546(0.0050) 0.9616(0.0040) 1.714(0.012) 1.2006(0.0061) 1.393(0.010) 1.7075(0.0016)
di

rel (per cent) − 0.12 − 0.31 − 0.47 − 0.39 − 0.26 0.04 − 0.31 0.33

di
norm − 0.22 − 0.76 − 0.66 − 0.77 − 0.36 0.40 − 0.56 0.60

σ i
rel (per cent) 0.53 0.41 0.71 0.50 0.72 0.09 0.58

DR Radius 0.9546(0.0058) 0.9627(0.0063) 1.708(0.020) 1.1945(0.0055) 1.401(0.010) 1.7091(0.0035)
di

rel (per cent) − 0.12 − 0.20 − 0.86 − 0.90 0.34 0.13 − 0.35 0.58

di
norm − 0.19 − 0.31 − 0.72 − 1.99 0.45 0.63 − 0.55 0.98

σ i
rel (per cent) 0.61 0.65 1.18 0.45 0.76 0.20 0.73

IR ε Radius 0.954(0.010) 0.961(0.012) 1.708(0.022) 1.199(0.014) 1.389(0.020) 1.658(0.022)
di

rel (per cent) − 0.18 − 0.37 − 0.84 − 0.52 − 0.54 − 2.86 − 0.49 0.54

di
norm − 0.17 − 0.30 − 0.66 − 0.45 − 0.38 − 2.22 − 0.39 0.42

σ i
rel (per cent) 1.05 1.24 1.28 1.16 1.43 1.29 1.23

VA Radius 0.954(0.008) 0.959(0.010) 1.705(0.019) 1.190(0.012) 1.392(0.014) 1.711(0.009)
di

rel (per cent) − 0.18 − 0.58 − 1.02 − 1.27 − 0.32 0.24 − 0.67 0.79

di
norm − 0.21 − 0.57 − 0.90 − 1.23 − 0.32 0.48 − 0.64 0.75

σ i
rel (per cent) 0.86 1.01 1.13 1.03 1.01 0.50 1.01

brel (per cent) − 0.22 − 0.45 − 0.71 − 0.88 − 0.33 − 0.52
bnorm − 0.26 − 0.52 − 0.63 − 1.15 − 0.29 − 0.18
εrel (per cent) 0.27 0.49 0.75 0.96 0.51 1.29
εnorm 0.29 0.55 0.67 1.27 0.51 1.07
σ rel (per cent) 0.81 0.90 1.20 0.83 0.99 0.57

aAverages performed excluding the results for George (see text for details).

4.2 Origin of the most significant discrepancies

The results reported in Section 4.1 support the idea that grid-based
inference procedures are a viable option to infer accurate stellar
properties of main-sequence stars, as required by PLATO. Still, it
is of interest to understand the origin of the systematic differences
found in the results for some of the targets considered in this exercise.
That understanding is important both to anticipate the systematic
errors that may be present in the analysis of real PLATO data and
to help design optimal grids for the grid-based inference procedure
that will be adopted. Among the six targets that were modelled, three
have proven to be more challenging, with the inferred properties
being systematically off and/or more than 1σ away from the known
true values. In what follows we discuss the physical origin of these
differences.

4.2.1 George

As mentioned in Section 4.1, most hounds reported not having been
able to find an adequate model for George within the parameter space
covered by the provided grid. This is the optimal report in the case
of George, since the overshoot adopted for this target is, indeed,
significantly larger than the values considered when constructing the
grid (cf. Section 2.2). The fact that the hounds were able to identify
the problem shows that no other combination of parameters within the
grid could mimic the observational data for George. Unfortunately,
that is not the case, as we shall see from the discussion for Fred below.

In the case of George, the inadequacy of the grid concerning the range
of overshoot has a significant impact on the inferred age, which is
found to be smaller than the true age in all cases (Fig. 3, right-
hand panel). In addition, the inferred initial helium mass fraction
for George is found to be significantly larger than that used when
generating the target.

4.2.2 Fred

The mass inferred for Fred was systematically smaller than the true
mass, while its inferred age was found to be systematically larger
than the true age. Given that the physics adopted to generate this
target was the same as the physics adopted to construct the grid,
the origin of these differences is expected to be in the limits of
the parameter space covered by the grid. The mass of the target, M
= 1.4318 M�, is relatively close to the upper limit of the mass in
the grid (0.5 ≤ Mgrid ≤ 1.5 M�). This could impact the tail of the
inferred mass probability density function and, thus, bias the inferred
mass. However, inspection of the mass probability density functions
inferred by the hounds shows that the tails of the mass distributions
are well within the grid mass limits. Alternatively, the discrepancy
could stem from the chemical composition of the target, in particular,
from the relation between the initial helium and metal mass fractions.
In fact, considering the values of Yini and Zini used to generate Fred
(Table 1) and the big bang nucleosynthesis helium mass fraction
adopted in the grid, Y0 = 0.248, we find an enrichment ratio for Fred
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PLATO hare and hounds for MS stars 5875

Table 6. True and inferred stellar ages for the six targets, all given in Gyr. Rows and columns as in Table 4.

Hares Patch Zebedee Fred Gerald Zippy George
Age 9.898 3.085 1.839 8.039 4.223 3.757

brel (per cent)a εrel (per cent)a σ rel (per cent)a

Hounds bnorm
a εnorm

a

SB Age 9.88(0.93) 2.79(0.51) 1.88(0.31) 8.41(0.52) 4.36(0.43) 2.49(0.10)
di

rel (per cent) − 0.19 − 9.56 2.28 4.62 3.27 − 33.78 0.08 5.07

di
norm − 0.02 − 0.58 0.14 0.72 0.32 − 12.46 0.12 0.44

σ i
rel (per cent) 9.37 16.46 16.68 6.41 10.18 2.71 11.82

JO Age 10.07(0.34) 2.99(0.13) 1.94(0.13) 8.82(0.31) 4.47(0.26) 2.807(0.035)
di

rel (per cent) 1.72 − 3.00 5.34 9.70 5.75 − 25.30 3.90 5.79

di
norm 0.50 − 0.71 0.75 2.55 0.93 − 27.20 0.80 1.32

σ i
rel (per cent) 3.45 4.24 7.12 3.80 6.20 0.93 4.96

DR Age 10.10(0.62) 3.01(0.38) 1.86(0.17) 8.94(0.40) 4.25(0.28) 2.753(0.085)
di

rel (per cent) 2.03 − 2.46 1.22 11.25 0.64 − 26.72 2.53 5.26

di
norm 0.32 − 0.20 0.13 2.29 0.10 − 11.78 0.53 1.04

σ i
rel (per cent) 6.26 12.38 9.46 4.92 6.51 2.27 7.90

IR ε Age 9.95(0.67) 2.99(0.42) 1.98(0.23) 8.65(0.44) 4.26(0.46) 2.31(0.32)
di

rel (per cent) 0.52 − 3.18 7.83 7.63 0.76 − 38.62 2.71 5.11

di
norm 0.08 − 0.23 0.63 1.41 0.07 − 4.56 0.39 0.70

σ i
rel (per cent) 6.74 13.71 12.34 5.42 10.82 8.46 9.81

VA Age 10.019(0.94) 3.02(0.64) 1.94(0.21) 8.85(0.59) 4.50(0.42) 2.80(0.09)
di

rel (per cent) 1.22 − 2.11 5.49 10.09 6.56 − 25.47 4.25 6.01

di
norm 0.13 − 0.10 0.49 1.36 0.66 − 10.30 0.51 0.72

σ i
rel (per cent) 9.52 20.86 11.18 7.39 9.89 2.47 11.77

brel (per cent) 1.06 − 4.06 4.43 8.66 3.40 − 30.00
bnorm 0.20 − 0.36 0.43 1.67 0.42 − 13.26
εrel (per cent) 1.33 4.92 5.03 8.96 4.19 30.45
εnorm 0.27 0.43 0.50 1.79 0.53 15.24
σ rel (per cent) 7.07 13.53 11.36 5.59 8.72 3.37

aAverages performed excluding the results for George (see text for details).

