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Abstract

In this paper, we deal with a Markov chain on a measurable state space (X,X ) which
has a transition kernel P admitting an aperiodic small-set S (i.e. P ≥ ν(·)1S for some
positive measure ν on X such that ν(1S) > 0), and satisfying the standard geometric-
drift condition. Under these assumptions, it can be easily checked that there exists
α0 ∈ (0, 1] such that the following property holds: PV α0 ≤ δα0 V α0 + ν(V α0)1S . Hence
P is V α0−geometrically ergodic and its “second eigenvalue” ϱα0 provides the best rate
of convergence. Setting R := P − ν(·)1S and Γ = {λ ∈ C, δα0 < |λ| < 1}, this “second
eigenvalue” is shown to satisfy, either ϱα0

= max
{
|λ| : λ ∈ Γ,

∑+∞
k=1 λ

−k ν(Rk−11S) = 1
}

if this set is not empty, or ϱα0
≤ δα0 . Actually the set is finite in the first case and is

composed by the spectral values of P in Γ. The second case occurs when P has no spectral
value in Γ. Moreover, a bound of the operator-norm of (zI − P )−1 allows us to derive
an explicit formula for the multiplicative constant in the rate of convergence, which can
be evaluated provided that any information of the “second eigenvalue” is available. To
get such an information, we obtain a simple and explicit bound of the operator-norm
of (I − P + π(·)1X)−1 involved in the definition of the so-called fundamental solution to
Poisson’s equation. This allows us to specify the location of the eigenvalues of P and,
then, to obtain a new explicit bound on ϱα0 . The case of reversible Markov kernel is also
discussed and an application to MCMC algorithms is proposed. In fact the bound for the
operator-norm of (I − P + π(·)1X)−1 is based on an estimate, only depending on δα0 , of
the operator-norm of (I−R)−1 which provides another way to get a solution to Poisson’s
equation. This estimate is also shown to be of greatest interest to generalize the error
bounds obtained for perturbed discrete and atomic Markov chains in [LL18] to the case
of general geometrically ergodic Markov chains. These error estimates are the simplest
that can be expected in this context. All the estimates in this work are expressed in the
standard V α0−weighted operator norm.
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1 Introduction

Let (X,X ) be a measurable space, and let M+ denote the set of finite non-negative measures
on (X,X ). For any µ ∈ M+ and any µ-integrable function f : X→C, µ(f) denotes the
integral

∫
fdµ. For any measurable function W ≥ 1 we denote by (BW , ∥ · ∥W ) the Banach

space of measurable functions f : X→C such that ∥f∥W := supx∈X |f(x)|/W (x) < ∞. The
identity map on BW is denoted by I, and (B′

W , ∥ · ∥′W ) stands for the topological dual space
of BW (i.e. the Banach space of C-valued bounded linear maps on BW ). For any µ ∈ M+

satisfying µ(W ) <∞, the map f 7→ µ(f) belongs to B′
W , and for any such (µ1, µ2) ∈ (M+)2,

the norm ∥µ1 − µ2∥′W coincides with the standard W -weighted total variation norm, that is:

∥µ1 − µ2∥′W := sup
|f |≤W

∣∣µ1(f)− µ2(f)
∣∣. (1)

Throughout the paper P is a Markov kernel on (X,X ), and the existence of a small-set S
for P is assumed, that is: there exist S ∈ X and ν ∈ M+ such that

ν(1S) > 0 and ∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x). (S)

We also assume that there exists a measurable function V : X→[1,+∞) (called a Lyapunov
function) satisfying the following geometric drift condition with Sc := X \ S:

∃δ ≡ δ(P ) ∈ (0, 1), ∀x ∈ Sc, (PV )(x) ≤ δ V (x) (DSc)

and K := sup
x∈S

(PV )(x) <∞. (K)

Throughout the paper, Assumptions (A) will stand for the set of the three assumptions
(S)-(DSc)-(K). Under Assumptions (A) we know that there exists a unique P−invariant
probability measure denoted by π on (X,X ) and that π(V ) < ∞, e.g. see [MT93, RR04,
Bax05, DMPS18]. In this paper, replacing the Lyapunov function V with V α0 for some
suitable constant α0 ∈ (0, 1] derived from the data in (A), we present new results concerning
the spectral properties of P on the space BV α0 in relation with the so-called V α0−geometrical
ergodicity of P . These spectral results are applied to the study of the sensitivity with respect
to the parameter θ of the invariant probability measure of transition kernels Pθ satisfying
Assumptions (A) in a uniform way in θ.

Let us recall some facts before specifying the main results of the paper. Under Assump-
tions (A), we know from [HL22, Cor. 4.2] that there exists α0 ≡ α0(P ) ∈ (0, 1] such that

PV α0 ≤ δα0 V α0 + ν(V α0)1S . (Dα0)

It follows from (Dα0) and (S) that P is V α0−geometrically ergodic, e.g. see [MT93, RR04,
Bax05, DMPS18]: There exist ρ ∈ (0, 1) and Cρ ∈ (0,+∞) such that

∀f ∈ BV α0 , ∀n ≥ 1, ∥Pnf − π(f)1X∥V α0 ≤ Cρ ρ
n ∥f∥V α0 . (2)

We denote by ϱα0 the infimum bound of the positive real numbers ρ satisfying (2). The real
number ϱα0 is sometimes called the ”second eigenvalue” of P on BV α0 (even though ϱα0 is
not necessarily an eigenvalue of P ), while 1 − ϱα0 is called the spectral gap of P on BV α0 .
When P satisfies (2) and is reversible with respect to π, it follows from [Bax05, Th. 6.1] that

∀f ∈ L2(π), ∀n ≥ 1, ∥Pnf − π(f)1X∥L2(π) ≤ 2 ϱ n
α0

∥f∥L2(π) (3)
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where L2(π) is the standard Lebesgue space equipped with the norm ∥f∥L2(π) = π(|f |2)1/2.
Thus, in this case, ϱα0 is an upper bound of the second eigenvalue of P on L2(π). Finally
recall that λ ∈ C is a spectral value of P on BV α0 if λI − P is not invertible on BV α0 . The
spectral value λ ∈ C is an eigenvalue of P on BV α0 if λI − P is not injective on BV α0 .

Under Assumptions (A) we obtain the following statements with α0 ∈ (0, 1] given in
(Dα0).

� (Section 2) Let a ∈ (δα0 , 1). The set Sa of spectral values λ of P on BV α0 such that
a ≤ |λ| ≤ 1 is finite and composed of eigenvalues of P . Note that λ = 1 ∈ Sa. If
Sa = {1}, then ϱα0 ≤ a; Otherwise ϱα0 = max

{
|λ|, λ ∈ Sa, λ ̸= 1

}
. Moreover

λ ∈ Sa ⇐⇒ µλ(1S) = 1 (4)

where µλ(1S) :=
∑+∞

k=1 λ
−k βk(1S), with βk = ν ◦ (P − ν(·)1S)k−1 ∈ B′

V α0 .

� (Section 3) For every z ∈ C\{1} such that |z| ∈
(
max(δα0 , ϱα0), 1

]
, the operator zI−P

is invertible on BV α0 and we have

∀f ∈ BV α0 , ∥(zI−P )−1f∥V α0 ≤ 1

|z| − δα0

(
1+

ν(V α0)∥1S∥V α0∣∣1− µz(1S)
∣∣(|z| − δα0

))∥f∥V α0 . (5)

Moreover, for any ρ ∈
(
max(δα0 , ϱα0), 1

)
, Inequality (2) holds with

Cρ =
ρ

2π(ρ− δα0)

(
1 +

ν(V α0)∥1S∥V α0

mρ

(
ρ− δα0

) )
with mρ := min

z∈C:|z|=ρ
|1− µz(1S)| > 0. (6)

� (Section 4) For any f ∈ BV α0 such that π(f) = 0, the two functions f̃ :=
∑+∞

n=0R
nf

with R := P − ν(·)1S and f̂ :=
∑+∞

n=0 P
nf are solutions in BV α0 to Poisson’s equation

(I − P )g = f . Moreover

∥f̃∥V α0 ≤ 1

1− δα0
∥f∥V α0 and ∥f̂∥V α0 ≤ 1 + π(V α0)∥1X∥V α0

1− δα0
∥f∥V α0 . (7)

� (Section 5) Using (5) and the second bound in (7), we present results concerning the
location of the eigenvalues of P on BV α0 , from which we deduce a upper bound of the
second eigenvalue ϱα0 (Corollary 5.1). In particular, when P is reversible with respect
to π and satisfies a slight additional condition (see (44)), we obtain that (Corollary 5.2)

ϱα0 ≤ ψ(η∞) ≤ ψ(ηn) with ψ(t) :=
δα0(1− δα0)t+ ν(V α0)∥1S∥V α0

(1− δα0)t+ ν(V α0)∥1S∥V α0

(8)

where ∀n ≥ 1, ηn := 2
∑n

k=1 β2k−1(1S) and η∞ := 2
∑+∞

k=1 β2k−1(1S). An application to
Markov chain Monte Carlo (MCMC) algorithms is addressed in Corollary 5.5. Finally,
if P is also positive (i.e. ∀f ∈ L2(π), ⟨f, Pf⟩L2(π) ≥ 0), then ϱα0 ≤ δα0 (Corollary 5.3).
Recall that, in reversible case, any bound of ϱα0 is of interest in (3) too.

� (Section 6) Let Θ be an open subset of some metric space, and let {Pθ}θ∈Θ be a family
of Markov kernels on (X,X ) satisfying Assumptions (A) in a uniform way in θ ∈ Θ, as
well as the following condition:

∀x ∈ X, lim
θ→ θ0

∆θ,α0(x) = 0 with ∆θ,α0(x) := ∥Pθ(x, ·)− Pθ0(x, ·)∥′V α0 (9)
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where θ0 is fixed in Θ. Let πθ denote the Pθ−invariant probability measure. Then
limθ→ θ0 ∥πθ − πθ0∥′V α0 = 0 and we have for every θ ∈ Θ

∥∥πθ−πθ0∥∥′V α0
≤ 1 + πθ0(V

α0)∥1X∥V α0

1− δα0
×πθ

(
∆θ,α0

)
with lim

θ→ θ0
πθ
(
∆θ,α0

)
= 0. (10)

Recall that finding effective and computable rate of convergence in geometric ergodicity
is a difficult issue, see [MT94, Bax05, and the references therein]. The results of Section 2
based on the quasi-compactness of P ensure that the following alternative holds for the second
eigenvalue: Either ϱα0 equals to the largest solution (in modulus) to the equation µz(1S) = 1
in {z ∈ C : δα0 < |z| < 1} if such a solution exists; Or ϱα0 ≤ δα0 (see Corollary 2.1 for
details). This algebraic issue is difficult to apply in practice since it involves the power
series

∑+∞
k=1 z

−k βk(1S). When the second eigenvalue of P is known (or at least bounded),
Property (6) which gives explicit constants Cρ in (2) is relevant, provided that the numerical
computation of mρ in (6) is tractable. Note that the equivalence (4) is crucial to prove
the positivity of mρ. Property (7) gives true computable bounds for the V α0−norm of two
particular solutions to Poisson’s equation. Note that the second bound in (7) concerning the
classical solution f̂ =

∑+∞
n=0 P

nf to Poisson’s equation when π(f) = 0 is deduced from the

first bound in (7) for the solution f̃ =
∑+∞

n=0R
nf . These two solutions to Poisson’s equation

are of interest in this work: f̂ is relevant in Section 5, while f̃ is used in Section 6. Note
that the inequality π(V α0) ≤ ν(V α0)/(1 − δα0) easily derived from (Dα0), may be used in
(7) when π is unknown. The general bound of ϱα0 obtained in Corollary 5.1 requires the
numerical computation of the positive real number m0 := minϑ∈[ϑ0,2π−ϑ0] |1 − µeiϑ(1S)| for
some ϑ0 ∈ (0, π/2). When P is reversible, this issue is greatly simplified since m0 is replaced
with η∞ (see (8)). The first bound in (7) is applied in the perturbation issue of Section 6,
so that the constant in (10) is truly computable too (use again πθ0(V

α0) ≤ ν(V α0)/(1− δα0)
when π is unknown). The real number πθ

(
∆θ,α0

)
in (10) is available when the function ∆θ,α0

in (9) is known (or can be bounded) and πθ is computable for θ ̸= θ0. This holds for instance
for discrete set X when the perturbed Markov kernels are truncated stochastic matrices on a
finite state space (see Remark 6.1). Finally note that ∥πθ − πθ0∥′TV ≤ ∥πθ − πθ0∥′V α0 where
∥πθ − πθ0∥′TV denotes the total variation distance between the two probability measures πθ
and πθ0 (use (1) with W = 1X).

