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Abstract

In this paper, we deal with a Markov chain on a measurable state space (X,X ) which
has a transition kernel P admitting an aperiodic small-set S and satisfying the standard
geometric-drift condition. Under these assumptions, there exists α0 ∈ (0, 1] such that
PV α0 ≤ δα0 V α0 + ν(V α0)1S . Hence P is V α0−geometrically ergodic and its “second
eigenvalue” ϱα0 provides the best rate of convergence. Setting R := P − ν(·)1S and
Γ := {λ ∈ C, δα0 < |λ| < 1}, ϱα0 is shown to satisfy, either ϱα0 = max

{
|λ| : λ ∈

Γ,
∑+∞

k=1 λ
−k ν(Rk−11S) = 1

}
if this set is not empty, or ϱα0

≤ δα0 . Actually the set
is finite in the first case and is composed by the spectral values of P in Γ. The second
case occurs when P has no spectral value in Γ. Moreover, a bound of the operator-
norm of (zI−P )−1 allows us to derive an explicit formula for the multiplicative constant
in the rate of convergence, which can be evaluated provided that any information of
the “second eigenvalue” is available. Such numerical computation is carried out for a
classical family of reflected random walks. Moreover we obtain a simple and explicit
bound of the operator-norm of (I − P + π(·)1X)−1 involved in the definition of the so-
called fundamental solution to Poisson’s equation. This allows us to specify the location
of the eigenvalues of P and, then, to obtain a general bound on ϱα0 . The reversible case
is also discussed. In particular, the bound of ϱα0

obtained for positive reversible Markov
kernels is the expected one, and numerical illustrations are proposed for the Metropolis-
Hastings algorithm and for the Gaussian autoregressive Markov chain. The bound for
the operator-norm of (I − P + π(·)1X)−1 is derived from an estimate, only depending on
δα0 , of the operator-norm of (I − R)−1 which provides another way to get a solution to
Poisson’s equation. This estimate is also shown to be of greatest interest to generalize
the error bounds obtained for perturbed discrete and atomic Markov chains in [LL18] to
the case of general geometrically ergodic Markov chains. These error estimates are the
simplest that can be expected in this context. All the estimates in this work are expressed
in the standard V α0−weighted operator norm.
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1 Introduction

Let (X,X ) be a measurable space, and let M+ denote the set of finite non-negative measures
on (X,X ). For any µ ∈ M+ and any µ-integrable function f : X→C, µ(f) denotes the
integral

∫
fdµ. For any measurable function W ≥ 1 we denote by (BW , ∥ · ∥W ) the Banach

space of measurable functions f : X→C such that ∥f∥W := supx∈X |f(x)|/W (x) < ∞. The
identity map on BW is denoted by I, and (B′

W , ∥ · ∥′W ) stands for the topological dual space
of BW (i.e. the Banach space of C-valued bounded linear maps on BW ). For any µ ∈ M+

satisfying µ(W ) <∞, the map f 7→ µ(f) belongs to B′
W , and for any such (µ1, µ2) ∈ (M+)2,

the norm ∥µ1 − µ2∥′W coincides with the standard W -weighted total variation norm, that is:

∥µ1 − µ2∥′W := sup
|f |≤W

∣∣µ1(f)− µ2(f)
∣∣. (1)

Throughout the paper P is a Markov kernel on (X,X ), and the existence of a small-set S
for P is assumed, that is: there exist S ∈ X and ν ∈ M+ such that

ν(1S) > 0 and ∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x). (S)

We also assume that there exists a measurable function V : X→[1,+∞) (called a Lyapunov
function) satisfying the following geometric drift condition with Sc := X \ S:

∃δ ≡ δ(P ) ∈ (0, 1), ∀x ∈ Sc, (PV )(x) ≤ δ V (x) (DSc)

and K := sup
x∈S

(PV )(x) <∞. (K)

Throughout the paper, Assumptions (A) will stand for the set of the three assumptions
(S)-(DSc)-(K). Under Assumptions (A) we know that there exists a unique P−invariant
probability measure denoted by π on (X,X ) and that π(V ) < ∞, e.g. see [MT93, RR04,
Bax05, DMPS18]. In this paper, replacing the Lyapunov function V with V α0 for some
suitable constant α0 ∈ (0, 1] derived from the data in (A), we present new results concerning
the spectral properties of P on the space BV α0 in relation with the so-called V α0−geometric
ergodicity of P . These spectral results are applied to the study of the sensitivity with respect
to the parameter θ of the invariant probability measure of transition kernels Pθ satisfying
Assumptions (A) in a uniform way in θ.