of dY/dZ = 0.77, thus, smaller than the lower limit of the grid (1
≤ dY/dZgrid ≤ 3). Therefore, for a given Zini, the models will have
a larger Yini, hence a larger mean molecular weight which, at fixed
mass, would lead to an increase in central temperature and, thus, in
luminosity. Since both the luminosity and metallicity are constrained,
the best solution is found, instead, for models with a lower mass.
This near-degeneracy between stellar mass and initial helium mass
fraction is well known (e.g. Cunha, Fernandes & Monteiro 2003;
Lebreton & Goupil 2014; Nsamba et al. 2021) and in the current case
prevented the hounds from detecting that the grid was not adequate
because its parameter space did not cover the value of the enrichment
ratio required to model Fred. Additional information on the helium
abundance, such as that contained in the seismic signature of the
helium glitch, can help lift this degeneracy (Gough 1990; Verma
et al. 2017; Cunha 2020). In particular, the characterization of the
helium glitch signature and its use in the grid-based inference, could
be key in cases like the one discussed here. These results can thus be
useful while designing the PLATO stellar pipeline, as well as when
deciding on the characteristics of the grid that will be associated with
it, particularly when considering whether to rely on an enrichment
law or to let Yini and Zini vary freely in the grid.

4.2.3 Gerald

As in the case of Fred, the mass inferred for Gerald was found to
be systematically smaller than the true mass, while its inferred age
was found to be systematically larger than the true age. However, in
the case of Gerald, the origin of the discrepancy lies in the physics
adopted to generate the target, which, unlike in the case of the grid,
included atomic diffusion. The inclusion of diffusion in the target
results in an observed surface iron abundance [Fe/H]obs smaller
than the initial value. The models in the grid do not incorporate
that evolutionary change in the surface abundance of iron, thus
the constraint on [Fe/H]obs imposed when fitting the models to
the observations, bias the models towards an initial surface iron
abundance that is smaller than the one used to generate the target.
This could be achieved in two ways, namely, a decrease in Zini and/or
a decrease in Yini (implying an increase in Xini). Inspection of the
solutions reveals that the main impact, in this case, results from
the metallicity. In fact, all hounds found a Zini lower than the true
value. The lower Zini implies a lower opacity in the core, hence the
potential for an increase in energy transport. To avoid the consequent
increase in luminosity, which is constrained by the observations, the
best solutions have a mass that is lower than the true value. This
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near degeneracy between metallicity and mass and its impact on the
inferred stellar age is also well known and reported in the literature
(e.g. Cunha et al. 2003; Nsamba et al. 2018).

5 IM PAC T FRO M SU R FAC E C O R R E C T I O N S

When fitting individual frequencies, the use of an inadequate em-
pirical correction to account for the systematic offsets in the model
frequencies can introduce biases in the inferred stellar properties.
Unfortunately, as our data are obtained from simulations that are
themselves based on stellar models, the surface effects incorporated
in the ‘observed’ oscillation frequencies are also derived from an
empirical prescription and may not capture the truth that we would
like to simulate. While this limits our ability to quantify the impact
on the inferred stellar properties from the true, unknown, surface
effects, one can at the least quantify the impact of correcting the
model frequencies with an empirical correction that differs from
the one employed in the simulations, as well as the impact of not
correcting the model frequencies at all. We recall that the one-term
correction by Ball & Gizon (2014) was used to mimic the surface
effects in the simulations of the seismic data (see Section 2.2 for
details).

Fig. 4 illustrates the impact on the inferred stellar properties from
employing different formulations of the surface corrections published
in the literature. The inferences shown were performed using the
method by DR, with a 3:3 weight. Considering the four inferences
performed using some form of empirical corrections (first four results
for each target in Fig. 4), and excluding George, the most significant
relative differences with the true values are found to be 3.6 per cent
for mass (for Zippy and Fred), 1.7 per cent for radius (for Zippy), and
14 per cent for age (for Gerald). The latter is an example of how a
result comparable with the reference value, such as the age inference
reported with a given method by DR in Table 6 (11.25 per cent),
can become significantly larger than the reference when a different
surface correction is considered. More significant differences are
found when no surface corrections are applied, namely 7.4 per cent
for mass and 2.7 per cent for radius (Zebedee), and 36 per cent
for age (Gerald). Interestingly, the results do not seem to depend
very significantly on the form of the surface correction adopted. We
can quantify that dependence by taking as a reference the relative
difference with the true value obtained with the elected method for
DR, (d ref

rel ; blue in Fig. 4), and computing the dispersion of the results

for each target as
√∑

i(d
i
rel − d ref

rel )2/Nc, where Nc = 3 is the number
of cases considered for comparison, where we exclude the case with
no surface correction. We find a maximum dispersion of 1.9 per cent
for mass, 1.0 per cent for radius, and 6.8 per cent for age, all for the
same target (Zippy).

6 IMPAC T FRO M A PPLYING DIFFERENT
W E I G H T S C H E M E S

When models provide a faithful representation of the truth and
the differences between model predictions and observations result
solely from measurement errors, one may confidently determine the
uncertainty in the inferences that are made (often called internal
or formal errors) by propagating the measurement uncertainties. In
the context of this study, the formal errors are those inferred with
a weight of 3:N, meaning that each observation is given the same
weight in the likelihood function. Unfortunately, perfect models are
often not available and one is faced with having to also consider
differences between model predictions and observations that may

come about due to the improper modelling of the stars. One way
to tackle this problem consists in making a number of inferences
based on different model sets, computed with different physics. The
dispersion of the inferences is then either provided separately or
added in quadrature to the formal error derived for one particular
inference. However, that approach does not address a problem that is
specific to the asteroseismic modelling of stars, namely, that some of
the differences between the model and observed frequencies result
from an improper modelling that cannot be bracketed by varying the
physics adopted in the model computation (e.g. the surface effects
discussed in Section 5) and that the consequent errors on the model
frequencies are sometimes much larger than the uncertainties in the
measured frequencies. This may result in the likelihood becoming
very sensitive to the (inaccurate) individual mode frequency pre-
dictions, with the global constraints hardly influencing the final
inference in those cases. To deal with this potential problem, it
has become relatively common practice to introduce weights when
defining the likelihood function.