Under Assumptions (A), it is proved in [Bax05, Th. 1.1] that P is V−geometrically ergodic.
However it is worth noticing that our results only focus on the V α0−weighted operator norm
in Sections 2–5 and on V α0−weighted total variation norm in Section 6, where α0 ∈ (0, 1] is
given in (Dα0). Hence, when α0 < 1, our results involve the smaller space BV α0 in place of
the expected one BV . This is the price to pay when working with the drift condition (Dα0).
The benefit is that the results obtained on BV α0 from (Dα0) have a fairly simple form. In
the reversible case, recall that any rate of convergence in (2) provides a rate of convergence
in the L2(π)−geometrical ergodicity (3), whatever the value of α0,

The constant α0 ∈ (0, 1] in (Dα0) can be easily computed from the data in Assump-
tions (A) (see [HL22, (28)]). For convenience the proof that (Dα0) holds true and the
explicit computation of α0 are recalled in Appendix A. The real number K in Condition (K)
plays an important role in the computation of α0: roughly speaking, the larger K is compared
to ν(V ), the smaller α0 is. If the small-set S in (S) is an atom with ν given by ν = P (s, ·)
for some s ∈ S, then (Dα0) holds with α0 = 1 (see Appendix A). Note that the case α0 = 1
is not equivalent to the atomic case, in other words Property (Dα0) may hold with α0 = 1
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for non-atomic small set S, see [HL22, Sec. 6]. Of course there are probably instances of
Markov chains satisfying Assumptions (A), for which the use of Property (Dα0) is not rele-
vant because α0 is too close to zero, so that δα0 is too close to one for the bounds (6), (7), (8)
or (10) to be of interest. We believe that these unfavourable cases correspond to instances
for which the minorization/drift conditions are not well suited for finding interesting rates of
convergence in geometrical ergodicity context, whatever the method used (see [QH21]).

The spectral properties for geometrically ergodic Markov chains have been investigated
in many papers, e.g. see [KM03, KM05, Hen06, HL14a, HL14b, Del17]. The novelty of this
work is that we obtain more simple and explicit results due to Condition (Dα0). To the
best of our knowledge, the results in this work are new. In particular, when P is positive
reversible and satisfies Assumptions (A) with an atom S (thus α0 = 1), the bound ϱ1 ≤ δ was
obtained in [Bax05, Sec. 2.3]. Thus the bound ϱα0 ≤ δα0 in Corollary 5.3 extends this result
to the non-atomic case. Using the numerical values of α0 given in [HL22, Sec. 6.3-6.4] for
Metropolis-Hastings algorithm of the Gaussian distribution and for Gaussian autoregressive
Markov chain, we can check that the bound ϱα0 ≤ δα0 is relevant in comparison with those
provided in [Bax05, Sec. 2.3 (non-atomic case)], see Remark 5.3. That f̃ :=

∑+∞
n=0R

nf is
solution to Poisson’s equation when π(f) = 0 seems to be a new result which extends to our
framework the statement [Kem81, Th. 2] involving generalized fundamental finite matrix.
The bounds (7) and (10) have been proved for discrete state space Markov chains with a
finite atom in [LL18, Prop. 1, Th. 2] thanks to renewal theory. Theorems 4.1 and 6.1 extend
these results to the non-atomic case and to general state spaces. The bound (10) improves all
the error bounds obtained under Condition (9) in the literature for the stationary distribution
of perturbed geometrically ergodic Markov chains, provided we use the Lyapunov function
V α0 in place of V . Indeed, the bound (10) involves neither the iterates of the unperturbed
Markov kernels, nor those of the perturbed Markov kernels, exactly as in the case of discrete
Markov chains with an atom investigated in [LL18]. It is worth noticing that Condition (9) is
much weaker than the standard operator norm continuity assumption introduced in [Kar86]
(see Remark 6.2). The comparison with the weak operator norm continuity assumptions as in
[SS00, FHL13, HL14a, RS18, MARS20] is also addressed in Remark 6.2. Finally mention that
the operator R = P − ν(·)1S and its iterates have been considered in [KM03] to investigate
the eigenvectors belonging to the dominated eigenvalue of the Laplace kernels associated with
the Markov kernel P . This issue called ”multiplicative Poisson equation” in [KM03] is used
to prove limit theorems for the underlying Markov chain. This question is not addressed in
our work.

2 Quasi-compactness of P

For any measurable function W ≥ 1, if L is a bounded linear operator on (BW , ∥ · ∥W ), we
also denote by ∥L∥W := sup{∥Lf∥W , f ∈ BW , ∥f∥W ≤ 1} the operator norm of L on BW .
Assume that P satisfies Assumptions (A). Note that ν(V ) < ∞ due to (S). Let α0 ∈ (0, 1]
be given in (Dα0). Then P and T := ν(·)1S are bounded linear operators on BV α0 . Define

R := P − T = P − ν(·)1S .

We deduce from (S) that R is a non-negative operator on BV α0 (i.e. ∀f ∈ BV α0 : f ≥ 0 ⇒
Rf ≥ 0). Moreover (Dα0) reads as RV α0 ≤ δα0 V α0 due to the definition of T . Iterating this
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inequality gives: ∀k ≥ 1, RkV α0 ≤ δα0k V α0 . Then we deduce from the non-negativity of Rk

that
∀k ≥ 1, ∥Rk∥V α0 ≤ δα0k (11)

since for every f ∈ BV α0 we have |Rkf | ≤ Rk|f | ≤ ∥f∥V α0RkV α0 . Moreover let us define

∀k ≥ 1, βk := ν ◦Rk−1 ∈ B′
V α0 (12)

with the convention R0 = I so that β1 = ν. Recall that for every n ≥ 1 the operator Tn on
BV α0 defined by Tn := Pn −Rn satisfies (see [HL20, Prop. 2.1])

Tn =

n∑
k=1

βk(·)Pn−k1S . (13)

Hence Tn is finite-rank. This fact and (11) are the key points to prove the next Theorem 2.1
using the notion of essential spectral radius and quasi-compactness. Various equivalent def-
initions of the essential spectral radius of a bounded linear operator on a Banach space
can be found in the literature in link with, either the essential spectrum, or the quasi-
compactness property, e.g. see [Hen93, Hen07] and [HH01, Chapter XIV] for a general con-
text and [Wu04, Hen06, AP07, HL14b, HL14a, Del17] in the framework of V -geometrically
ergodic Markov kernels. For the link between geometrical ergodicity and spectral theory, see
also [MT09, Chap. 20]. The adjoint operator of P acting on B′

V α0 is denoted by P ∗.

Theorem 2.1 Suppose that P satisfies Assumptions (A), and let α0 ∈ (0, 1] be given in (Dα0).
Then, for any a ∈ (δα0 , 1), the set Sa of spectral values λ of P on BV α0 (or of P ∗ on B′

V α0 )
such that a ≤ |λ| ≤ 1 is finite and composed of eigenvalues of both P and P ∗. Moreover the
second eigenvalue ϱα0 of P on BV α0 (see (2)) is such that:

(a) Either Sa = {1} and ϱα0 ≤ a.

(b) Or Sa ̸= {1} and ϱα0 = max
{
|λ|, λ ∈ Sa, λ ̸= 1

}
.

The quasi-compactness of P on BV is proved in [HL14a, Th. 5.2] under Assumptions (A).
However the bound obtained in [HL14a, Th. 5.2] for the essential spectral radius of P on BV

is not accurate. Here Property (Dα0) allows us to prove the explicit bound (15) below for
the essential spectral radius of P on BV α0 . First we prove the following simple lemma.

Lemma 2.1 λ = 1 is the only eigenvalue of P on BV α0 such that ϱα0 < |λ| ≤ 1.

Proof. Let λ ∈ C \ {1} be any eigenvalue of P on BV α0 . Prove that |λ| ≤ ϱα0 . Let f ∈ BV ,
f ̸= 0, be such that Pf = λf . Then π(f) = 0, so that (2) gives |λ|n = O(ρn), thus |λ| ≤ ρ.
Hence |λ| ≤ ϱα0 since ρ in (2) can be chosen arbitrarily close to ϱα0 .

□

Proof of Theorem 2.1. Recall that the essential spectral radius ress(P ) of P on BV α0 is
defined by

ress(P ) := lim
n

(
inf
H∈K

∥Pn −H∥V α0

)1/n
(14)

where K denotes the space of all compact operators on BV α0 . Then we have

ress(P ) ≤ δα0 < 1 (15)
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from (14) and (11) since Pn−Tn = Rn where Tn in (13) is a finite-rank operator so is compact
on BV α0 . Hence P is quasi-compact on BV α0 since the spectral radius of P on BV α0 is one. It
follows from quasi-compactness that the set Sa is composed of finitely many spectral values
which are in fact eigenvalues, e.g. see [Hen93]. The alternative (a)-(b) then follows from the
definition of ϱα0 (see (2)) and from classical arguments of spectral theory. For the sake of
completeness, let us present the main arguments. First assume that Sa ̸= {1} and define
γa = max{|λ|, λ ∈ Sa, λ ̸= 1}. From Lemma 2.1 we have γa ≤ ϱα0 . Moreover, it follows from
the standard spectral theory that, for any γ ∈ (γa, 1), we have the following equality

∀n ≥ 1, Pn = π(·)1X +
1

2iπ

∮
|z|=γ

zn(zI − P )−1 dz, (16)

from which we deduce that the value ρ = γ is allowed in (2). Thus ϱα0 ≤ γ, so that ϱα0 ≤ γa
since γ is arbitrarily close to γa. We have proved that ϱα0 = γa in Case (b). Finally assume
that Sa = {1}. Then property (16) applies to γ = a, so that the value ρ = a is allowed in
(2). Thus ϱα0 ≤ a. □

Remark 2.1 Note that, under Assumptions (A) and with α0 ∈ (0, 1] given in (Dα0), we can
directly deduce from (2) that P is quasi-compact on BV α0 and that its essential spectral radius
satisfies ress(P ) ≤ ϱα0. Indeed, for any ρ ∈ (0, 1) such that (2) holds, we have ress(P ) ≤ ρ
from (14) since Π := π(·)1X is rank-one thus compact on BV α0 . Thus ress(P ) ≤ ϱα0 from the
definition of ϱα0. However, this bound of ress(P ) is not interesting in practice since ϱα0 is
unknown. On the contrary the bound (15) is explicit and, as a by-product, it enables to prove
the alternative (a)-(b) of Theorem 2.1 which provides informations on the second eigenvalue
ϱα0. This result is specified in the next Theorem 2.2

Recall that βk ∈ B′
V α0 is defined in (12). It follows from (11) that, for every z ∈ C such

that |z| > δα0 , the following series

µz :=
+∞∑
k=1

z−k βk (17)

is absolutely convergent in B′
V α0 , so that

∑+∞
k=1 z

−k βk(1S) is absolutely convergent in C.