Let us recall some facts before specifying the main results of the paper. Under Assump-
tions (A), we know from [HL22, Cor. 4.2] that there exists α0 ≡ α0(P ) ∈ (0, 1] such that

PV α0 ≤ δα0 V α0 + ν(V α0)1S . (Dα0)

A first consequence of (S) and (Dα0) is that the non-negative kernel

R(x, dy) := P (x, dy)− 1S(x)ν(dy)

defines a contraction on BV α0 , that is ∥R∥V α0 ≤ δα0 (see (13)). This is one of the key
points of this work. A second consequence is that P is V α0−geometrically ergodic, e.g. see
[MT93, RR04, Bax05, DMPS18]: There exist ρ ∈ (0, 1) and Cρ ∈ (0,+∞) such that

∀f ∈ BV α0 , ∀n ≥ 1, ∥Pnf − π(f)1X∥V α0 ≤ Cρ ρ
n ∥f∥V α0 . (2)
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We denote by ϱα0 the infimum bound of the positive real numbers ρ satisfying (2). The real
number ϱα0 is sometimes called the ”second eigenvalue” of P on BV α0 (even though ϱα0 is
not necessarily an eigenvalue of P ), while 1 − ϱα0 is called the spectral gap of P on BV α0 .
When P satisfies (2) and is reversible with respect to π, it follows from [Bax05, Th. 6.1] that

∀f ∈ L2(π), ∀n ≥ 1, ∥Pnf − π(f)1X∥L2(π) ≤ 2 ϱ n
α0

∥f∥L2(π) (3)

where L2(π) is the standard Lebesgue space equipped with the norm ∥f∥L2(π) = π(|f |2)1/2.
Thus, in this case, ϱα0 is an upper bound of the second eigenvalue of P on L2(π). Finally
recall that λ ∈ C is a spectral value of P on BV α0 if λI − P is not invertible on BV α0 . The
spectral value λ ∈ C is an eigenvalue of P on BV α0 if λI − P is not injective on BV α0 .

Under Assumptions (A) the following statements with α0 ∈ (0, 1] in (Dα0) hold true.

� (Section 2) The transition kernel P is quasi-compact on BV α0 with essential spectral
radius less than δα0 . Then we obtain spectral results in Theorems 2.1 and 2.2 which
can be summarized as follows. Let a ∈ (δα0 , 1). The set Sa of spectral values λ of P
on BV α0 such that a ≤ |λ| ≤ 1 is finite and composed of eigenvalues of P . Note that
λ = 1 ∈ Sa. If Sa = {1}, then ϱα0 ≤ a; Otherwise ϱα0 = max

{
|λ|, λ ∈ Sa, λ ̸= 1

}
.

Moreover
λ ∈ Sa ⇐⇒ µλ(1S) = 1 (4)

where µλ(1S) :=
∑+∞

k=1 λ
−k βk(1S), with βk := ν ◦ Rk−1 ∈ B′

V α0 . In other words this
ensures that the following alternative holds for the second eigenvalue: Either ϱα0 equals
to the largest solution (in modulus) to the equation µz(1S) = 1 in {z ∈ C : δα0 < |z| <
1} if such a solution exists; or ϱα0 ≤ δα0 (see Corollary 2.1). This algebraic issue is
difficult to address in practice since it involves the power series

∑+∞
k=1 z

−k βk(1S), but
the equivalence (4) plays an important theoretical role in the proofs of the properties
below.