It is worth noting that the application of relative weights in the
construction of the likelihood function is essentially equivalent to
inflating the errors in the observed frequencies. In fact, applying a
weighting scheme of 3:1 is equivalent to inflating the errors on the
observed frequencies by a factor of

√
N , when computing the χ2

function. Likewise, the 3:3 case corresponds to a frequency error
inflation of

√
N/3, and the 3:N case to taking the errors on the

frequencies at face value. Only the last case has a clear statistical
interpretation, with the resulting uncertainties in the inferred values
corresponding to the formal errors. It is, thus, important to understand
how the application of a 3:1 or a 3:3 weighting scheme impacts the
results when compared to the 3:N case.

Figs 5 and 6 illustrate how the inferences of the stellar properties
are influenced by the weighting scheme. In the first figure, the
comparison is made for the two stars that fall within the parameter
space of the grid and for which the adopted physics is the same
as that used in the grid. For these stars, one would expect the true
solution to be contained within the grid (even if not corresponding to
a grid model) and, thus, the true parameters to be recovered within
the statistical errors. The four hounds considered in this exercise
were chosen so as to cover the most substantial differences in the
modelling techniques considered in this study, namely, the use of
surface dependent or surface independent methods and different
sampling options with or without grid interpolation.

Inspection of Fig. 5 shows a general decrease in the error bars
associated with the inferred properties, as the relative weight of the
oscillation frequencies is increased. This is particularly visible when
each observed quantity used in the fits is given the same weight
(3:N case), and is a consequence of the problem becoming signifi-
cantly more constrained when the errors on the frequencies are not
inflated.

In addition to the impact on the uncertainties of the inferred
properties, the weighting scheme also slightly influences the mean
values inferred for each property. In particular, in the case of Patch,
the results show that the true values of the mass and radius are
outside the 1σ uncertainties inferred by the hound DR, for the 3:N
case. This could result from the statistical errors on the observations
(the maximum difference found is only about 2σ ). Nevertheless, it
is a fact that both the uncertainties and the inferred mean values
of the properties change differently when changing the weighting,
depending on the method applied for the inference. Thus, one may
worry that the small statistical error bars inferred in the 3:N case
may in some cases be comparable to the differences arising from the
different inference procedures or their implementations.

MNRAS 508, 5864–5885 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/4/5864/6385759 by C
N

R
S - ISTO

 user on 14 April 2023



PLATO hare and hounds for MS stars 5877

The problem becomes more significant if we consider that, unlike
in the case for the two targets above, generally the physics adopted
to build a grid of models may not fully capture the physics of a
real star. In addition to the differences arising from the inference
procedures, one would then expect systematic differences resulting
from the inadequacy of the models, as discussed, e.g. for Gerald
in Section 4.2. Fig. 6 illustrates this, by extending the comparison
of the 3:3 and 3:N cases to the remaining simulated stars, for the
inferences performed by the hounds VA and DR. It is clear that
the differences are more significant for the stars whose underlying
physics differs from that of the grid, such as Gerald and Zippy. In
these cases, the normalized difference di

norm resulting from equal
weighting of the observations (3:N) become significantly larger than
1, with the true values of the stellar properties found many σ away
from their inferred counterparts. This is likely the reason why the
3:N case is not often used in the context of forward modelling,
despite being the only approach built on clear statistical grounds.
Its use in the PLATO pipeline thus requires a complementary and
comprehensive study of the systematic errors, so as to ensure a
complete characterization of the uncertainties on the inferred prop-
erties. Such a study is currently ongoing and will be presented in a
later work.

7 IM PAC T FRO M TH E L E N G T H A N D QUA L I T Y
O F T H E DATA SE T S

The targets considered so far were produced assuming similar
seismic data quality. However, the oscillation mode set returned
by the simulations is significantly impacted both by the length
of the observations (assuming the quality of the data does not
change significantly with time) and the brightness of the target.
Reducing the length of the data set, and/or reducing the apparent
brightness of a given target will not only reduce the number of
modes with returned frequencies but also the precision associated
with each frequency. The exact extent of those changes depends
on the complex interplay of several factors, including the intrinsic
oscillation spectrum, the noise background and frequency resolution,
and the observed realization of noise.

The study of the impact on the inferred stellar properties from
changing the observation length and/or the stars’ apparent brightness
is beyond the scope of this paper and will be presented in a future
work. Here, we address only the impact from changing the set of
observed modes and corresponding uncertainties without worrying
about the exact underlying cause of those changes. To that end, two
exercises were performed, based on the simulations for Patch and
Zebedee, the two stars with the same physics as the grid and falling
within the grid parameter space. Firstly, we explored the impact
on the properties inferred for Patch from decreasing the number
of observed modes and the diversity of mode degrees, without
modifying the uncertainties in the corresponding mode frequencies.
Secondly, we looked at the impact from degrading the quality of
the data simulated for Zebedee, with the consequent decrease in
the number of observed frequencies and increase in the frequency
uncertainties.

Fig. 7 shows the results from the first of these exercises, performed
with the method IRν , employing a BG-1term correction, and the
method IRε , both with a 3:3 weight. The seismic data sets considered
in the fits are listed in Table 7. The improvement resulting from
including any set of seismic data is clear for all three stellar properties.
Indeed, an increase in both accuracy and precision is seen when
comparing the inferences made by fitting data set 1 (no seismic data)
with those made from fits to data sets 2–6 (different seismic data com-

Table 7. Seismic data fitted in the cases illustrated in Fig. 7. In addition to
the seismic data set, the observational constraints included L, Teff, and [Fe/H],
with a 3:3 weight. Columns 2–4 show the number of modes of degree l = 0,
1, and 2 included in each set.

Set l = 0 l = 1 l = 2 Comments

1 0 0 0 No frequencies
2 2 2 0
3 2 0 2
4 2 2 2
5 8 9 0
6 8 9 6 Full set

binations). Also striking is the fact that fitting the full set of seismic
data or just a small subset of it leads to mass and radius inferences
of comparable accuracy and precision. The situation is somewhat
different for the age, where the results show that the inclusion of l
= 2 modes in the data set leads to more precise inferences. This is
clearly seen by comparing the uncertainty in the age inferred from
fitting data sets 3 (including 2 modes of l = 0 and 2 modes of l = 2)
with that inferred from fitting data set 5 (including 8 modes of l = 0
and 9 modes of l = 1) and is more evident for the surface-independent
method.

The data from the two simulations performed for Zebedee in the
context of the second exercise are shown in Tables A1 (original
data set) and A3 (degraded data set). The number of detected modes
decreases from 23 to 7 between the two data sets and the uncertainties
in the corresponding frequencies increase by a factor of ∼3. The
impact of these changes is illustrated in Fig. 8 and Table 8. The
drastic decrease in the number of modes and associated increase
in the uncertainties of the detected frequencies, seems to have a
relatively modest impact on the precision and accuracy of the mass
and radius inferred for the target. For the precision, a maximum σ i

rel of
3.59 and 1.30 per cent is found for the mass and radius, respectively,
and for the accuracy, the maximum absolute value of the relative
differences, max

(∣∣di
rel

∣∣), is 3.46 per cent for the mass and of 1.26 per
cent for the radius. Nevertheless, the lack of detection of l = 2 modes
in the degraded data set is found to have a significant impact on
the seismic constraining power on the age, in accordance with the
findings from the first exercise in this section. Moreover, the impact
seems to depend on the inference procedure, being significantly
greater in the case of the surface independent method (IRε). While
for the hounds based on the fitting of individual frequencies we
find a max

(∣∣di
rel

∣∣) for the age of 18 per cent, the relative difference
between the true age and the age inferred from the modelling based
on the surface independent method is

∣∣di
rel

∣∣ ∼ 44 per cent. We note,
however, that Zebedee is a relatively young star, having an age of
∼3 Gyr and a mass comparable to that of the Sun. This young age
impacts the measure of the age accuracy and precision since their
assessment is based on quantities that depend on the inverse of the
true age.