Theorem 2.2 Assume that P satisfies (A), and let α0 ∈ (0, 1] be given in (Dα0). Let λ ∈ C
be such that δα0 < |λ| ≤ 1. Then the two following assertions are equivalent:

(i) λ is an eigenvalue of P on BV α0 .

(ii) µλ(1S) =

+∞∑
k=1

λ−k βk(1S) = 1.

Moreover, under Condition (i) or (ii), the subspace Eλ := {ψ ∈ B′
V α0 : ψ ◦ P = λψ} is

spanned by µλ.

For the proof of Theorem 2.2 we may assume that α0 = 1 in (Dα0), that is

PV ≤ δ V + ν(V )1S . (18)

If α0 < 1, then replace V , δ with V α0 , δα0 respectively in the proof below. First we prove
the following lemma.
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Lemma 2.2 For any z ∈ C such that |z| > δ we have

µz ◦ P = zµz − ν + µz ◦ T. (19)

Proof. Let z ∈ C be such that |z| > δ. Then

µz ◦ P =
+∞∑
k=1

z−k ν ◦Rk−1 ◦ P (from (17) and (12))

=

+∞∑
k=1

z−k ν ◦Rk +

+∞∑
k=1

z−k ν ◦
(
Rk−1 ◦ T

)
(since P = R+ T )

=
+∞∑
k=1

z−k βk+1 +
+∞∑
k=1

z−k βk ◦ T (from (12))

= zµz − ν + µz ◦ T (from (17) and β1 = ν).

□

Proof of Theorem 2.2. Let λ be an eigenvalue of P (thus of P ∗) such that δ < |λ| ≤ 1. Using
Rn = Pn − Tn and (13) we deduce from (11) (with α0 = 1 here) that

∀n ≥ 1, ∀f ∈ BV ,

∥∥∥∥Pnf −
n∑

k=1

βk(f)P
n−k1S

∥∥∥∥
V

≤ δn ∥f∥V . (20)

Let ψ ∈ Eλ, ψ ̸= 0. Composing on the left by ψ in (20) gives the following equality in B′
V

λnψ = ψ(1S)

n∑
k=1

λn−k βk +O(δn),

so that ψ = ψ(1S)
∑n

k=1 λ
−k βk + O((δ/λ)n). Hence ψ = ψ(1S)µλ. Note that ψ(1S) ̸= 0

since ψ ̸= 0, so that µλ(1S) = 1. We have proved the last assertion of Theorem 2.2, as well
as the implication (i) ⇒ (ii), in Theorem 2.2. Now let us prove that (ii) ⇒ (i). Let λ ∈ C
be such that δ < |λ| < 1 and assume that µλ(1S) = 1, so that µλ ̸= 0. Lemma 2.2 applied to
z = λ gives

µλ ◦ P = λµλ − ν + µλ ◦ T.
Moreover, since T = ν(·)1S we obtain that

µλ ◦ T =
+∞∑
k=1

λ−k βk ◦ T =

( +∞∑
k=1

λ−k βk(1S)

)
ν = µλ(1S) ν = ν

from which it follows that µλ ◦ P = λµλ. Hence λ is an eigenvalue of P ∗, thus of P . □

We deduce the following statement from Theorems 2.1-2.2.

Corollary 2.1 Assume that P satisfies (A) and let α0 ∈ (0, 1] be given in (Dα0). Then the
second eigenvalue ϱα0 of P on BV α0 (see (2)) satisfies the following alternative.

� Either for every z ∈ C such that δα0 < |z| < 1 we have µλ(1S) ̸= 1, so that ϱα0 ≤ δα0.

� Or ϱα0 = max
{
|λ| : λ ∈ C, δα0 < |λ| < 1, µλ(1S) = 1

}
.

As a complement to Theorem 2.2, we prove in Appendix B that any eigenvalue λ of P on
BV α0 such that δα0 < |λ| ≤ 1 is of order one (i.e Ker(P − λI)2 = Ker(P − λI)) if, and only
if, µ′λ(1S) ̸= 0 where µ′λ(1S) is the derivative at z = λ of z 7→ µz(1S).
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3 A bound for the constant Cρ in (2)

Let P satisfying Assumptions (A) and let α0 ∈ (0, 1] be given in (Dα0). Recall that ϱα0

denotes the infimum bound of the positive real numbers ρ such that the V α0−geometrical
ergodicity property (2) holds true. Property (22a) below provides an explicit constant Cρ in
(2) when ρ ∈

(
max(δα0 , ϱα0), 1

)
. Recall that for every z ∈ C such that |z| > δα0 , the series

µz(1S) =
∑+∞

k=1 z
−k βk(1S) is absolutely convergent (see (17)).

Theorem 3.1 Let P satisfying Assumptions (A). Let α0 ∈ (0, 1] be given in (Dα0). Then,
for every z ∈ C \ {1} such that |z| ∈

(
max(δα0 , ϱα0), 1

]
, the operator zI − P is invertible on

BV α0 , and

∥(zI − P )−1∥V α0 ≤ 1

|z| − δα0

(
1 +

ν(V α0)∥1S∥V α0∣∣1− µz(1S)
∣∣(|z| − δα0

)). (21)

Moreover, for every ρ ∈
(
max(δα0 , ϱα0), 1

)
, we have

∀n ≥ 1, ∥Pn − π(·)1X∥V α0 ≤ ρ

2π(ρ− δα0)

(
1 +

ν(V α0)∥1S∥V α0

mρ

(
ρ− δα0

) )
ρn (22a)

with mρ := min
z∈C:|z|=ρ

∣∣1− µz(1S)
∣∣ > 0. (22b)

The explicit V α0−geometrical ergodicity property (22a) is only interesting, on the one hand
when ϱα0 is known or can be at least bounded from above, and on the other hand when mρ

can be numerically computed or at least bounded from below by a positive real number.

Again, for the following proofs, we may assume that α0 = 1 in (Dα0), that is (18) holds.
Moreover ϱ stands for ϱ1 to simplify. If α0 < 1, then replace V , δ and ϱ with V α0 , δα0 and
ϱα0 respectively in the proof below. The following lemmas are used to prove Theorem 3.1.

Recall that R = P − T = P − ν(·)1S satisfies: ∀k ≥ 0, ∥Rk∥V ≤ δk (see (11)).

Lemma 3.1 Let z ∈ C be such that |z| > δ. Then zI −R is invertible on BV with

(zI −R)−1 =
+∞∑
k=0

z−(k+1)Rk. (23)

Moreover, with µz ∈ B′
V defined in (17), we have

∀f ∈ BV , ν
(
(zI −R)−1f

)
= µz(f). (24)

Lemma 3.2 Let z ∈ C \ {1} be such that |z| ∈
(
max(δ, ϱ), 1

]
. Then zI − P is invertible on

BV , and

∀f ∈ BV , (zI − P )−1f = (zI −R)−1f +
µz(f)

1− µz(1S)
(zI −R)−11S . (25)

Moreover we have

∥(zI − P )−1∥V ≤ 1

|z| − δ

(
1 +

ν(V )∥1S∥V∣∣1− µz(1S)
∣∣(|z| − δ

)). (26)
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Proof of Theorem 3.1. Property (21) is established in Lemma 3.2. Now let ρ ∈
(
max(δ, ϱ), 1

)
.

We deduce from Lemma 2.1 and from Theorem 2.2 that

∀z ∈ C, |z| = ρ, µz(1S) :=
+∞∑
k=1

z−kβk(1S) ̸= 1.

This gives (22b) since z 7→ µz(1S) :=
∑+∞

k=1 z
−kβk(1S) is continuous on the compact set

{z ∈ C : |z| = ρ}. Finally let us prove (22a). It follows from the spectral decomposition (16)
applied here to γ = ρ that

∀n ≥ 1, ∥Pn − π(·)1X∥V ≤ ρn+1

2π
max

z∈C:|z|=ρ

∥∥(zI − P
)−1∥∥

V
.

Consequently the constant Cρ in (2) can be chosen as

Cρ :=
ρ

2π
max

z∈C:|z|=ρ

∥∥(zI − P
)−1∥∥

V

≤ ρ

2π
× 1

ρ− δ

(
1 +

ν(V )∥1S∥V
mρ(ρ− δ)

)
(from (26) and (22b)).

This provides (22a).

□

Proof of Lemma 3.1. Let z ∈ C be such that |z| > δ. Then zI −R is invertible on BV since
the spectral radius of R is less than δ from ∥Rk∥V ≤ δk. Then Formula (23) is classical.
Moreover note that for every f ∈ BV

+∞∑
k=0

∫
X
|z|−(k+1)|Rkf | dν ≤ |z|−1ν(V ) ∥f∥V

+∞∑
k=0

(
|z|−1δ

)k
<∞

from ∥Rk∥V ≤ δk and from δ < |z|. Therefore the permutation of the integral and the series
in the following equality is allowed:

ν((zI −R)−1f) = ν(
+∞∑
k=0

z−(k+1)Rkf) =
+∞∑
k=0

z−(k+1)ν(Rkf).

This gives (24) due to (12) and (17).

□

Proof of Lemma 3.2. Let z ∈ C\{1} such that |z| ∈
(
max(δ, ϱ), 1

]
. If zI−P is not invertible

on BV , then z is an eigenvalue of P from Theorem 2.1, which is impossible from Lemma 2.1.
Thus zI − P is invertible on BV . Next we have

zI − P = zI −R− T = Uz ◦ (zI −R) with Uz := I − T ◦ (zI −R)−1. (27)

We deduce from T = ν(·)1S and from (24) that

∀f ∈ BV , Uzf = f − µz(f)1S or f = Uzf + µz(f)1S .

Next
Uzf =

(
Uz ◦ (zI −R)

)
◦ (zI −R)−1f = (zI − P ) ◦ (zI −R)−1f
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using (27), so that
f = (zI − P ) ◦ (zI −R)−1f + µz(f)1S

and
(zI − P )−1f = (zI −R)−1f + µz(f)(zI − P )−11S .

The last equality applied to f = 1S gives

(zI − P )−11S =
1

1− µz(1S)
(zI −R)−11S

where µz(1S) ̸= 1 from Corollary 2.1. This provides (25).