� (Section 3) Recall that finding effective and computable rate of convergence and multi-
plicative constants in geometric ergodicity is a difficult issue, see [MT94, Bax05, and the
references therein]. In Theorem 3.1, we propose the following bound for the resolvent
of P : For every z ∈ C \ {1} such that |z| ∈

(
max(δα0 , ϱα0), 1

]
, the operator zI − P is

invertible on BV α0 and we have

∀f ∈ BV α0 , ∥(zI−P )−1f∥V α0 ≤ 1

|z| − δα0

(
1+

ν(V α0)∥1S∥V α0∣∣1− µz(1S)
∣∣(|z| − δα0

))∥f∥V α0 . (5)

Then it allows us to derive the following formula for the constant Cρ in Inequality (2)
for any ρ ∈

(
max(δα0 , ϱα0), 1

)
:

Cρ =
ρ

2π(ρ− δα0)

(
1 +

ν(V α0)∥1S∥V α0

mρ

(
ρ− δα0

) )
with mρ := min

z∈C:|z|=ρ
|1− µz(1S)| > 0. (6)

Note that the equivalence (4) is crucial to prove the positivity of mρ. When the second
eigenvalue of P is known (or at least bounded), Formula (6) is relevant provided that
the numerical computation of mρ is tractable. Such computations are carried out for a
classical family of reflected random walks (see Example 3.1).
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� (Section 4) In this section we focus on the solutions in BV α0 to the so-called Poisson
equation. In Theorem 4.1, we prove that, for any f ∈ BV α0 such that π(f) = 0, the
function f̃ :=

∑+∞
n=0R

nf is a solution in BV α0 to Poisson’s equation (I − P )g = f .

Moreover f̃ and the classical solution f̂ :=
∑+∞

n=0 P
nf satisfy

∥f̃∥V α0 ≤ 1

1− δα0
∥f∥V α0 and ∥f̂∥V α0 ≤ 1 + π(V α0)∥1X∥V α0

1− δα0
∥f∥V α0 . (7)

The bound on f̂ is deduced from that on f̃ =
∑+∞

n=0R
nf . This control on the norm of

these two solutions to Poisson’s equation is central to Sections 5 and 6. The inequalities
in (7) give true computable bounds for the V α0−norm of f̃ and f̂ . In particular note
that the inequality π(V α0) ≤ ν(V α0)/(1− δα0) easily derived from (Dα0) may be used
in (7) when π is unknown. The second bound in (7) concerning the classical solution
f̂ =

∑+∞
n=0 P

nf to Poisson’s equation when π(f) = 0 is deduced from the first bound

in (7) for the solution f̃ =
∑+∞

n=0R
nf .

� (Section 5) Using Inequality (5) and the bound on ∥f̂∥V α0 in (7), we present results
concerning the location of the eigenvalues of P on BV α0 , from which we deduce a upper
bound of the second eigenvalue ϱα0 in Corollary 5.1. This general bound of ϱα0 requires
to prove that the real numberm0 := minϑ∈[ϑ0,2π−ϑ0] |1−µeiϑ(1S)| for some ϑ0 ∈ (0, π/2)
is positive: Again this is deduced from (4). When P is reversible with respect to π and
satisfies a slight additional condition (see (49)), we obtain in Corollary 5.2 that

ϱα0 ≤ ψ(η∞) ≤ ψ(ηn) with ψ(t) :=
δα0(1− δα0)t+ ν(V α0)∥1S∥V α0

(1− δα0)t+ ν(V α0)∥1S∥V α0

(8)

where ∀n ≥ 1, ηn := 2
∑n

k=1 β2k−1(1S) and η∞ := 2
∑+∞

k=1 β2k−1(1S). The interest in
the bounds of ϱα0 obtained in Corollary 5.1 and in (8) is essentially theoretical. By
contrast, if P is reversible and positive (i.e. ∀f ∈ L2(π), ⟨f, Pf⟩L2(π) ≥ 0), then we
prove in Corollary 5.3 that the simple and explicit bound ϱα0 ≤ δα0 holds (again under
the slight condition (49)). Numerical applications of Corollary 5.3 to the Metropolis-
Hastings algorithm for the Gaussian distribution and to Gaussian autoregressive Markov
chain are carried out in Examples 5.1-5.2. Recall that, in the reversible case, any rate
of convergence in (2) provides a rate of convergence in the L2(π)−geometric ergodicity
(3), whatever the value of α0.