8 IM PAC T FRO M TH E E R RO R S O N T H E
CLASSI CAL PARAMETERS

In this section, we explore the impact on the inferred stellar
properties from changing the observational uncertainties on the
classical constraints. Two exercises were performed. In the first
the 1σ uncertainties on [Fe/H], L, and Teff were doubled, one at
a time, while in the second the observed classical constraints were
shifted, along with the original errors, by ∓1σ . The impact on the
inferred properties from doubling the uncertainties on the classical
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Table 8. Stellar properties inferred for Zebedee considering the original (subscript ‘ori’) and degraded (subscript ‘deg’) data sets. The results for
the original data set are the same as those given in Tables 4–6 and are shown here for comparison with the inferences made from the degraded
data set.

Massori Massdeg Radiusori Radiusdeg Ageori Agedeg

1.0165 1.0165 0.9646 0.9646 3.085 3.085
Hounds

IR ε Infered value 1.003(0.027) 1.010(0.037) 0.961(0.012) 0.962(0.013) 2.99(0.42) 1.7(1.4)
di

rel (per cent) − 1.33 − 0.64 − 0.37 − 0.25 − 3.18 − 44.24

di
norm − 0.50 − 0.18 − 0.30 − 0.20 − 0.23 − 1.00

σ i
rel (per cent) 2.66 3.59 1.24 1.29 13.71 44.14

IR ν Infered value 1.004(0.027) 0.993(0.033) 0.961(0.010) 0.953(0.013) 2.97(0.43) 2.53(1.5)
di

rel (per cent) − 1.23 − 2.31 − 0.37 − 1.20 − 3.76 − 18.07

di
norm − 0.46 − 0.71 − 0.36 − 0.92 − 0.27 − 0.38

σ i
rel (per cent) 2.66 3.25 1.04 1.30 13.81 47.51

DR Infered value 1.008(0.018) 1.000(0.030) 0.9627(0.0063) 0.955(0.011) 3.01(0.38) 2.6(1.3)
di

rel ( per cent) − 0.84 − 1.61 − 0.20 − 0.98 − 2.46 − 15.50

di
norm − 0.47 − 0.55 − 0.31 − 0.85 − 0.20 − 0.38

σ i
rel ( per cent) 1.77 2.95 0.65 1.16 12.38 41.16

VA Infered value 0.999(0.028) 0.981(0.034) 0.959(0.010) 0.952(0.011) 3.02(0.64) 3.2(1.5)
di

rel (per cent) − 1.72 − 3.46 − 0.58 − 1.26 − 2.20 4.99

di
norm − 0.62 − 1.04 − 0.57 − 1.12 − 0.11 0.10

σ i
rel (per cent) 2.79 3.33 1.01 1.12 20.86 49.09

brel (per cent) − 1.28 − 2.01 − 0.38 − 0.92 − 2.90 − 18.20
bnorm − 0.51 − 0.62 − 0.39 − 0.77 − 0.20 − 0.41
εrel (per cent) 1.32 2.25 0.40 1.01 2.96 25.24
εnorm 0.52 0.69 0.40 0.85 0.21 0.57
σ rel (per cent) 2.47 3.28 0.99 1.22 15.19 45.47

constraints was found to be generally negligible for the mass and
radius, both in terms of the accuracy and the precision of the results,
and smaller, for all three properties, than the impact of shifting the
classical constraints by ∓1σ . The differences found when performing
these shifts are illustrated in Fig. 9. Here, we show, for the first hound
(SB; Table 3), a comparison between the properties inferred when
considering the original classical observations (Table 2; leftmost
point in each cluster of results in Fig. 9), and classical observations
shifted by ∓1σ , one at the time (following 6 points in each cluster
of results).

Inspection of Fig. 9 shows that the impact on the accuracy and
precision of the inferred parameters from shifting the classical ob-
servations by ∓1σ is generally small, but not negligible, particularly
in the case of the age. Using as a reference the relative difference
with the true value obtained with the classical observations given
in Table 2, (d ref

rel , black in Fig 9), we computed the dispersion of the

results for each property and target as before:
√∑

i(d
i
rel − d ref

rel )2/Nc,
where Nc = 6 is the number of cases considered. Moreover, we also
computed the maximum departure between any given inference and
the value inferred in the reference case,

∣∣di
rel − d ref

rel

∣∣. The maximum
dispersion is found for Fred, with values of 1.39, 0.68, and 6.7 per
cent for mass, radius, and age, respectively. The maximum departure
from the reference result is also found for Fred. In the case of the
mass and age, this maximum is found for shifts in [Fe/H], with
values of 2.34 and 11.5 per cent, respectively. For the radius, we
find a maximum departure of 0.89 per cent, arising from a shift
in Teff.

9 C O N C L U S I O N S

In this work, we compared different approaches to the asteroseismic
inference of stellar properties based on a pre-computed grid of models
and corresponding pulsation properties. The aim was to understand
the accuracy and precision that may be expected on the inferred
properties when applying state-of-the-art techniques and identify
critical aspects of the inference process that may require further
development, in light of the preparation for the soon to be launched
PLATO mission, from ESA. The study was conducted based on a
single grid of models and six main-sequence artificial stars, three
of which were generated with the same physics setup as the grid
(although one of these has an enrichment ratio outside the range
covered by the grid parameter space). The remaining three stars
were generated with at least one aspect of the underlying physics
differing from the physics adopted for the grid. Five different grid-
based inference methods, namely SB, JO, DR, IRε , and VA, and two
variants of these, have been compared. The methods are summarized
in Appendix B and Table 3.

With regards to the comparison between different grid-based
inference methods, our main conclusions can be summarized as
follows:

(i) No significant differences were found among the methods
elected for comparison with regards to the accuracy of the results,
when these are considered in light of the reference values of 15, 2,
and 10 per cent in mass, radius, and age, respectively. Specifically,
considering the 5 targets for which the hounds reported results they
could trust (i.e. excluding George), the average relative errors on the
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inferences made with the five different methods varied in the interval
1.61–2.61 per cent for the mass, 0.33–0.84 per cent for the radius,
and 5.11–6.01 per cent for the age.

(ii) Similarly, the differences in precision on the mass among the
elected methods was not deemed significant. Considering the same 5
stars, the average precision on mass varied within the interval 1.52–
2.75 per cent among the five methods, in all cases being much smaller
than 15 per cent. For the radius, the average precision of the methods
was found to vary within the interval 0.58–1.23 per cent and for the
age within the interval 4.96–11.82 per cent. While these differences
may seem more significant, we note that to a large extent they result
from the relative weight on the classical and seismic constraints
adopted by each hound for the elected method. As expected, methods
applying a 3:1 weight generally have larger error bars than those
applying a 3:3 weight (where 3:1/3:3 indicates that the full set of
frequencies is given the same weight as one/three global constraints,
respectively; cf. Sections 3.1 and 6). However, this weight is not
intrinsic to the method (in the sense that different weights can be
adopted with the same method). Thus, the differences seen in the
precision of the inferred properties do not translate into a fundamental
difference in the potential precision of the methods themselves. In
addition, the significant average age precision of 4.96 per cent found
with the method by the hound JO resulted in part from neglecting the
perturbation of the frequencies in the MC simulations, as noted in
Section 3.2. When considering the same weight (Fig. 5), the precision
of different methods on age was found to be similar. For the radius,
the method employed by DR seems to be the most precise and that
by IRε the least precise, with the error bars on the latter found to be
up to a factor of ∼2 larger than those on the former.