Next we have

∥(zI −R)−1∥V ≤ 1

|z| − δ
, in particular ∥(zI −R)−11S∥V ≤ ∥1S∥V

|z| − δ

from (23) and ∥Rk∥V ≤ δk. Moreover we have

∀f ∈ BV , |µz(f)| ≤
ν(V )

|z| − δ
∥f∥V

from (12) and ∥Rk∥V ≤ δk. Then (26) follows from (25) and the previous inequalities. □

4 A bound for the norm of solutions to Poisson’s equation

Recall that the existence of Poisson’s equation is studied under weak drift condition in [GM96]
(also see [MT93, Th. 17.4.2]). In this section the solutions to Poisson’s equation are more
easily obtained since we assume that P satisfies Assumptions (A) of Section 1 which include
the geometric drift condition (DSc). Indeed assume that Assumptions (A) holds and let
α0 ∈ (0, 1] be given in (Dα0). Then we know that P satisfies Inequality (2), from which we
deduce that the operator (I − P +Π) is invertible on BV α0 with

(I − P +Π)−1 =

+∞∑
n=0

(P −Π)n =

+∞∑
n=0

(Pn −Π) (28)

where Π := π(·)1X. Then, for any f ∈ BV α0 , it is easily checked that f̂ := (I − P +Π)−1f is
a solution to Poisson’s equation on BV α0

(I − P )f̂ = f −Πf. (29)

Note that E1 := {h ∈ BV α0 , Ph = h} = C · 1X from (2) (i.e. 1 is a simple eigenvalue of P )
and that the difference of two solutions to Poisson’s equation on BV α0 belongs to E1. Hence
two solutions to Poisson’s equation on BV α0 differ by a constant function. Now, let f ∈ BV α0

be such that π(f) = 0. In Theorem 4.1 below we prove that the function

f̃ := (I −R)−1f =
+∞∑
n=0

Rnf
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is a solution in BV α0 to Poisson’s equation, where R is the non-negative operator of Section 2.
Next, since π(f) = 0, the function

f̂ = (I − P +Π)−1f =

+∞∑
n=0

Pnf

satisfies π(f̂) = π(f) = 0. In fact f̂ is the unique solution in BV α0 to Poisson’s equation
which has a null π−integral. Finally we have f̂ = f̃ − π(f̃)1X since f̃ and f̂ only differ by a
constant function.

In Theorem 4.1 below we give a simple and explicit bound for ∥f̃∥V α0 , which is relevant
for the perturbation issue of Section 6. This allows us to derive an explicit bound for ∥f̂∥V α0 ,
that will be relevant in Section 5.

Theorem 4.1 Assume that P satisfies Assumptions (A). Let α0 ∈ (0, 1] be given in (Dα0).
Then, for any f ∈ BV α0 such that π(f) = 0, the following assertions hold.

1. f̃ := (I −R)−1f is a solution in BV α0 to the Poisson equation (29), and

∥f̃∥V α0 ≤ 1

1− δα0
∥f∥V α0 . (30)

2. f̂ := (I − P + Π)−1f is the unique solution in BV α0 to Poisson’s equation (29) which
has a null π−integral, and

∥f̂∥V α0 ≤ 1 + π(V α0)∥1X∥V α0

1− δα0
∥f∥V α0 (31a)

≤ 1− δα0 + ν(V α0)∥1X∥V α0

(1− δα0)2
∥f∥V α0 . (31b)

Again, for the proof below, we may assume that α0 = 1 in (Dα0). If α0 < 1, then replace V
and δ with V α0 and δα0 respectively in the proof below.

Proof. Recall that ∥Rk∥V ≤ δk (see (11)), so that I −R is invertible on BV with (see (23))

(I −R)−1 =

+∞∑
k=0

Rk. (32)

Next, we have

I − P = I −R− T = U ◦ (I −R) with U := I − T ◦ (I −R)−1. (33)

Let f ∈ BV α0 be such that π(f) = 0 and let f̃ := (I −R)−1f . Then we obtain from (33)

(I − P )f̃ =
(
U ◦ (I −R) ◦ (I −R)−1

)
f = Uf.

From T = ν(·)1S and from (24) applied to z = 1, we obtain that

Uf = f − µ1(f)1S
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where µ1 is defined in (17). Moreover we know from Theorem 2.2 that µ1 is a P−invariant
positive finite measure, more precisely µ1 = µ1(1X)π (see also [HL20, HL22]). Hence we have
µ1(f) = 0 since π(f) = 0, so that Uf = f . Thus f̃ is a solution to the Poisson equation on
BV . Moreover, it follows from (32) and ∥Rk∥V ≤ δk that

∥f̃∥V = ∥(I −R)−1f∥V =
∥∥ +∞∑

k=0

Rkf
∥∥
V
≤ 1

1− δ
∥f∥V . (34)

The proof of the first assertion is complete.

Now let f ∈ BV α0 be such that π(f) = 0 and let f̂ := (I − P + Π)−1f . Since f̂ satisfies
Poisson’s equation on BV α0 , we know that f̃ and f̂ differ by a constant function, so that
f̂ = f̃ − π(f̃)1X due to π(f̂) = π(f) = 0. Hence

∥f̂∥V ≤ ∥f̃∥V + |π(f̃)| × ∥1X∥V (triangular inequality)

≤
(
1 + π(V )∥1X∥V

)
∥f̃∥V (since |f̃ | ≤ ∥f̃∥V V )

≤ 1 + π(V )∥1X∥V
1− δ

∥f∥V (from (34)).

This gives (31a). Finally (31b) follows from the inequality π(V ) ≤ ν(V )/(1 − δ) which can
be easily derived from (18). The second assertion is proved. □

5 Bounds for the second eigenvalue of P

Using the results of Sections 2-3-4, we first present some results on the location of the eigen-
values of P on BV α0 . For any a ∈ C and for any r > 0, define

D(a, r) := {λ ∈ C : |λ−a| < r}, C(a, r) := {λ ∈ C : |λ−a| = r}, D(a, r) = D(a, r)∪C(a, r).

Proposition 5.1 Suppose that P satisfies Assumptions (A). Let α0 ∈ (0, 1] be given in
(Dα0), and define

r̂1 :=
1− δα0

1 + π(V α0)∥1X∥V α0

. (35)

Then λ = 1 is the single spectral value of P on BV α0 in the open disk D(1, r̂1), that is: for
every λ ∈ D(1, r̂1) \ {1}, the operator λI − P is invertible on BV α0 .

The real number r̂1 in (35) satisfies

r̂1 ≥ r̃1 :=
(1− δα0)2

1− δα0 + ν(V α0)

since π(V α0) ≤ ν(V α0)/(1− δα0). Therefore r̂1 may be replaced with r̃1 in the conclusion of
Proposition 5.1 when π is unknown.

Proof. Note that r̂1 < 1−δα0 . Therefore, if λ ∈ D(1, r̂1), then |λ| > δα0 . Thus it follows from
(15) that any spectral value of P on BV α0 in D(1, r̂1) is actually an eigenvalue. Consequently
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we have to prove that λ = 1 is the single eigenvalue of P on BV α0 in D(1, r̂1). Let λ ∈ C\{1},
be an eigenvalue of P on BV α0 , and let fλ ∈ BV α0 be such that fλ ̸= 0 and Pfλ = λfλ. Then

(1− λ)fλ = (I − P )fλ. (36)

Since λ ̸= 1, we have π(fλ) = 0. It follows that

(I − P +Π)−1 ◦ (I − P )fλ = (I − P +Π)−1 ◦ (I − P +Π)fλ = fλ.

Then we obtain by composing to the left of (36) by (I − P +Π)−1 that

(1− λ)f̂λ = fλ where f̂λ := (I − P +Π)−1fλ

so that f̂λ = (1− λ)−1fλ. It follows from (31a) applied to f = fλ that |1− λ|−1 ≤ r̂ −1
1 , thus

|1− λ| ≥ r̂1. This proves the expected statement. □

Proposition 5.2 Assume that P satisfies Assumptions (A). Let α0 ∈ (0, 1] be given in
(Dα0). Let z ∈ C be such that |z| = 1, z ̸= 1, and define

rz :=
(
1− δα0

)(
1 +

ν(V α0)∥1S∥V α0∣∣1− µz(1S)
∣∣(1− δα0

))−1

. (37)

Then there is no spectral value of P on BV α0 in the open disk D(z, rz), that is: ∀λ ∈ D(z, rz),
the operator λI − P is invertible on BV α0 .

Proof. Let z ∈ C be such that |z| = 1, z ̸= 1. Then zI − P is invertible on BV α0 from
Theorem 3.1, so that µz(1S) ̸= 1 due to Theorem 2.2. Since rz < 1 − δα0 we have to prove
that there is no eigenvalue of P on BV α0 in D(z, rz) (as in the proof of Proposition 5.1). Let
λ ∈ C be an eigenvalue of P on BV α0 (thus λ ̸= z), and let fλ ∈ BV α0 be such that Pfλ = λfλ
and ∥fλ∥V α0 = 1. We have (zI − P )fλ = (z − λ)fλ, so that (zI − P )−1fλ = (z − λ)−1fλ.
Using |z| = 1, it follows from (21) applied to fλ that |z− λ|−1 ≤ r−1

z , thus |z− λ| ≥ rz. This
proves the desired statement.

□

Under Assumptions (A) let z0 = eiϑ0 ∈ C, ϑ0 ∈ (0, π/2), be defined by

C(0, 1) ∩ C(1, r̂1) = {eiϑ0 , e−iϑ0} (38)

with r̂1 defined in (35), and let Γ0 be the following closed subset of C(0, 1):

Γ0 := {z ∈ C : z = eiϑ, ϑ ∈ [ϑ0, 2π − ϑ0]
}
.

Note that
m0 := min

z∈Γ0

∣∣1− µz(1S)
∣∣ > 0.

Indeed let α0 ∈ (0, 1] be given in (Dα0). Then for every z ∈ Γ0 we know that zI − P is
invertible on BV α0 (Theorem 3.1), so that µz(1S) ̸= 1 (Theorem 2.2). Then the positivity
of m0 follows from the continuity of the function z 7→ µz(1S) :=

∑+∞
k=1 z

−kβk(1S) on the
compact set Γ0. Finally let

r̂0 :=
(
1− δα0

)(
1 +

ν(V α0)∥1S∥V α0

m0

(
1− δα0

) )−1

. (39)
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Note that r̂0 ≤ rz0 from the definition of m0 and that rz0 ≤ r̂1 since |z0 − 1| = r̂1 and the
eigenvalue 1 cannot belong to D(z0, rz0) from Proposition 5.2. Consequently r̂0 ≤ r̂1, and we
can define ξ0 as the unique complex number such that

|ξ0| < 1 and ξ0 ∈ C(1, r̂1) ∩ C(z0, r̂0). (40)

Corollary 5.1 Assume that P satisfies Assumptions (A). Let α0 ∈ (0, 1] be given in (Dα0)
and let ξ0 be defined in (40). Then the second eigenvalue ϱα0 of P on BV α0 (see (2)) is such
that ϱα0 ≤ |ξ0|.