� (Section 6) In this section the results of Section 4 are applied to get an explicit control
on the invariant probability measure of a perturbed Markov chain. Specifically, let Θ be
an open subset of some metric space, and let {Pθ}θ∈Θ be a family of Markov kernels on
(X,X ) satisfying Assumptions (A) in a uniform way in θ ∈ Θ, as well as the following
condition:

∀x ∈ X, lim
θ→ θ0

∆θ,α0(x) = 0 with ∆θ,α0(x) := ∥Pθ(x, ·)− Pθ0(x, ·)∥′V α0 (9)

where θ0 is fixed in Θ. Let πθ denote the Pθ−invariant probability measure. Then we
obtain in Theorem 6.1 that limθ→ θ0 ∥πθ − πθ0∥′V α0 = 0 and that for every θ ∈ Θ

∥∥πθ−πθ0∥∥′V α0
≤ 1 + πθ0(V

α0)∥1X∥V α0

1− δα0
×πθ

(
∆θ,α0

)
with lim

θ→ θ0
πθ
(
∆θ,α0

)
= 0. (10)
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The bound on ∥f̃∥V α0 in (7) plays a crucial role to prove (10). Note that the multiplica-
tive constant in (10) is truly computable using again πθ0(V

α0) ≤ ν(V α0)/(1−δα0) when
π is unknown. Moreover observe that the real number πθ

(
∆θ,α0

)
in (10) is available

when the function ∆θ,α0 in (9) is known (or can be bounded) and πθ is computable for
θ ̸= θ0. This holds for instance when X is a discrete set and the perturbed Markov ker-
nels are truncated stochastic matrices on a finite state space (see Remark 6.1). Finally
note that ∥πθ−πθ0∥′TV ≤ ∥πθ−πθ0∥′V α0 where ∥πθ−πθ0∥′TV denotes the total variation
distance between the two probability measures πθ and πθ0 (use (1) with W = 1X).

Under Assumptions (A), it is proved in [Bax05, Th. 1.1] that P is V−geometrically ergodic.
However it is worth noticing that our results only focus on the V α0−weighted operator norm
in Sections 2–5 and on V α0−weighted total variation norm in Section 6, where α0 ∈ (0, 1] is
given in (Dα0). Hence, when α0 < 1, our results involve the smaller space BV α0 in place of
the expected one BV . This is the price to pay when working with the drift condition (Dα0).
The benefit is that the results obtained on BV α0 from (Dα0) have a fairly simple form.

The constant α0 ∈ (0, 1] in (Dα0) can be easily computed from the data in Assump-
tions (A) (see [HL22, (28)]). For convenience the proof that (Dα0) holds true and the
explicit computation of α0 are recalled in Appendix A. The real number K in Condition (K)
plays an important role in the computation of α0: roughly speaking, the larger K is compared
to ν(V ), the smaller α0 is. If the small-set S in (S) is an atom with ν given by ν = P (s, ·)
for some s ∈ S, then (Dα0) holds with α0 = 1 (see Appendix A). Note that the case α0 = 1
is not equivalent to the atomic case, in other words Property (Dα0) may hold with α0 = 1
for non-atomic small set S (even in the continuous state space case, see Example 5.1). Of
course there are probably instances of Markov chains satisfying Assumptions (A), for which
the use of Property (Dα0) is not relevant because α0 is too close to zero, so that δα0 is too
close to one for the bounds (6), (7), (8) or (10) to be of interest. We believe that these
unfavourable cases correspond to instances for which the minorization/drift conditions are
not well suited for finding interesting rates of convergence in geometric ergodicity context,
whatever the method used (see [QH21]).