Concerning the impact of the ad hoc choices that may be involved
in the inference procedures, such as those associated with the surface
corrections and the relative weight set on the classical and seismic
constraints, we reached the following conclusions:

(i) If surface corrections are not added to the model frequencies
when these are used directly in the fits, the relative differences
between the inferred and true values of the stellar properties are very
significant. For the method by DR, on which the surface corrections
tests were based, the relative differences were found to be as large
as ∼7, 3, and 35 per cent for mass, radius, and age, respectively,
in the absence of a surface correction. The inclusion of a BG-2term
surface correction in this method reduces the maximum of the relative
differences on mass, radius, and age to 2.36, 0.9, and 11.25 per cent.
Still, the choice of the prescription for the surface corrections was
found to impact the results, leading to a maximum dispersion on
the inferences of 1.9, 1.0, and 6.8 per cent in mass, radius, and age,
respectively. While these values of the dispersion are smaller than
the reference values, they are by no means negligible in the case
of the radius and age. Thus, this result calls for an improvement of
the modelling of the surface layers of stars, both in what concerns
the structure and the pulsations (Mosumgaard et al. 2020; Belkacem
et al. 2021; Jørgensen et al. 2021).

(ii) Given a set of observations, the adoption of a weight in the
fitting procedure aimed at decreasing the relative impact of the
seismic data with regards to the classical data is equivalent to an ad
hoc inflation of the errors on the frequencies. To be statistically sound,
the inference method to be used in the PLATO pipeline should instead
give each observation the same weight (our 3:N case). However, our
results show that when the targets do not share the physics setup
of the grid, as will generally happen for real stars, the properties
inferred with a 3:N approach can be many sigma away from the
true property values. This is mostly related to the fact that a 3:N

approach leads to significantly smaller uncertainties on the inferred
properties when the grid does not contain a reasonable sample of
comparably good models around the inferred solution. This result
points to an urgent need to thoroughly characterize the systematic
errors incurred on the inferred stellar properties when performing
inferences based on a grid similar to the one to be adopted by the
PLATO mission. These systematic errors, resulting from fixing a
given set of options concerning the physics of the grid, need to be
considered along with the formal errors derived from the application
of the inference procedure, in order to provide robust uncertainties
on the inferred properties of PLATO stars. In some cases, our results
also show a non-negligible change in accuracy when comparing the
3:3 and 3:N weights, both for methods with and without interpolation
between grid models. Further studies should be pursued to understand
these differences, and in particular, to investigate whether they are
connected to the grid resolution.

Finally, we have tested the impact of degrading the classical and
seismic data. With regards to these tests our conclusions were as
follows:

(i) Concerning the classical data, the most significant impact was
found when shifting the central values. Specifically, when changing
L, Teff, and [Fe/H] by ±1σ , one at a time, the dispersion in the
inferred relative differences reached up to 1.39, 0.68, and 6.7 per
cent in mass, radius, and age, respectively. Moreover, the maximum
difference between any two mass or age inferences was found when
shifting the value of [Fe/H] and reached 2.34 per cent for mass and
11.5 per cent for age. For the radius the maximum difference was
found when shifting Teff and did not exceed 1 per cent. These results
highlight the importance of determining the classical parameters to
a high precision and accuracy, particularly when considering the
impact they have when inferring the stellar age.

(ii) Concerning the seismic data, our results show that the de-
tection of only a small number of oscillation frequencies may be
enough to set stringent constraints on the stellar mass and radius.
While that seems to be true also for the age, in this case we found
that the precision of the inferences depends more strongly on the
combination of mode degrees available for the fit, with the results
becoming more precise when at least one l = 2 mode is detected.
When in addition to reducing the number of modes and eliminating
the modes of degree l = 2, the uncertainties in the mode frequencies
are increased, the inference of a precise and accurate age starts to be
compromised. It is, therefore, important to investigate thoroughly the
case of stars in the regime where seismic data becomes limited and
the inference approach eventually changes from fitting individual
frequencies or εl phases to fitting global seismic constraints.

It is worth noting that the conclusions summarized here are based
on the study of targets whose physics is relatively standard. However,
even in the case of low-mass stars, some non-standard processes may
have a significant evolutionary impact. An example are macroscopic
and microscopic processes leading to chemical transport in radiative
regions inside stars (see Aerts 2021, for a review), that, together,
dictate the observed surface abundances at a given time in evolution.
As illustrated by our study of Gerald, considerable biases in mass
and age can result from not accounting for atomic diffusion. In
stars slightly more massive than Gerald (and in particular for F
stars), the contribution of radiative accelerations to atomic diffusion
becomes non-negligible (Deal et al. 2018) and even in relatively slow
rotators, rotationally induced mixing may become an important effect
counteracting atomic diffusion (Deal et al. 2020). These effects,
neglected in standard models, may lead to additional biases in
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the inferred stellar properties, not considered in this work. This
emphasizes the need to continue developing a new generation of
stellar evolution codes and to acquire data on pulsating stars that
may help constrain further these aspects of the physics.

The results presented in this work provide guidance for the
development of the PLATO pipeline where it concerns the inference
of the properties of stars with seismic data and the characterization of
the associated exoplanetary systems. Moreover, the work identifies
additional paths of research that should be pursued in order to achieve
the PLATO goals and optimise the science return of the mission.
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APPEN D IX A : DATA SETS PRODUCED BY THE
H A R E S

Tables A1a–f list the properties of the individual modes simulated for
the targets in Table 1, specifically: the mode degree, l, the radial order,
n, the true mode frequency value, ν true, the simulated frequency, ν,
and its uncertainty, σ ν . Table A2 lists the set of degraded observations
simulated for Zebedee for the exercise in Section 7.