Proof. From the definition of m0 and from Proposition 5.2 we deduce that, for every z ∈ Γ0,
there is no spectral value of P on BV α0 in the open disk D(z, r̂0), that is: ∀z ∈ Γ0, ∀λ ∈
D(z, r̂0), the operator λI − P is invertible on BV α0 . Then Corollary 5.1 follows from Propo-
sitions 5.1 and from the spectral properties of Section 2. □

Note that the series
∑+∞

k=1 βk(1S) is convergent (see (17)) and that µ1(1S) =
∑+∞

k=1 βk(1S) =
1 since 1 is an eigenvalue of P (Theorem 2.2). Thus

1− µ−1(1S) =

+∞∑
k=1

(
1− (−1)k

)
βk(1S) = 2

+∞∑
k=1

β2k−1(1S) (41)

and 1 − µ−1(1S) ∈ [2ν(1S), 2] since we have β1(1S) = ν(1S) and
∑+∞

k=1 βk(1S) = 1. Recall
that P is said to be reversible with respect to π if π(dx)P (x, dy) = π(dy)P (y, dx). Under
Assumptions (A) and with α0 ∈ (0, 1] given in (Dα0), define

∀t > 0, ψ(t) :=
δα0(1− δα0)t+ ν(V α0)∥1S∥V α0

(1− δα0)t+ ν(V α0)∥1S∥V α0

, (42)

∀n ≥ 1, ηn := 2

n∑
k=1

β2k−1(1S) and η∞ := 2

+∞∑
k=1

β2k−1(1S) = 1− µ−1(1S). (43)

Note that for any n ≥ 1, η∞ ≥ ηn ≥ 2β1(1S) = 2ν(1S) > 0.

Corollary 5.2 Assume that P satisfies Assumptions (A), and let α0 ∈ (0, 1] be given in
(Dα0). Moreover assume that P is reversible with respect to π, that π(V 2α0) <∞, and that
the following implication holds for every λ ∈ C, |λ| > δα0 and for every f ∈ BV α0 :

Pf = λf, f ̸= 0 =⇒ π(|f |) ̸= 0. (44)

Then
∀n ≥ 1, ϱα0 ≤ ψ(η∞) ≤ ψ(ηn). (45)

Recall that the bounds of ϱα0 in (45) can be used in the L2(π)−geometrical ergodicity (see
(3)). Also recall that limn ηn = η∞ and η∞ ∈ [2ν(1S), 2]. The second bound in (45) applied
to n = 1 gives ϱα0 ≤ ψ(2ν(1S)), but this bound is not accurate in general because ν(1S) is
small, so that the bound ψ(ν(1S)) is close to 1.

Proof. From reversibility we know that P is a self-adjoint bounded linear operator on L2(π),
and that the spectral values of P on L2(π) are contained in [−1, 1], e.g. see [RR97, Bax05].
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Moreover note that every f ∈ BV α0 is such that π(|f |2) < ∞ from π(V 2α0) < ∞. Now let
λ ∈ C, |λ| > δα0 , be an eigenvalue of P on BV α0 , and let f ∈ BV α0 be such that Pf = λf and
f ̸= 0. Then π(|f |) ̸= 0 from (44), so that λ is an eigenvalue of P on L2(π). Therefore every
eigenvalue λ ∈ C of P on BV α0 such that |λ| > δα0 actually belongs to (−1,−δα0) ∪ (δα0 , 1].
Next, note that r−1 defined in (37) (with z = −1) satisfies r−1 < 1− δα0 , thus δα0 < 1− r−1.
Also observe that 1−r−1 = ψ(η∞) from an easy computation, (41) and 1−µ−1(1S) > 0. Thus,
using Theorem 2.1, the first inequality in (45) holds if we establish that there is no eigenvalue
of P on BV α0 in I1 := (1− r−1, 1) and in I−1 := [−1,−1 + r−1). This is true for I1 since we
know from Theorem 2.2 that λ = 1 is the unique solution to Equation

∑+∞
k=1 λ

−k βk(1S) = 1
in the interval (δα0 , 1]. Moreover this is true for I−1 since we know from Proposition 5.2
applied to z = −1 that there is no spectral value of P on BV α0 in the open disk D(−1, r−1).
Thus ϱα0 ≤ |−1+r−1| = 1−r−1. Finally easy computations show that ψ in (42) is decreasing
on (0,+∞). This proves the second inequality in (45) since 0 < ηn ≤ η∞.

□

Remark 5.1 Assumption (44) is used in the previous proof to ensure that every eigenvalue
λ of P on BV α0 such that |λ| > δα0 is also an eigenvalue of P on L2(π). If P is of the form
P (x, dy) = p(x, y)dµ(y) where µ is a positive measure on (X,X ) and if P admits an invariant
probability measure π(dx), then π(dx) is absolutely continuous with respect to µ (i.e. π(dx) =
π(x)µ(dx)). If moreover the density function π is positive on X, then Condition (44) holds.
Indeed, if f ∈ BV α0 is such that π(|f |) = 0, then f = 0 µ−a.s., so that ∀x ∈ X, (Pf)(x) = 0.
This proves (44). More generally note that Condition (44) is fulfilled when for every f ∈ BV α0

we have:

f = 0 π-almost surely =⇒ ∀x ∈ X, ∃n = nx ≥ 1, (Pnf)(x) = 0. (46)

Remark 5.2 In the atomic case, that is when (S) holds with S ∈ X such that ∀(a, a′) ∈
S2, P (a, ·) = P (a′, ·) and with ν(·) := P (s0, ·) for some (any) s0 ∈ S, then

∀n ≥ 1, βn(1S) = Ps0

(
RS = n

)
(47)

where RS := inf{n ≥ 1 : Xn ∈ S} is the first return time in S. Then Equality
∑+∞

k=1 βk(1S) =
1 reads as Ps0(RS < ∞) = 1, and η∞ = 2Ps0

(
RS ∈ 2N + 1

)
. Moreover Conditions (Dα0)

holds with α0 = 1 (see Appendix A). Consequently, when the assumptions of Corollary 5.2
hold with an atom S, then we have the following upper bound for the second eigenvalue ϱ1 of
P on BV :

ϱ1 ≤ ψ(2p1) =
2δ(1− δ)p1 + ν(V )∥1S∥V
2(1− δ)p1 + ν(V )∥1S∥V

with p1 := Ps0

(
RS ∈ 2N+ 1

)
.

Recall that a reversible Markov kernel P with respect to π is said to be positive if the
following condition holds

∀f ∈ L2(π), ⟨Pf, f⟩L2(π) =

∫
X
(Pf)(x)f(x)π(dx) ≥ 0. (48)

Under this condition, every eigenvalue λ of P on L2(π) is non-negative from (48). Con-
sequently, if P satisfies the assumptions of Corollary 5.2 and if P is positive, then every
eigenvalue λ of P on BV α0 such that |λ| > δα0 is actually positive. However, as already
mentioned in the proof of Corollary 5.2, λ ∈ (δα0 , 1) is not an eigenvalue of P on BV α0 since∑+∞

k=1 λ
−k βk(1S) > 1 (Theorem 2.2). Thus the following statement holds.

16



Corollary 5.3 Assume that P is a positive reversible Markov kernel with respect to π sat-
isfying Assumptions (A) and (44). Let α0 ∈ (0, 1] be given in (Dα0), and assume that
π(V 2α0) <∞. Then we have ϱα0 ≤ δα0.

Recall that α0 = 1 in the atomic case. If S is an atom, then the conclusion of Corollary 5.3
has been proved in [Bax05, Th. 1.3] (Condition (44) is not assumed in [Bax05, Th. 1.3]).
Therefore, the previous corollary extends this result to the non-atomic case, provided that
Condition (44) is assumed and that the space BV is replaced with BV α0 . The bound ϱα0 ≤ δα0

can be used in (3) too.

If P is reversible with respect to π and if ℓ ≥ 2 is any even integer, then the ℓ−th iterate
P ℓ of P is a positive reversible Markov kernel with respect to π. Moreover, if ϱ(P ℓ) is the
second eigenvalue of P ℓ on BW for some W ≥ 1, then ϱ(P ℓ)1/ℓ is the second eigenvalue of P
on BW . Indeed, writing n = kℓ+ r (euclidean division) and defining Πf = π(f)1X, we have

Pn −Π = P kℓ+r −Π = (P −Π)r
(
(P ℓ)k −Π

)
from which we easily deduce the desired result. Then the following statement follows from
Corollary 5.3 applied to P ℓ.

Corollary 5.4 Assume that P is reversible with respect to π. Moreover assume that, for
some even integer ℓ ≥ 2, the Markov kernel P ℓ satisfies Assumptions (A), so that P ℓ satisfies
Conditions (DSc) and (Dα0) with some δ(P ℓ) ∈ (0, 1) and some α0(P

ℓ) ∈ (0, 1]. Finally

suppose that P ℓ satisfies (44) and that π(V 2α0(P ℓ)) <∞. Then we have ϱα0 ≤ δα0(P ℓ)/ℓ.

Remark 5.3 For the standard (non-atomic) examples of positive reversible Markov kernels
provided by the Metropolis-Hastings algorithm for simulating the Gaussian distribution and
by the Gaussian autoregressive Markov chain, the numerical values of α0 are reported in
[HL22, Sec. 6.3-6.4]. These numerical findings show that the bound ϱα0 ≤ δα0 proved in
Corollary 5.3 is of the same order (even sometimes better) as the bounds of the V -geometrical
rate of convergence obtained in [Bax05, Sec. 8.2-8.3], see [HL22, Tables 1-2] for details.
Consequently the rate of convergence in the L2(π)−geometrical ergodicity (3) deduced from
the bound ϱα0 ≤ δα0 is of the same order as those addressed in [Bax05, Sec. 8.2-8.3].

Now, let us give a simple example for which the exact value of the second eigenvalue of P
is known and compared with the bound provided by Corollary 5.4 (applied here with ℓ = 2).
Let P = (P (i, j))(i,j)∈N2 be the reversible Markov kernel defined on X = N by

P (0, 0) = 0.1, P (0, 1) = 0.9 and ∀n ≥ 1, P (n, n− 1) := 0.6, P (n, n+ 1) := 0.4. (49)

Define ∀n ∈ N, V (n) = (0.6/0.4)n/2. We know that the second eigenvalue ϱ1 of P on BV is
given by ϱ1 = 0.98, see [Bax05, Sec. 8.4], [HL14b, Prop. 4.1] where this exact value is obtained
from algebraic computations. Note that P is not positive but P 2 is. Moreover P 2 satisfies the
assumptions of Corollary 5.4. Indeed, P 2 satisfies (S) with S = {0, 1}, ν = ν(0)δ0 + ν(1)δ1
with

ν(0) = min
(
P 2(0, 0), P 2(1, 0)

)
= 0.06, ν(1) = min

(
P 2(0, 1), P (1, 1)

)
= 0.09,

and P 2 satisfies (DSc) with V as above defined and with δ(P 2) = 4×0.6×0.4 = 0.96. Finally
the real number α0(P

2) ∈ (0, 1] has to be chosen such that P 2 satisfies (Dα0), that is

∀i ∈ {0, 1}, (P 2V α0(P 2))(i) = 0.96α0(P 2) (0.6/0.4)i α0(P 2)/2 + 0.06 + 0.09× (0.6/0.4)α0(P 2)/2.
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We find α0(P
2) = 0.71. Consequently we deduce from Corollary 5.4 that

ϱα0 ≤
√
0.96α0,2 ≤

√
0.9714 = 0.9856.

This bound is not very far from the exact value 0.98.