The spectral properties for geometrically ergodic Markov chains have been investigated
in many papers, e.g. see [KM03, KM05, Hen06, HL14a, HL14b, Del17]. The novelty of this
work is that we obtain more simple and explicit results due to Condition (Dα0). To the best
of our knowledge, the results in this work are new. The numerical values of the multiplicative
constant Cρ in (2) derived from (6) for discrete random walks are quite realistic and consistent
(see Table 1 in Example 3.1). When P is positive reversible and satisfies Assumptions (A)
with an atom S (thus α0 = 1), the bound ϱ1 ≤ δ was obtained in [Bax05, Sec. 2.3]. Thus
the bound ϱα0 ≤ δα0 in Corollary 5.3 extends this result to the non-atomic case. The
numerical computations for the Metropolis-Hastings algorithm of the Gaussian distribution
and the Gaussian autoregressive Markov chain (see Examples 5.1 and 5.2) show that the
bound ϱα0 ≤ δα0 is relevant in comparison with those provided in [Bax05, Sec. 2.3 (non-
atomic case)]. That f̃ :=

∑+∞
n=0R

nf is solution to Poisson’s equation when π(f) = 0 seems
to be a new result which extends to our framework the statement [Kem81, Th. 2] involving
generalized fundamental finite matrix. The bounds (7) and (10) have been proved for discrete
state space Markov chains with a finite atom in [LL18, Prop. 1, Th. 2] thanks to renewal
theory. Theorems 4.1 and 6.1 extend these results to the non-atomic case and to general state
spaces. The bound (10) improves all the error bounds obtained under Condition (9) in the
literature for the stationary distribution of perturbed geometrically ergodic Markov chains,
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provided we use the Lyapunov function V α0 in place of V . Indeed, the bound (10) involves
neither the iterates of the unperturbed Markov kernels, nor those of the perturbed Markov
kernels, exactly as in the case of discrete Markov chains with an atom investigated in [LL18].
It is worth noticing that Condition (9) is much weaker than the standard operator norm
continuity assumption introduced in [Kar86] (see Remark 6.2). The control of the perturbed
invariant probability measure performed in [SS00, FHL13, HL14a, RS18, MARS20] requires
that the rate and the multiplicative constant in geometric ergodicity are known. If this is
not the case, then the bound in (10) is a relevant alternative. Finally mention that the
operator R = P − ν(·)1S and its iterates have been considered in [KM03] to investigate the
eigenvectors belonging to the dominated eigenvalue of the Laplace kernels associated with
the Markov kernel P . This issue called ”multiplicative Poisson equation” in [KM03] is used
to prove limit theorems for the underlying Markov chain. This question is not addressed in
our work.

2 Quasi-compactness of P

For any measurable function W ≥ 1, if L is a bounded linear operator on (BW , ∥ · ∥W ), we
also denote by ∥L∥W := sup{∥Lf∥W , f ∈ BW , ∥f∥W ≤ 1} the operator norm of L on BW .
First, recall the definition of the quasi-compactness and of the essential spectral radius of
L, assuming for the sake of simplicity that its spectral radius r(L) := limn ∥Ln∥W 1/n is one.
Then L is quasi-compact on (BW , ∥ · ∥W ) if there exist a ∈ (0, 1), m ∈ N∗, (λi, pi) ∈ C× N∗

for i = 1, . . . ,m, and finally a closed L-invariant subspace H of BW such that

|λi| ≥ a, 1 ≤ dimKer(L− λiI)
pi <∞, inf

n≥1

(
sup

h∈H, ∥h∥W≤1
∥Lnh∥W

)1/n
< a (11a)

and BW =
m
⊕
i=1

Ker(L− λiI)
pi ⊕H. (11b)

Moreover the essential spectral radius of L, denoted by ress(L), is given by

ress(L) = inf
{
a ∈ (0, 1) such that (11a)-(11b) are satisfied

}
. (12)

The previous definition [Hen93, p. 628] may be compared with the reduction of matrices
which is known to be relevant to derive convergence rates for finite Markov chains. Note that
the infinum bound in the last condition of (11a) is nothing else but the spectral radius of the
restriction of L toH. Various equivalent definitions of ress(L) (see (16) below) can be found in
the literature in link with, either the essential spectrum, or the quasi-compactness property,
e.g. see [Hen93, Hen07] and [HH01, Chapter XIV] for a general context and [Wu04, Hen06,
AP07, HL14b, HL14a, Del17] in the framework of V -geometrically ergodic Markov kernels.
For the link between geometric ergodicity and spectral theory, see also [MT09, Chap. 20].