Table A1a. Simulated frequencies for the target Patch in Table 1. Columns
show the mode degree and radial order, followed by the true model frequency,
the simulated frequency, and the associated 1 σ error.

l n νtrue ν σ ν

(μHz) (μHz) (μHz)

0 16 2343.51 2343.23 0.31
0 17 2475.44 2475.35 0.20
0 18 2608.14 2608.24 0.16
0 19 2741.55 2741.40 0.16
0 20 2874.71 2874.55 0.18
0 21 3007.94 3008.00 0.23
0 22 3141.48 3141.43 0.38
0 23 3275.42 3274.02 0.73
1 15 2272.92 2273.13 0.36
1 16 2405.01 2404.83 0.21
1 17 2537.98 2537.87 0.15
1 18 2671.46 2671.57 0.13
1 19 2805.19 2805.21 0.14
1 20 2938.88 2939.08 0.17
1 21 3072.45 3071.81 0.25
1 22 3206.60 3206.53 0.43
1 23 3341.21 3340.91 0.93
2 16 2468.27 2468.04 0.33
2 17 2601.55 2601.61 0.26
2 18 2735.51 2735.41 0.25
2 19 2869.20 2869.31 0.28
2 20 3002.96 3002.43 0.37
2 21 3136.95 3136.34 0.59

Table A1b. Same as Table A1a but for target Zebedee.

l n νtrue ν σ ν

(μHz) (μHz) (μHz)

0 18 2795.03 2794.98 0.29
0 19 2936.71 2936.89 0.19
0 20 3079.03 3078.92 0.16
0 21 3221.73 3221.60 0.16
0 22 3364.06 3364.43 0.20
0 23 3506.45 3506.28 0.30
0 24 3649.01 3647.87 0.54
0 25 3791.98 3789.75 1.14
1 17 2720.28 2720.07 0.34
1 18 2861.65 2861.36 0.20

Table A1b – continued

l n νtrue ν σ ν

(μHz) (μHz) (μHz)

1 19 3003.99 3004.19 0.14
1 20 3146.59 3146.30 0.13
1 21 3289.29 3289.14 0.15
1 22 3431.82 3431.59 0.20
1 23 3574.24 3574.49 0.33
1 24 3717.20 3718.28 0.64
1 25 3860.49 3857.98 1.48
2 18 2924.95 2924.71 0.31
2 19 3067.60 3067.29 0.26
2 20 3210.61 3210.91 0.26
2 21 3353.27 3353.16 0.32
2 22 3495.98 3496.49 0.47
2 23 3638.78 3637.81 0.82

Table A1c. Same as Table A1a but for target Fred.

l n νtrue ν σ ν

(μHz) (μHz) (μHz)

0 13 971.45 971.05 0.94
0 14 1037.84 1036.91 0.77
0 15 1104.53 1105.40 0.66
0 16 1172.63 1171.94 0.59
0 17 1242.10 1242.45 0.54
0 18 1312.39 1312.31 0.52
0 19 1382.37 1382.99 0.53
0 20 1451.27 1451.34 0.56
0 21 1519.49 1518.40 0.63
0 22 1587.67 1587.10 0.76
0 23 1656.26 1656.52 1.00
0 24 1725.79 1728.67 1.47
1 12 934.62 935.19 0.91
1 13 1001.68 1001.87 0.74
1 14 1067.86 1067.13 0.62
1 15 1135.10 1133.87 0.53
1 16 1203.81 1202.85 0.48
1 17 1273.76 1274.52 0.45
1 18 1344.08 1344.35 0.44
1 19 1413.64 1413.34 0.46
1 20 1482.22 1482.53 0.50
1 21 1550.46 1550.98 0.58
1 22 1618.89 1618.46 0.72
1 23 1688.00 1687.72 1.00
2 14 1099.01 1097.51 1.07
2 15 1166.93 1167.08 0.95
2 16 1236.26 1235.29 0.87
2 17 1306.51 1307.35 0.84
2 18 1376.56 1375.87 0.84
2 19 1445.59 1445.21 0.89
2 20 1513.89 1514.92 0.99
2 21 1582.14 1582.95 1.19

Table A1d. Same as Table A1a but for target Gerald.

l n νtrue ν σ ν

(μHz) (μHz) (μHz)

0 15 1706.25 1706.47 0.24
0 16 1807.84 1807.47 0.15
0 17 1910.09 1910.07 0.11
0 18 2013.33 2013.11 0.10
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Table A1d – continued

l n νtrue ν σ ν

(μHz) (μHz) (μHz)

0 19 2116.36 2116.48 0.11
0 20 2219.24 2219.29 0.12
0 21 2322.51 2322.75 0.16
0 22 2425.98 2425.89 0.24
0 23 2529.90 2529.59 0.46
1 14 1649.67 1650.16 0.29
1 15 1751.59 1751.46 0.16
1 16 1854.03 1854.06 0.11
1 17 1957.00 1957.02 0.09
1 18 2060.39 2060.37 0.09
1 19 2163.93 2164.05 0.09
1 20 2267.15 2267.16 0.11
1 21 2370.70 2370.64 0.16
1 22 2474.93 2474.73 0.27
1 23 2579.29 2579.56 0.58
2 15 1801.62 1801.50 0.24
2 16 1904.23 1904.16 0.19
2 17 2007.81 2008.10 0.17
2 18 2111.20 2111.20 0.17
2 19 2214.50 2214.53 0.19
2 20 2318.14 2318.34 0.25
2 21 2421.96 2421.70 0.38
2 22 2526.28 2527.13 0.72

Table A1e. Same as Table A1a but for target Zippy.

l n νtrue ν σ ν

(μHz) (μHz) (μHz)

0 13 1238.22 1239.08 0.53
0 14 1324.78 1324.53 0.37
0 15 1410.83 1411.18 0.28
0 16 1495.27 1494.80 0.23
0 17 1579.81 1580.39 0.21
0 18 1665.40 1665.50 0.20
0 19 1752.11 1752.00 0.21
0 20 1838.94 1838.99 0.24
0 21 1925.46 1925.26 0.30
0 22 2011.72 2012.07 0.45
0 23 2098.20 2098.64 0.78
1 12 1189.99 1189.87 0.59
1 13 1276.40 1276.66 0.38
1 14 1363.08 1362.97 0.27
1 15 1448.41 1448.50 0.22
1 16 1532.90 1533.33 0.19
1 17 1617.90 1617.86 0.17
1 18 1704.40 1704.86 0.17
1 19 1791.40 1791.68 0.19
1 20 1878.46 1878.61 0.22
1 21 1965.00 1964.84 0.30
1 22 2051.67 2051.53 0.48
1 23 2138.62 2139.27 0.91
2 13 1318.06 1318.56 0.60
2 14 1404.34 1404.56 0.45
2 15 1488.97 1489.17 0.37
2 16 1573.63 1574.06 0.33
2 17 1659.29 1659.30 0.32
2 18 1746.20 1746.07 0.33
2 19 1833.26 1832.56 0.38
2 20 1920.09 1920.62 0.48
2 21 2006.63 2007.57 0.70
2 22 2093.40 2093.48 1.21

Table A1f. Same as Table A1a but for target George.

l n νtrue ν σ ν

(μHz) (μHz) (μHz)

0 13 986.72 986.52 0.44
0 14 1055.70 1055.59 0.28
0 15 1125.65 1125.73 0.21
0 16 1194.98 1194.94 0.17
0 17 1263.30 1263.60 0.15
0 18 1331.12 1330.98 0.14
0 19 1399.92 1399.97 0.15
0 20 1469.69 1469.46 0.16
0 21 1540.26 1540.18 0.20
0 22 1610.67 1610.93 0.28
0 23 1680.94 1680.96 0.44
0 24 1750.73 1750.91 0.85
1 12 951.51 951.58 0.50
1 13 1019.70 1019.58 0.30
1 14 1089.90 1089.83 0.20
1 15 1159.98 1159.97 0.16
1 16 1229.28 1229.26 0.14
1 17 1297.42 1297.56 0.13
1 18 1366.01 1365.98 0.12
1 19 1435.54 1435.38 0.13
1 20 1506.05 1505.87 0.15
1 21 1576.72 1576.79 0.20
1 22 1647.11 1647.16 0.29
1 23 1717.08 1717.01 0.51
1 24 1786.73 1787.51 1.09
2 13 1051.31 1051.04 0.47
2 14 1121.39 1120.90 0.34
2 15 1190.88 1190.94 0.27
2 16 1259.38 1259.06 0.24
2 17 1327.27 1327.30 0.23
2 18 1396.12 1395.78 0.24
2 19 1465.91 1466.19 0.26
2 20 1536.54 1536.09 0.32
2 21 1607.01 1606.78 0.43
2 22 1677.32 1676.46 0.69

Table A2. Zebedee degraded simulated data set.