We conclude this section with an application to Markov chain Monte Carlo (MCMC)
algorithms. Let π (the target density) be a positive distribution density function on X = Rd,
and let q(x, ·) be a proposal density on X = Rd for any x ∈ Rd. Define

∀(x, y) ∈ Rd × Rd, p(x, y) :=

{
min

(
1 , π(y) q(y,x)

π(x) q(x,y)

)
if π(x) q(x, y) > 0

1 if π(x) q(x, y) = 0.

Recall that the associated Metropolis-Hastings kernel is defined by

P (x, dy) := r(x) δx(dy) + p(x, y)q(x, y) dy with r(x) := 1−
∫
Rd

p(x, z)q(x, z) dz, (50)

where δx(dy) denotes the Dirac distribution at x, and that P is reversible with respect
to π. For any x0 ∈ Rd, let fx0 be the Dirac function at x0, that is: fx0(x0) = 1 and
∀x ̸= x0, fx0(x) = 0. Then Pfx0 = r(x0)fx0 , thus r(x0) is an eigenvalue of P on the space
BW for any function W ≥ 1. Therefore a necessary condition for P to be W−geometrically
ergodic is that r∞ := supx∈Rd r(x) < 1.

Corollary 5.5 Assume that the target density function π is positive on Rd and that r∞ <
1. Moreover assume that the Metropolis-Hastings Markov kernel P defined in (50) satisfies
Assumptions (A), and let α0 ∈ (0, 1] be given in (Dα0). Finally suppose that δα0 ≥ r∞ and
that π(V 2α0) <∞. Then the second eigenvalue ϱα0 of P on BV α0 satisfies (45).

Proof. Corollary 5.5 follows from Corollary 5.2, provided that P in (50) satisfies Condi-
tion (44). Let λ ∈ C, |λ| > δα0 , and let f ∈ BV α0 , f ̸= 0, be such that Pf = λf . We must
prove that π(|f |) ̸= 0. Suppose that π(|f |) = 0. Since π > 0, we have f(y) = 0 for almost
every y ∈ Rd with respect to Lebesgue’s measure on Rd. Then

∀x ∈ Rd,

∫
Rd

f(y) p(x, y)q(x, y) dy = 0,

hence: ∀x ∈ Rd, λf(x) = (Pf)(x) = r(x) f(x). Since f ̸= 0, there exists x0 ∈ Rd such that
f(x0) ̸= 0, so that r(x0) = λ. But this is impossible since ∀x ∈ Rd, r(x) ≤ δα0 < |λ|. □

Remark 5.4 Note that, under the conditions (DSc) and r∞ < 1, the real number δ in (DSc)
may always be chosen such that δα0 ≥ r∞. For instance choose δ in (DSc) such that r∞ ≤ δ,
and compute the associated real number α0 of (Dα0): then we have r∞ ≤ δ ≤ δα0. Moreover
observe that, if (Dα0) holds for some δ ∈ (0, 1) and α0 ∈ (0, 1], then we automatically have
∀x ∈ Sc, r(x) ≤ δα0 since

∀x ∈ Sc, r(x)V (x)α0 ≤ (PV α0)(x) ≤ δα0V (x)α0

from the definition of P in (50) and from (Dα0). Hence, under Assumption (Dα0), the
condition δα0 ≥ r∞ is in fact equivalent to: ∀x ∈ S, δα0 ≥ r(x). In practice δ and α0 of
(Dα0) have to be chosen so that δα0 ≥ r∞ and that the first or the second bound used in (45)
is minimal.
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6 Applications to perturbed Markov kernels

Let {Pθ}θ∈Θ be a family of transition kernels on (X,X ), where Θ is an open subset of some
metric space. We assume that the family {Pθ}θ∈Θ satisfies the following conditions: there
exist S ∈ X and ν ∈ M+ such that

ν(1S) > 0 and ∀θ ∈ Θ, ∀x ∈ X, ∀A ∈ X , Pθ(x,A) ≥ ν(1A) 1S(x) (SΘ)

and there exists a Lyapunov function V : X→[1,+∞) such that

∃δ ∈ (0, 1), ∀θ ∈ Θ, ∀x ∈ Sc, (PθV )(x) ≤ δ V (x) (DΘ,Sc)

K := sup
θ∈Θ

sup
x∈S

(PθV )(x) <∞. (KΘ)

This means that the whole family {Pθ}θ∈Θ has is a small-set S with the same positive mea-
sure ν and satisfies the geometric drift conditions (DSc)-(K) in a uniform way in θ ∈ Θ.
Throughout this section, Assumptions (AΘ) will stand for the set of Assumptions (SΘ)-
(DΘ,Sc)-(KΘ). Then for every θ ∈ Θ there exists a unique Pθ−invariant probability mea-
sure πθ on (X,X ) such that πθ(V ) < ∞. Moreover, under Assumptions (AΘ), there exists
α0 ∈ (0, 1] such that

∀θ ∈ Θ, PθV
α0 ≤ δα0 V α0 + ν(V α0)1S . (Dα0

Θ )

In fact Property (Dα0
Θ ) can be proved as for (Dα0) (see Appendix A) since the data of

Assumptions (AΘ) are the same for every θ ∈ Θ. Now, let θ0 ∈ Θ be fixed, and define

∀θ ∈ Θ, ∆θ,α0(x) := ∥Pθ(x, ·)− Pθ0(x, ·)∥′V α0 , (51)

that is: ∆θ,α0(x) is the V
α0-weighted total variation norm of Pθ(x, ·)− Pθ0(x, ·). Next let us

introduce the following condition:

∀x ∈ X, lim
θ→ θ0

∆θ,α0(x) = 0. (∆α0
Θ )

The stationary distribution πθ0 of Pθ0 is supposed to be unknown and not directly com-
putable, and Pθ for θ ̸= θ0 must be thought of as a perturbed Markov kernel of Pθ0 . Then, if
the stationary distribution πθ of Pθ is computable for θ ̸= θ0, Theorem 6.1 below provides an
explicit control for the V α0-weighted total variation norm ∥πθ − πθ0∥′V α0 , provided that the
function ∆θ,α0 in (51) is computable, so that the real number πθ(∆θ,α0) in (52a)-(52b) below
is available.

Provided that V is replaced with V α0 , Inequalities (52a)-(52b) below extend to the non-
atomic case the statement [LL18, Th. 2] obtained in the context of truncation of discrete
Markov chains with an atom (see Remark 6.1).

Theorem 6.1 Suppose that the family {Pθ}θ∈Θ satisfies Assumptions (AΘ). Let α0 ∈ (0, 1]
be given in (Dα0

Θ ), let θ0 ∈ Θ and assume that Condition (∆α0
Θ ) holds. Then

lim
θ→ θ0

∥πθ − πθ0∥′V α0 = 0 and lim
θ→ θ0

πθ
(
∆θ,α0

)
= 0.

Moreover we have for every θ ∈ Θ∥∥πθ − πθ0
∥∥′
TV

≤
∥∥πθ − πθ0

∥∥′
V α0

≤ 1 + πθ0(V
α0)∥1X∥V α0

1− δα0
× πθ

(
∆θ,α0

)
(52a)

≤ 1− δα0 + ν(V α0)∥1X∥V α0

(1− δα0)2
× πθ

(
∆θ,α0

)
. (52b)
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Remark 6.1 (Comparison with [LL18]) Let P := (P (i, j))(i,j)∈N2 be a stochastic infinite
matrix and for every k ≥ 1 let Pk be the linear augmentation (e.g. in the last column) of the
(k+ 1)× (k+ 1) northwest corner truncation of P . Hence Pk is a stochastic matrix of order
k + 1. Assume that P satisfies (S) with an atom S ⊂ N, and that there exist b > 0 and a
Lyapunov function V = (V (n))n∈N such that PV ≤ δV +b1S and ∥1X∥V = 1. Let π (resp. πk)
be the invariant probability measure of P (resp. of Pk). For the sake of simplicity we also
denote by Pk and πk the natural extensions to N of Pk and πk respectively. For every k ∈ N
define

∀i = 0, . . . , k, ∆k(i, V ) =
∑
j>k

P (i, j)
(
V (k) + V (j)

)
and δk :=

k∑
i=0

πk(i)∆k(i, V ). (53)

It is proved in [LL18, Th. 2] that

∥∥π − πk
∥∥′
V

≤ 1 + π(V )

1− δ
× δk (54a)

≤ 1− δ + b

(1− δ)2
× δk. (54b)

Let us show that Properties (54a)-(54b) and (52a)-(52b) coincide in this truncation and
atomic context. Note that Θ = N ∪ {∞} here, with P∞ = P and Pθ = Pk for θ = k ∈ N.
Moreover recall that in the atomic case we have α0 = 1 in (Dα0

Θ ). Hence ∆k(i, V ) and δk
in (53) are nothing else but the error term in (51) and the real number πθ(∆θ,α0) of Theo-
rem 6.1. Moreover the constants in (54a)-(54b) are exactly those in (52a)-(52b) since we can
choose b = ν(V ) in the atomic case. This proves the claimed fact. Finally mention that the
proof of the property limk δk = 0 in [LL18] is not complete because of the incorrect statement
[LL18, lem. 1].

Again, without lost of generality we may suppose that α0 = 1 for the proof of Theorem 6.1.
If α0 < 1, replace V and δ with V α0 and δα0 respectively in the proof below. We use the next
lemmas where the assumptions of Theorem 6.1 are supposed to hold. These lemmas extend
results in [Twe98, Sect. 3] and [LL18, Eq. (3)] proved for truncated discrete Markov kernels.

Lemma 6.1 We have: limθ→ θ0 ∥πθ − πθ0∥′V = 0.

Proof. Note that
∀θ ∈ Θ, PθV ≤ cV with c := δ +K (55)

from (KΘ)-(DΘ,Sc). Moreover we have for every f ∈ BV such that ∥f∥V ≤ 1

∀n ≥ 1, ∀x ∈ X,
∣∣(Pn

θ0f)(x)− (Pn
θ f)(x)

∣∣ ≤ n−1∑
j=0

cn−1−j
(
P j
θ0
∆θ,1

)
(x). (56)

Indeed, for n = 1 Inequality (56) holds since we have for every f ∈ BV such that ∥f∥V ≤ 1∣∣(Pθ0f)(x)− (Pθf)(x)
∣∣ ≤ ∆θ,1(x)
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from the definition of the V -weighted total variation norm. Next proceed by induction.
Assume that (56) holds for some n ≥ 1. Let g ∈ BV be such that ∥g∥V ≤ 1. Then∣∣(Pn+1

θ0
g)(x)− (Pn+1

θ g)(x)
∣∣ ≤

∣∣(Pn
θ0(Pθ0 − Pθ)g

)
(x)

∣∣+ ∣∣((Pn
θ0 − Pn

θ )Pθg
)
(x)

∣∣
≤

∫
X

∣∣(Pθ0g)(y)− (Pθg)(y)
∣∣Pn

θ0(x, dy) +
n−1∑
j=0

cn−j
(
P j
θ0
∆θ0,1

)
(x)

≤
∫
X
∆θ0,1(y)P

n
θ0(x, dy) +

n−1∑
j=0

cn−j
(
P j
θ0
∆θ0,1

)
(x)

using the triangular inequality, the fact that ∥Pθg∥V ≤ c by (55) and the induction assump-
tion, and finally the definition of ∆θ,1. This gives (56) at order n + 1. Now let x0 ∈ X be
fixed and define

εn,Θ := sup
θ∈Θ

∥∥Pn
θ (x0, ·)− πθ

∥∥′
V
. (57)

Let f ∈ BV be such that ∥f∥V ≤ 1. Then we have∣∣πθ0(f)− πθ(f)
∣∣ ≤

∣∣πθ0(f)− (Pn
θ0f)(x0)

∣∣+ ∣∣(Pn
θ0f)(x0)− (Pn

θ f)(x0)
∣∣+ ∣∣(Pn

θ f)(x0)− πθ(f)
∣∣

≤ 2 εn,Θ +

n−1∑
j=0

cn−1−j
(
P j
θ0
∆θ,1

)
(x0)

from the definition of εn,Θ and from (56). Next fix n ≥ 1. We have

∀j = 0, . . . , n− 1, lim
θ→ θ0

(
P j
θ0
∆θ,1

)
(x0) = 0

from Lebesgue’s theorem applied to the probability measure P j
θ0
(x0, ·) using Assumption (∆α0

Θ )
(with α0 = 1 here) and

∀θ ∈ Θ, ∆θ,1 ≤ 2cV (58)

with c defined in (55). Hence

∀n ≥ 1, lim sup
θ→ θ0

∥∥πθ0 − πθ
∥∥′
V
≤ 2 εn,Θ.