The quasi-compactness of P on BV is investigated in [HL14a, Th. 5.2] under Assump-
tions (A). However the bound obtained in [HL14a, Th. 5.2] for the essential spectral radius
of P on BV is not accurate. Moreover note that we can directly deduce from (2) that P is
quasi-compact on BV α0 and that its essential spectral radius satisfies ress(P ) ≤ ϱα0 . Indeed,
for any ρ ∈ (0, 1) such that (2) holds, we have ress(P ) ≤ ρ from the above definition with
m = 1, λ1 = 1, Ker(P − I) = C · 1X and H := {f ∈ BV α0 , π(f) = 0}. Thus ress(P ) ≤ ϱα0

from the definition of ϱα0 . However, this bound of ress(P ) is not interesting in practice since
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ϱα0 is unknown. In this section we prove that the expected bound ress(P ) ≤ δα0 holds under
Condition (Dα0) and that this bound provides as a by-product some interesting informations
on the second eigenvalue ϱα0 .

Assume that P satisfies Assumptions (A). Note that ν(V ) <∞ due to (S). Let α0 ∈ (0, 1]
be given in (Dα0). Then P and T := ν(·)1S are bounded linear operators on BV α0 . Define

R := P − T = P − ν(·)1S .

We deduce from (S) that R is a non-negative operator on BV α0 (i.e. ∀f ∈ BV α0 : f ≥ 0 ⇒
Rf ≥ 0). Moreover (Dα0) reads as RV α0 ≤ δα0 V α0 due to the definition of T . Iterating this
inequality gives: ∀k ≥ 1, RkV α0 ≤ δα0k V α0 . Then we deduce from the non-negativity of Rk

that
∀k ≥ 1, ∥Rk∥V α0 ≤ δα0k (13)

since for every f ∈ BV α0 we have |Rkf | ≤ Rk|f | ≤ ∥f∥V α0RkV α0 . Moreover let us define

∀k ≥ 1, βk := ν ◦Rk−1 ∈ B′
V α0 (14)

with the convention R0 = I so that β1 = ν. Recall that for every n ≥ 1 the operator Tn on
BV α0 defined by Tn := Pn −Rn satisfies (see [HL20, Prop. 2.1])

Tn =

n∑
k=1

βk(·)Pn−k1S . (15)

Hence Tn is finite-rank. This fact and (13) are the key points to prove the next Theorem 2.1
using the notion of essential spectral radius and quasi-compactness. The adjoint operator of
P acting on B′

V α0 is denoted by P ∗.

Theorem 2.1 Suppose that P satisfies Assumptions (A), and let α0 ∈ (0, 1] be given in (Dα0).
Then, for any a ∈ (δα0 , 1), the set Sa of spectral values λ of P on BV α0 (or of P ∗ on B′

V α0 )
such that a ≤ |λ| ≤ 1 is finite and composed of eigenvalues of both P and P ∗. Moreover the
second eigenvalue ϱα0 of P on BV α0 (see (2)) is such that:

(a) Either Sa = {1} and ϱα0 ≤ a.

(b) Or Sa ̸= {1} and ϱα0 = max
{
|λ|, λ ∈ Sa, λ ̸= 1

}
.

First we prove the following simple lemma.

Lemma 2.1 λ = 1 is the only eigenvalue of P on BV α0 such that ϱα0 < |λ| ≤ 1.

Proof. Let λ ∈ C \ {1} be any eigenvalue of P on BV α0 . Let f ∈ BV α0 , f ̸= 0, be such that
Pf = λf . Then π(f) = 0, so that (2) gives |λ|n = O(ρn), thus |λ| ≤ ρ. Hence |λ| ≤ ϱα0 since
ρ in (2) can be chosen arbitrarily close to ϱα0 .