L/L� = 1.00 ± 0.03
Teff = 5887 ± 85 K
[Fe/H] = −0.03 ± 0.09 dex
νmax = 3260 ± 167 μHz
�ν = 143.1 ± 2.8 μHz

l n ν σ ν

(μHz) (μHz)

0 21 3223.09 0.48
0 22 3364.38 0.63
1 19 3004.18 0.44
1 20 3147.48 0.39
1 21 3289.17 0.45
1 22 3433.58 0.65
1 23 3576.01 1.17

APPENDI X B: METHODS EMPLOYED BY TH E
H O U N D S

B1 SB: The grid method

This method used the provided grid as-is, without any interpolation.
The first step in the analysis of each target was to select the subset
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of models that lay within ±8σ of �ν, νmax, Teff, luminosity, and
[Fe/H] of each star. While a ±6σ -cut is generally sufficient, the 8σ

cut allowed us to use the same set of models for the tests where the
spectroscopic parameters were shifted by 1σ .

The frequencies of each of the selected models were corrected for
surface effects using the Ball & Gizon (2014) two-term correction.
The parameters for the correction were determined using radial
modes and then applied to all modes. The corrected frequencies
were then used to calculate the χ2 per degree of freedom, which we
call χ2

ν , for each model. This is defined as

χ2(ν) = 1

N − 1

∑ (
νobs

nl − νcorr
nl

σ obs
nl

)2

, (B1)

where σ obs
nl is the uncertainty on the frequency νnl of the target, and

the sum is over all N observed frequencies. This is then used to
calculate a likelihood

L(ν) = C exp

(
−χ2(ν)

2

)
, (B2)

C being the normalization constant.
The surface term correction does not take into account the fact that

the frequency difference between the model and the star is expected
to be smaller at low frequencies than at high frequencies. There are
many models in the grid that are different enough from the star that
the high-frequency modes match but the low-frequency modes do
not. Additionally, contrary to the expectations, the low-frequency
modes of these models have lower frequencies than that of the star.
To ensure that these models are given a lower weight than others,
we also calculated the χ2 value for the 2 lowest uncorrected model
frequencies for all available degrees. We divide this by 10 000 to
reduce this term’s contribution to the likelihood, call it χ2

low, and
calculate a weight that is defined as

W = W exp
(−χ2

low

)
, (B3)

where W is a normalization constant. Since W is normalized such
that its sum over all models is 1, the division by 10 000 results in a
gentle down selection.

As with the corrected frequencies, we calculate likelihoods for
Teff, luminosity and [Fe/H]. For example, the likelihood for effective
temperature was defined as

L(Teff ) = D exp(−χ2(T eff )/2), (B4)

with

χ2(Teff ) = (T obs
eff − T model

eff )2

σ 2
T

, (B5)

where σ T is the uncertainty on the effective temperature, and D the
normalization constant. We define the likelihoods for [Fe/H] and L
in a similar manner.

The total likelihood for each model is then

Ltotal = WL(ν)L(Teff )L([Fe/H])L(L). (B6)

The means of the marginalized likelihoods of the ensemble of models
were used to determine the parameters of the star, after converting
them to a probability density by normalizing the likelihood by the
prior distribution of the property.

B2 JO: Grid Monte Carlo

We use the same Monte Carlo grid search procedure as in Ong, Basu
& McKeever (2021), but with a different set of penalty functions.

For each model, an overall cost function χ2
tot is computed as the sum

of the following contributions:

(i) χ2
global = ∑

i

(
yi,model−yi,obs

σi

)2
, where y are global quantities: we

have used the classical spectroscopic constraints, as well as νmax and
εc (the radial mode phase offset at νmax, in the sense of Ong & Basu
2019).

(ii) χ2
BG, being the reduced-χ2 penalty function from applying the

surface correction of Ball & Gizon (2014). The parameters are fitted
against only the radial modes, and then the cost function is computed
from applying the correction to all mode frequencies.

(iii) χ2
ε , which is the reduced χ2 function of the εl-matching

algorithm described in Roxburgh (2016) – cf. their equation (12)
and discussion in Section B4.

(iv) χ2
low n: under the ansatz that the surface term affects higher

order modes more than it does low-order ones, we construct a

quantity 1
N

∑N

n

[
J

(
νn,0,model−νn,0,obs

σn,0

)]2
, summing over only the N

lowest-frequency radial modes. J is an asymmetric penalty function
satisfying

J (x) =
{

x x < 0

x/f x ≥ 0
, (B7)

for some constant f. This is to penalise surface corrections which
modify low-frequency modes too much, as well as to ensure that
the sense of the surface term is the same as seen in the case of the
solar surface term. For this exercise we have used N = 5, f = 10. We
moreover downweighted this term by a factor of 1/4, to ensure that
the only function it serves is that of regularization.

For each model m, we treat the quantity wm = exp[−χ2
tot/2]/pm,

normalized to sum to 1 over all models in the grid, as a likelihood
weight function. Here pm is the grid’s sampling density function,
which may not be uniform, and is not assumed to be known in
advance. We estimate pm using a kernel density estimate applied to
the grid parameters (including model ages). We then compute the
weighted mean of each of the output quantities with respect to these
likelihood weights wm, summing over all models in the grid. This cor-
responds to taking the posterior means of the desired output proper-
ties, under the assumption of uniform priors on the model parameters.

We repeat the same procedure, perturbing each of the spectro-
scopic and average seismic inputs by a normally distributed random
amount with variance given by the observational errors. Unless other-
wise indicated, we do not perturb the frequencies, since evaluating the
cost terms associated with individual mode frequencies is extremely
expensive. We collect these posterior means associated with each
realization, over 104 realizations. The posterior means define a map-
ping g: y�→θ , where y are the supplied observations, and θ the desired
output properties (e.g. mass, radius, etc). By perturbing the input
observations in this manner, we directly propagate ‘input’ probability
distributions on y to ‘output’ probability distributions on θ under the
action of the map g. We report the marginalized medians and quan-
tiles as our estimates for the values and uncertainties of the output
parameters with respect to these output probability distributions.