Moreover we have
lim
n
εn,Θ = 0 (59)

from [Bax05, GP14] since Assumptions (AΘ) are stated in a uniform way in θ ∈ Θ. Prop-
erty (59) can be also derived from the results of Sections 2-3 when the parameter set Θ is
assumed to be locally compact, see Appendix C. It follows that lim supθ→ θ0

∥∥πθ0 −πθ∥∥′V = 0,
hence the assertion of Lemma 6.1 holds. □

Lemma 6.2 For any f ∈ BV , let us introduce f0 := f − πθ0(f)1X. Set f̃0 := (I − Rθ0)
−1f0

with Rθ0 := Pθ0 − ν(·)1S. Then

πθ(f)− πθ0(f) = πθ
(
∆θf̃0

)
with ∆θ := Pθ − Pθ0 .
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Proof. Since πθ0(f0) = 0, we know from Theorem 4.1 applied to Pθ0 that f̃0 is a solution to

Poisson’s equation, that is f̃0 satisfies f̃0 − Pθ0 f̃0 = f0, or Pθ0 f̃0 = f̃0 − f0. Then, it follows
that

πθ
(
∆θf̃0

)
= πθ

(
Pθf̃0 − Pθ0 f̃0

)
= πθ(f̃0) + πθ

(
− f̃0 + f0

)
= πθ(f0) = πθ(f)− πθ0(f) (from the definition of f0).

□

Proof of Theorem 6.1. That limθ→ θ0 ∥πθ − πθ0∥′V = 0 is proved in Lemma 6.1.

Next we have

πθ(∆θ,1) ≤
∣∣πθ(∆θ,1)− πθ0(∆θ,1)

∣∣+ πθ0(∆θ,1) ≤ 2c∥πθ − πθ0∥′V + πθ0(∆θ,1)

from (58). Moreover we obtain that limθ→ θ0 πθ0(∆θ,1) = 0 from Lebesgue’s dominated
convergence theorem with respect to the probability measure πθ0 using Assumption (∆α0

Θ )
(with α0 = 1 here), (58) and πθ0(V ) <∞. We have proved that limθ→ θ0 πθ

(
∆θ,1

)
= 0. Now

let f ∈ BV be such that ∥f∥V ≤ 1. Define f0 := f − πθ0(f)1X and f̃0 := (I −Rθ0)
−1f0 as in

Lemma 6.2. Then by using Theorem 4.1 applied to the Markov kernel Pθ0 we obtain that∣∣πθ(f)− πθ0(f)
∣∣ ≤

∫
X

∣∣(Pθf̃0)(x)− (Pθ0 f̃0)(x)
∣∣πθ(dx) (from Lemma 6.2)

≤ ∥f̃0∥V
∫
X
∆θ,1(x)πθ(dx) (from the definition of ∆θ,1)

≤ 1

1− δ
∥f0∥V × πθ

(
∆θ,1

)
(from (30))

≤ 1 + πθ0(V )||1X ||V
1− δ

× πθ
(
∆θ,1

)
(from the definition of f0)

≤ 1− δ + ν(V )∥1X∥V
(1− δ)2

× πθ
(
∆θ,1

)
(from πθ0(V ) ≤ ν(V )/(1− δ)).

The proof of Theorem 6.1 is complete. □

Remark 6.2 As introduced in [Twe98] for discrete set X, Condition (∆α0
Θ ) is the expected

continuity assumption in order to study the V α0-weighted total variation distance between πθ
and πθ0. When this condition is satisfied, not only the bound (52a) in Theorem 6.1 has the
expected form, but also the constant in (52a) is simple (and moreover explicit in (52b)). Let
us compare Condition (∆α0

Θ ) with alternative assumptions used in prior works.

� The standard operator norm continuity assumption introduced in [Kar86] writes as
limθ→ θ0 ∥Pθ − Pθ0∥V α0 = 0, namely

lim
θ→ θ0

sup
x∈X

∆θ,α0(x)

V (x)α0
= 0.

This condition is clearly much more restrictive than Condition (∆α0
Θ ).

� The weak operator norm continuity assumptions used in [SS00, FHL13, HL14a, RS18,
MARS20] requires that

lim
θ→ θ0

sup
x∈X

∥Pθ(x, ·)− Pθ0(x, ·)∥′TV

V (x)α0
= 0. (60)
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To understand the difference between Conditions (∆α0
Θ ) and (60), consider the following

simple example derived from perturbed linear autoregressive models:

∀θ ∈ (0, 1), ∀x ∈ X = R, ∀A ∈ X , Pθ(x,A) :=

∫
R
1A(y) ν(y − θx) dy,

where X is here the Borel σ−algebra on R and where ν is some probability density
function (p.d.f.) with respect to Lebesgue’s measure on R. Let θ̂ ∈ (0, 1). It is well-
known that, under moment conditions on the p.d.f. ν, the family {Pθ}θ∈(0,θ̂) satisfies

Assumptions (AΘ) (e.g. see [RS18, HL23]). Here we only focus on Conditions (∆α0
Θ )

and (60). Let θ0 ∈ (0, θ̂) be fixed. Condition (∆α0
Θ ) writes as follows

∀x ∈ R, lim
θ→ θ0

∫
X
V (y)α0

∣∣ν(y − θx)− ν(y − θ0x)
∣∣dy, (61)

while Condition (60) is:

lim
θ→ θ0

sup
x∈R

∫
X
∣∣ν(z − θx)− ν(z − θ0x)

∣∣dz
V (x)α0

= 0. (62)

Actually Conditions (61) and (62) are quite different. In (61) the convergence is simple
in x ∈ R, but the presence of V (y) in the integral may be problematic. In (62) the
absence of the function V in the integral is of course an advantage, but the convergence
has to be uniform on R (actually it has to be uniform on every compact of R thanks
to the division by V (x)). In this example Condition (62) is satisfied thanks to the
continuity of t 7→ ν(· − t) from R to the Lebesgue space L1(R) (see [HL23]), so that
the bounds obtained in [RS18, HL23] for ∥πθ − πθ0∥′TV hold. However, if the p.d.f. ν
satisfies Condition (61) (thanks to Lebesgue’s theorem for instance), then the bound
(52a) and (52b) are simpler and more explicit than those in [RS18, HL23].

A Complement on the real number α0

Let α ∈ (0, 1]. If x ∈ X \ S, then we have (PV α)(x) ≤ δα V (x)α from (DSc) and Jensen’s
inequality. Recall that K := supx∈S(PV )(x) (see (K)). We have 1 ≤ supx∈S(PV

α)(x) ≤ Kα

from 1X ≤ V α and PV α ≤ (PV )α using again Jensen’s inequality. Finally we have

∀x ∈ S, (PV α)(x)− δα V (x)α − ν(V α) ≤ Kα − δα − ν(1X)

from 1X ≤ V . Passing to the limit when α→ 0 provides the existence of α0 ∈ (0, 1] such that
(Dα0) holds since ν(1X) > 0. Note that, if Condition (S) is fulfilled with an atom S and
with ν(·) := P (a0, ·) for some (any) a0 ∈ S, then (Dα0) holds with α0 = 1. Indeed we then
have

∀x ∈ S, PV (x)− δ V (x)− ν(V ) = −δ V (x) ≤ 0.

Since under Assumption (DSc) we have PV α ≤ δα V α on X \ S for any α ∈ (0, 1], the
computation of α0 in (Dα0) only concerns the elements x ∈ S. Under Assumption (S) define
σ := 1− ν(1X) ∈ [0, 1). The value σ = 0 corresponds to the atomic case for which α0 = 1. If
α0 = 1 does not work, the following statement is useful to find an explicit value for α0 ∈ (0, 1)
in (Dα0).
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Proposition A.1 Assume that P satisfies Condition (S) with S that is not an atom, so that
σ ∈ (0, 1). Then we have for any Lyapunov function V :

∀α ∈ (0, 1], ∀x ∈ S, (PV α)(x)− ν(V α) ≤ σ

σα
[
(PV )(x)− ν(V )

]α
. (63)

Proof. Let x ∈ S. Note that σx(·) := P (x, ·) − ν(·) is a non-negative measure on (X,X )
from Assumption (S), and that σx(1X) = 1 − ν(1X) = σ does not depend on x. Define the
following probability measure on (X,X ): σ̂x(·) = σx(·)/σ. Let α ∈ (0, 1]. It follows from
Jensen’s inequality that

(PV α)(x)− ν(V α)

σ
= σ̃x(V

α) ≤
[
σ̃x(V )

]α
=

[
(PV )(x)− ν(V )

]α
σα

,

from which we deduce (63).

□

The real number α0 can be computed as follows thanks to Proposition A.1. Let M :=
K − ν(V ) with K given in (K). Then

∀α ∈ (0, 1], ∀x ∈ S, (PV α)(x)− ν(V α)− δαV (x)α ≤ σ

σα
Mα − δα

since V ≥ 1X. Then α0 ∈ (0, 1] can be chosen such that σ
σα0 M

α0 − δα0 ≤ 0 since

lim
α→ 0

[ σ
σα

Mα − δα
]
= σ − 1 < 0.

B Order of the eigenvalues of P

Under Assumptions (A) we deduce from Property (11) that z 7→ µz given in (17) is derivable
on the domain D0 = {z ∈ C : |z| > δα0} with α0 ∈ (0, 1] given in (Dα0), and that its
derivative is given by

∀z ∈ D0, µ′z := −
+∞∑
k=1

k z−(k+1) βk (64)

which is absolutely convergent in B′
V α0 .

Proposition B.1 Assume that P satisfies (A), and let α0 ∈ (0, 1] be given in (Dα0). Let
λ ∈ D0 be an eigenvalue of P on BV α0 (equivalently µλ(1S) = 1 from Theorem 2.2). Then
the two following assertions are equivalent:

(i) λ is of order one, that is Ker(P − λI)2 = Ker(P − λI) or equivalently Ker(P ∗ − λI)2 =
Ker(P ∗ − λI);

(ii) µ′λ(1S) ̸= 0.