□

Proof of Theorem 2.1. Recall that the essential spectral radius ress(P ) of P on BV α0 is also
given by

ress(P ) := lim
n

(
inf
U∈K

∥Pn − U∥V α0

)1/n
(16)
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where K denotes the space of all compact operators on BV α0 . Then we have

ress(P ) ≤ δα0 < 1 (17)

from (16) and (13) since Pn−Tn = Rn where Tn in (15) is a finite-rank operator so is compact
on BV α0 . Hence P is quasi-compact on BV α0 since the spectral radius of P on BV α0 is one. It
follows from quasi-compactness that the set Sa is composed of finitely many spectral values
which are in fact eigenvalues, e.g. see [Hen93]. The alternative (a)-(b) then follows from the
definition of ϱα0 (see (2)) and from classical arguments of spectral theory. For the sake of
completeness, let us present the main arguments. First assume that Sa ̸= {1} and define
γa = max{|λ|, λ ∈ Sa, λ ̸= 1}. From Lemma 2.1 we have γa ≤ ϱα0 . Moreover, it follows from
the standard spectral theory that, for any γ ∈ (γa, 1), we have the following equality

∀n ≥ 1, Pn = π(·)1X +
1

2iπ

∮
|z|=γ

zn(zI − P )−1 dz, (18)

from which we deduce that the value ρ = γ is allowed in (2). Thus ϱα0 ≤ γ, so that ϱα0 ≤ γa
since γ is arbitrarily close to γa. We have proved that ϱα0 = γa in Case (b). Finally assume
that Sa = {1}. Then property (18) applies to γ = a, so that the value ρ = a is allowed in
(2). Thus ϱα0 ≤ a.

□

Recall that βk ∈ B′
V α0 is defined in (14). It follows from (13) that, for every z ∈ C such

that |z| > δα0 , the following series

µz :=

+∞∑
k=1

z−k βk (19)

is absolutely convergent in B′
V α0 , so that

∑+∞
k=1 z

−k βk(1S) is absolutely convergent in C.

Theorem 2.2 Assume that P satisfies (A), and let α0 ∈ (0, 1] be given in (Dα0). Let λ ∈ C
be such that δα0 < |λ| ≤ 1. Then the two following assertions are equivalent:

(i) λ is an eigenvalue of P on BV α0 .

(ii) µλ(1S) =

+∞∑
k=1

λ−k βk(1S) = 1.

Moreover, under Condition (i) or (ii), the subspace Eλ := {ψ ∈ B′
V α0 : ψ ◦ P = λψ} is

spanned by µλ.

For the proof of Theorem 2.2 we may assume that α0 = 1 in (Dα0), that is

PV ≤ δ V + ν(V )1S . (20)

If α0 < 1, then replace V , δ with V α0 , δα0 respectively in the proof below. First we prove
the following lemma.

Lemma 2.2 For any z ∈ C such that |z| > δ we have

µz ◦ P = zµz − ν + µz ◦ T. (21)

8



Proof. Let z ∈ C be such that |z| > δ. Then

µz ◦ P =
+∞∑
k=1

z−k ν ◦Rk−1 ◦ P (from (19) and (14))

=

+∞∑
k=1

z−k ν ◦Rk +

+∞∑
k=1

z−k ν ◦
(
Rk−1 ◦ T

)
(since P = R+ T )

=
+∞∑
k=1

z−k βk+1 +
+∞∑
k=1

z−k βk ◦ T (from (14))

= zµz − ν + µz ◦ T (from (19) and β1 = ν).

□

Proof of Theorem 2.2. Let λ be an eigenvalue of P (thus of P ∗) such that δ < |λ| ≤ 1. Using
Rn = Pn − Tn and (15) we deduce from (13) (with α0 = 1 here) that

∀n ≥ 1, ∀f ∈ BV ,

∥∥∥∥Pnf −
n∑

k=1

βk(f)P
n−k1S

∥∥∥∥
V

≤ δn ∥f∥V . (22)

Let ψ ∈ Eλ, ψ ̸= 0. Composing on the left by ψ in (22) gives the following equality in B′
V

λnψ = ψ(1S)
n∑

k=1

λn−k βk +O(δn),

so that ψ = ψ(1S)
∑n

k=1 λ
−k βk + O((δ/λ)n). Hence ψ = ψ(1S)µλ. Note that ψ(1S) ̸= 0

since ψ ̸= 0, so that µλ(1S) = 1. We have proved the last assertion of Theorem 2.2, as well
as the implication (i) ⇒ (ii). Now let us prove that (ii) ⇒ (i). Let λ ∈ C be such that
δ < |λ| < 1 and assume that µλ(1S) = 1, so that µλ ̸= 0. Lemma 2.2 applied to z = λ gives

µλ ◦ P = λµλ − ν + µλ ◦ T.