B3 DR: AIMS

The Asteroseismic Inference on a Massive Scale (AIMS) code takes
in a grid of models and applies a Markov chain Monte Carlo (MCMC)
approach to fitting a given set of classic and seismic constraints. In
order to allow the MCMC approach to explore the parameter space
more freely, AIMS carries out interpolation within the input grid of
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models using a triangulation (or tessellation) of the parameter space
between the evolutionary tracks, and linear interpolation along the
tracks. This gives it a great degree of flexibility in terms of the location
of the evolutionary tracks in parameter space. The interpolation is
applied both to model properties such as mass, radius, and age, and
to the pulsation frequencies. This then provides all of the necessary
information to calculate the priors and likelihood function which
intervene in the probability calculations. Once the MCMC run is
completed, a representative sample of models is obtained from which
it is possible to calculate posterior probability distributions for the
models properties, as well as statistical averages, standard deviations,
correlations, and various percentiles. For more details on the AIMS
code, we refer the reader to Rendle et al. (2019) as well as to the
AIMS documentation.3

In the present hare-and-hounds exercise, AIMS was used to fit
the hares using a variety of different settings. In terms of surface
corrections, the approaches by Kjeldsen et al. (2008), Ball & Gizon
(2014), and Sonoi et al. (2015) were used. In each case, variants with
one and two free parameters were used (in particular, the second
parameter for the Kjeldsen et al. 2008 surface correction is the b
exponent and that of the Sonoi et al. 2015 correction is the β exponent,
both of which are fitted non-linearly with the MCMC approach).
Runs without surface corrections were also carried. A 3σ cutoff on
classic constraints was applied, except when applying the two-term
Ball & Gizon (2014) surface correction where various cutoffs where
applied: 1σ , 3σ , 5σ , ∞. With the exception of George in the specific
case of a 1σ cutoff, the differences in the results for different cutoffs
were found to be negligible. Thus, only the 3σ cutoff results are
shown. In all cases we used uniform priors on the relevant ranges
of the parameters. In the case of the age, a uniform prior over the
interval [0,13.8] Gyr was considered. Various weights on classic and
seismic constraints were adopted for the runs, namely 3:3, 3:N, and
in a few cases 3:1. The constraint on νmax was not included but it is
possible to include it.

B4 IRε: surface independent

Epsilon matching is a ‘surface layer independent’ model comparison
algorithm which subtracts the contribution of the outer layers of the
stars from a combination of their frequencies. The epsilon matching
algorithm used here is described in detail in Roxburgh (2016).

In short, the (adiabatic) oscillation frequencies of a star can be
expressed in terms of epsilons, εnl, as

νnl = �

(
n + l

2
+ εnl

)
so εnl = εl(νnl) = νnl

�
− n − l

2
,

where � is an estimate of the large separation. Moreover, the εl(ν) can
be expressed in terms of an l-dependent inner phase shift determined
by the inner structure of the star, δl(ν), and an l-independent outer
phase shift, α(ν), determined by the structure of the outer layers,
such that εl(ν) = α(ν) + δl(ν).

The algorithm then consists of the following steps:

(i) Determine the epsilons of the observed star εo
l (νo

nl), and
associated errors snl = σo

nl/�;
(ii) Determine the epsilons of the model εm(νm

nl);
(iii) Interpolate in εm(νm) for εm(νo) and determine E(l, νo

nl) =
εm
l (νo

nl) − εo
l (νo

nl) and form

χ2
ε =

∑
nl

(E(l, νo
nl) − F (νo

nl)

snl

)2

. (B8)

3The latest version of AIMS is available at: https://gitlab.com/sasp/aims

The function F (ν) subtracts the l-independent contribution from the
outer layers and is an M parameter l-independent function of ν. The
functional form of F (ν) used here is

F (ν) =
M∑

k=0

CkTk (ζ ) , (B9)

where ζ = (νo − νo
min)/(νo

max − νo
min) and the Tk are Chebychev

polynomials of order k. The coefficients Ck and the upper limit M
are determined by the condition that the χ2 per degree of freedom
is minimized, with M constrained to be less than the number of l =
0 frequencies. The value of M is not necessarily the same for fits to
different models.

(iv) Determine χ2
s = ∑

i

(
yi,model−yi,obs

σi

)2
, where y are the classical

parameters, here L, Teff, and [Fe/H], and σ i the corresponding
uncertainties;

(v) Also, if desired, determine χ2
0 , defined as above, but with a

single term where y is the frequency of the lowest l = 0 mode.
(vi) Add χ2

s , χ2
ε , χ2

0 applying different weights, as desired, to ob-
tain the likelihood function, then the probability density distributions,
mean, standard deviation and percentiles on mass, radius, and age.

B5 VA: BASTA

The BAyesian STellar Algorithm (BASTA; Silva Aguirre et al. 2015;
Aguirre Børsen-Koch et al. 2021)4 is a fitting pipeline written in
PYTHON designed to determine stellar properties combining photo-
metric, spectroscopic, astrometric, and asteroseismic observations.
The code uses a grid of stellar models and Bayesian statistics
to compute the marginalized posterior distribution of any desired
quantity present in the grid by comparing its predicted values with a
pre-defined combination of input observed properties.

For the present exercise we ran BASTA in the following config-
uration: we fitted individual frequencies and adopted the two-term
correction of Ball & Gizon (2014) to account for the surface effect.
We also included the effective temperature, photospheric luminosity,
and surface abundance ratio [Fe/H] in the fitted quantities. We
adopted weights of 3:N, 3:3, and 3:1 between the atmospheric and
asteroseismic constraints to test their impact.

In the case of the method VAint, to increase the resolution of the
original grid we performed interpolations across and along evolution-
ary tracks as described in Aguirre Børsen-Koch et al. (2021). Briefly,
for each target we selected tracks within a broad range encompassing
the observed large frequency separation, effective temperature, and
metallicity. The resolution is then increased across tracks by a
multiplicative factor in all parameters used to construct the grid
(mass, initial [Fe/H], initial helium abundance, mixing-length, and
overshooting efficiency). The new tracks are found via a tessellation
of these base parameters usingscipy.spatial.Delaunay. For
this exercise we adopted a multiplicative factor of 20, resulting in
an increase of the number of tracks in the range of interest for each
target from ∼700 to ∼15 000. The new tracks are then interpolated
along the tracks to increase the resolution in frequency using
scipy.interpolate.interp1d. Between two consecutive
models in the track we required a variation smaller than 1μHz in
the lowest observed l = 0 mode.

4The code is available at https://github.com/BASTAcode/BASTA
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B6 IRν: surface dependent

This method compares observed and model frequencies and classical
parameters with a Ball and Gizon correction (Ball & Gizon 2014)
added to the model frequencies. For a given observed frequency
set one reads in the properties, frequencies, and mode inertias of
the models and adds a Ball and Gizon correction to the model
frequencies, where the coefficients are determined so as to minimize
χ2

ν of the fit of corrected model to observed frequencies and not in
terms of the fundamental properties of the model/star, where

χ2
ν =

∑ (
νmodcorr

nl − νobs
nl

σ obs
nl

)2

.

It is straightforward to take different prescriptions for the ‘correc-
tions’, as well as no corrections.

Likewise, one determines χ2
s = χ2

L + χ2
T + χ2

F defined as in B4.
The search is in general limited to the volume with χ2

L, χ2
T , χ2

F < 9
but in some cases to <25.

One determines a total χ2 = wsχ
2
s + wνχ

2
ν where ws and wν

are prescribed weights (e.g. the 3:3 results shown in Section 4.1
correspond to ws = 1, wν = 3/N where N is the number of
frequencies). Taking ws = 1, wν = 1 corresponds to giving equal
weight to each individual frequency and each classical parameter.

Given the values of the χ2 this in turn gives the likelihoods and
hence the probability density functions and the means, standard
deviations, and percentiles of the model parameters over the set
of models included in the analysis.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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