Moreover, if we have µ′λ(1S) = 0, then the system {µλ, µ′λ} form a basis of the subspace
Ker(P ∗ − λI)2 := {ψ ∈ B′

V α0 : ψ ◦ (P − λI)2 = 0}.
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Proof. Again we suppose that α0 = 1 in (Dα0). Let λ ∈ C be an eigenvalue of P on BV such
that |λ| > δ. Assume that µ′λ(1S) = 0. From (19) we obtain the following equality in B′

V

µ′λ ◦ P = µλ + λµ′λ + µ′λ ◦ T

with ∀f ∈ BV , (µ′λ ◦ T )(f) = −
+∞∑
k=1

k λ−(k+1) βk(Tf) = − ν(f)

+∞∑
k=1

k λ−(k+1) βk(1S)

= −ν(f)µ′λ(1S) = 0.

Hence µ′λ ◦ P = λµ′λ + µλ. Recall that µλ ∈ Ker(P ∗ − λI) (Theorem 2.2) with µλ ̸= 0 since
µλ(1S) = 1. Thus µ′λ is nonzero and satisfies µ′λ ◦ (P − λI) = µλ ∈ Ker(P ∗ − λI), so that
µ′λ ∈ Ker(P ∗ − λI)2 \Ker(P ∗ − λI). We have proved the implication (i) ⇒ (ii). Conversely,
assume that there exists ψ ∈ B′

V , ψ ̸= 0, such that ψ ◦ (P − λI)2 = 0 and ψ ◦ (P − λI) ̸= 0.
Since ϕ := ψ ◦ (P − λI) ∈ Ker(P ∗ − λI), we deduce from the last assertion of Theorem 2.2
that ϕ = c µλ for some c ∈ C. Obviously we may suppose that c = 1 (replacing ψ with ψ/c).
Hence ψ ◦ P = λψ + µλ, and an easy induction gives

∀n ≥ 0, ψ ◦ Pn = λnψ + nλn−1µλ.

Next, composing on the left by ψ in (20), we obtain the following equalities in B′
V

λnψ + nλn−1µλ − ψ(1S)
n∑

k=1

λn−k βk − µλ(1S)
n∑

k=1

(n− k)λn−k−1 βk = O(δn).

Using µλ(1S) = 1 we deduce that

ψ − ψ(1S)
n∑

k=1

λ−k βk +
n∑

k=1

kλ−(k+1) βk + nλ−1

(
µλ −

n∑
k=1

λ−k βk

)
= o(1).

When n→+∞ we obtain that
ψ = ψ(1S)µλ + µ′λ

since µλ −
∑n

k=1 λ
−k βk = O((δ/|λ|)n) with |λ| > δ. Applying the above equality to the

function 1S gives µ′λ(1S) = 0 since µλ(1S) = 1. We have proved the implication (ii) ⇒ (i),
as well as the last assertion of Proposition B.1.

□

Under Assumptions (A) define for every z ∈ C such that |z| > δα0

χS(z) = µz(1S)− 1 =
+∞∑
k=1

z−k βk(1S) − 1.

We know from Theorem 2.2 that λ ∈ C such that δα0 < |λ| ≤ 1 is an eigenvalue of P on
BV α0 if, and only if, χS(λ) = 0. Moreover, from Proposition B.1, such an eigenvalue λ is of
order one if, and only if, χ′

S(λ) ̸= 0. An easy extension of Proposition B.1 shows that, for

every p ≥ 2, λ is of order p if, and only if, ∀i = 0, . . . , p− 1, χ
(i)
S (λ) = 0 and χ

(p)
S (λ) ̸= 0.
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C Proof of (59) when Θ is locally compact

The following statement shows that, under Assumptions (AΘ), the family {Pθ}θ∈Θ satisfies
(2) in a uniform way in θ when Θ is locally compact, so that Property (59) holds. Under

Assumptions (AΘ), we denote by ϱ
(θ)
α0 the second eigenvalue of Pθ on BV α0 .

Proposition C.1 Assume that {Pθ}θ∈Θ satisfies Assumptions (AΘ). Let α0 ∈ (0, 1] be given
in (Dα0

Θ ), let θ0 ∈ Θ and suppose that Assumption (∆α0
Θ ) holds. Moreover suppose that Θ

is locally compact. Then there exists a compact neighbourhood Vθ0 of θ0 in Θ such that

∀θ ∈ Vθ0 , ϱ(θ)α0
≤ max(δα0 , ϱ(θ0)α0

). (65)

Moreover, for every ρ ∈
(
max(δα0 , ϱ

(θ0)
α0 ), 1

)
, we have

∀θ ∈ Vθ0 , ∥Pn
θ f − πθ(f)1X∥V α0 ≤ ρ

2π(ρ− δα0)

(
1 +

ν(V α0)∥1S∥V α0

mρ,Θ

(
ρ− δα0

) )
ρn (66)

with mρ,Θ := min
{
|1− µ(θ)z (1S)

∣∣ : z ∈ C : |z| = ρ, θ ∈ Vθ0

}
> 0. (67)

Proof. Again we suppose that α0 = 1. Note that under Assumptions (AΘ) we have

∀k ≥ 1, ∀θ ∈ Θ, ∥Rk
θ∥V ≤ δk with Rθ := Pθ − ν(·)1S (68)

from (11) and from the uniformity of (AΘ) in θ ∈ Θ. Define

∀θ ∈ Θ, ∀k ≥ 1, β
(θ)
k = ν ◦Rk−1

θ . (69)

Hence
∀k ≥ 1, ∀θ ∈ Θ, β

(θ)
k (1S) ≤ ν(V )∥1S∥V δk−1. (70)

For every z ∈ C such that |z| > δ and for every θ ∈ Θ we define

µ(θ)z (1S) :=
+∞∑
k=1

z−kβ
(θ)
k (1S). (71)

Let f ∈ BV such that ∥f∥V ≤ 1. Observing that ∆θ,1(x) := ∥Rθ(x, ·)−Rθ0(x, ·)∥V and that
RθV ≤ V from (Dα0

Θ ) (with α0 = 1 here), we can prove as in (56) that

∀k ≥ 1, ∀x ∈ X,
∣∣(Rk

θ0f)(x)− (Rk
θf)(x)

∣∣ ≤ k−1∑
j=0

(
Rj

θ0
∆θ,1)(x) ≤

k−1∑
j=0

(
P j
θ0
∆θ,1)(x).

Note that β
(θ)
1 = ν. Then, using the definition (69) of β

(θ)
k , we have for every k ≥ 2

∣∣β(θ)k (f)− β
(θ0)
k (f)

∣∣ ≤ ∫
X

∣∣(Rk−1
θ f)(x)− (Rk−1

θ0
f)(x)

)
| dν(x) ≤

k−2∑
j=0

ν
(
P j
θ0
∆θ,1

)
.

Moreover we have
∀j = 0, . . . , k − 2, lim

θ→ θ0
ν
(
P j
θ0
∆θ,1

)
= 0
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from Lebesgue’s dominated convergence theorem with respect to the positive measure νP j
θ0

using Assumption (∆α0
Θ ), (58) and ν(P j

θ0
V ) <∞ (use (55)). This proves that

∀k ≥ 1, lim
θ→ θ0

∥β(θ)k − β
(θ0)
k ∥′V = 0. (72)

To simplify, for every θ ∈ Θ and for every z ∈ C such that |z| > δ, we set ϕ(θ, z) := µ
(θ)
z (1S)

(see (71)). We easily deduce from (70) and (72) that ϕ is continuous on Θ×{z ∈ C : |z| > δ}
(note that θ0 has been arbitrarily chosen in Θ). Let ρ ∈

(
max(δ, ϱ(θ0), 1

)
, where ϱ(θ0) denotes

the second eigenvalue of Pθ0 on BV . Let γ ∈ (0, 1 − ρ), and finally let Dρ,γ be the following
compact subset of C:

Dρ,γ :=
{
z ∈ C : |z| ≥ ρ, |z − 1| ≥ γ

}
.

We know from the definition of ϱ(θ0) and from Theorem 2.2 that

∀z ∈ Dρ,γ , ϕ(θ0, z) ̸= 1. (73)

Let us prove that there exists a neighbourhood Vθ0 ≡ Vθ0(ρ, γ) of θ0 in Θ such that

∀z ∈ Dρ,γ , ∀θ ∈ Vθ0 , ϕ(θ, z) ̸= 1. (74)

Assume that such a neighbourhood does not exist. Then there exists a sequence (ϑn)n≥1 ∈ ΘN

and a sequence (zn)n≥1 ∈ D N
ρ,γ such that limϑn = θ0 and ∀n ≥ 1, ϕ(ϑn, zn) = 1. Up to select

a subsequence we can suppose that limn zn = u for some u in the compact set Dρ,γ . Then
we deduce from the continuity of ϕ that

ϕ(θ0, u) = lim
n
ϕ(ϑn, zn) = 1.

This contradicts Property (73). Hence (74) is proved. Next let r̂1 be defined in (35) (with
α0 = 1 here), let γ ∈ (0,min(1 − ρ, r̂1/2)) and let Vθ0 ≡ Vθ0(ρ, γ) such that (74) holds. Let
us prove that

∀z ∈ C, |z| ≥ ρ, z ̸= 1, ∀θ ∈ Vθ0 , ϕ(θ, z) ̸= 1. (75)

First it follows from the uniformity in θ ∈ Θ of Assumptions (AΘ) and from Proposition 5.1
that, for every θ ∈ Θ, λ = 1 is the single spectral value of Pθ on BV in the open disk D(1, r̂1).
Thus we have

∀θ ∈ Θ, ∀z ∈ D(1, r̂1), z ̸= 1, ϕ(θ, z) ̸= 1 (76)

from Theorem 2.2. Then (75) follows from (74) and (76) since γ < r̂1/2.

Now we can complete the proof of Proposition C.1. Let ρ ∈
(
max(δ, ϱ(θ0), 1

)
. Using

the spectral properties of Section 2 and Theorem 2.2 we deduce from (75) that, for every
θ ∈ Vθ0 , the spectral gap ϱ(θ) of Pθ on BV is less than ρ. In fact this gives (65) since ρ is
arbitrarily close to max

(
δ, ϱ(θ0)

)
. Next note that the neighbourhood Vθ0 of θ0 in (75) can

be assumed to be compact since Θ is locally compact. Then (67) follows from the continuity
of ϕ on the compact set H := Vθ0 × {z ∈ C : |z| = ρ} since we know from (75) that
∀(θ, z) ∈ H, ϕ(θ, z) ̸= 1. Finally (66) follows from Theorem 3.1 applied to Pθ, θ ∈ Vθ0 . □
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[AP07] Y. F. Atchadé and F. Perron. On the geometric ergodicity of Metropolis-Hastings
algorithms. Statistics, 41(1):77–84, 2007.

[Bax05] P. H. Baxendale. Renewal theory and computable convergence rates for geomet-
rically ergodic Markov chains. Ann. Appl. Probab., 15(1B):700–738, 2005.

[Del17] B. Delyon. Convergence rate of the powers of an operator. Applications to stochas-
tic systems. Bernoulli, 23(4A):2129–2180, 2017.

[DMPS18] R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov chains. Springer Series
in Operations Research and Financial Engineering. Springer, 2018.
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