Moreover, since T = ν(·)1S we obtain that

µλ ◦ T =

+∞∑
k=1

λ−k βk ◦ T =

( +∞∑
k=1

λ−k βk(1S)

)
ν = µλ(1S) ν = ν

from which it follows that µλ ◦ P = λµλ. Hence λ is an eigenvalue of P ∗, thus of P . □

We deduce the following statement from Theorems 2.1-2.2.

Corollary 2.1 Assume that P satisfies (A) and let α0 ∈ (0, 1] be given in (Dα0). Then the
second eigenvalue ϱα0 of P on BV α0 (see (2)) satisfies the following alternative.

� Either for every λ ∈ C such that δα0 < |λ| < 1 we have µλ(1S) ̸= 1, so that ϱα0 ≤ δα0.

� Or ϱα0 = max
{
|λ| : λ ∈ C, δα0 < |λ| < 1, µλ(1S) = 1

}
.

As a complement to Theorem 2.2, we prove in Appendix B that any eigenvalue λ of P on
BV α0 such that δα0 < |λ| ≤ 1 is of order one (i.e Ker(P − λI)2 = Ker(P − λI)) if, and only
if, µ′λ(1S) ̸= 0 where µ′λ(1S) is the derivative at z = λ of z 7→ µz(1S).
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3 A bound for the constant Cρ in (2)

Let P satisfying Assumptions (A) and let α0 ∈ (0, 1] be given in (Dα0). Recall that ϱα0

denotes the infimum bound of the positive real numbers ρ such that the V α0−geometric
ergodicity property (2) holds true. Property (24b) below provides an explicit constant Cρ in
(2) when ρ ∈

(
max(δα0 , ϱα0), 1

)
. Recall that for every z ∈ C such that |z| > δα0 , the series

µz(1S) =
∑+∞

k=1 z
−k βk(1S) is absolutely convergent (see (19)).

Theorem 3.1 Let P satisfying Assumptions (A). Let α0 ∈ (0, 1] be given in (Dα0). Then,
for every z ∈ C \ {1} such that |z| ∈

(
max(δα0 , ϱα0), 1

]
, the operator zI − P is invertible on

BV α0 , and

∥(zI − P )−1∥V α0 ≤ 1

|z| − δα0

(
1 +

ν(V α0)∥1S∥V α0∣∣1− µz(1S)
∣∣(|z| − δα0

)). (23)

Moreover, for every ρ ∈
(
max(δα0 , ϱα0), 1

)
, we have

∀n ≥ 1, ∥Pn − π(·)1X∥V α0 ≤ Cρ ρ
n (24a)

with Cρ =
ρ

2π(ρ− δα0)

(
1 +

ν(V α0)∥1S∥V α0

mρ

(
ρ− δα0

) )
and mρ := min

z∈C:|z|=ρ
|1− µz(1S)| > 0. (24b)

The explicit V α0−geometric ergodicity property (24a)-(24b) is interesting, on the one hand
when ϱα0 is known or can be at least bounded from above, and on the other hand when mρ

can be numerically computed or at least bounded from below by a positive real number. This
is illustrated in Example 3.1.

Again, we may assume that α0 = 1 in (Dα0), that is (20), for the following proofs.
Moreover ϱ stands for ϱ1 to simplify. If α0 < 1, then replace V , δ and ϱ with V α0 , δα0 and
ϱα0 respectively in the proof below. The following lemmas are used to prove Theorem 3.1.

Recall that R = P − T = P − ν(·)1S satisfies: ∀k ≥ 0, ∥Rk∥V ≤ δk (see (13)).

Lemma 3.1 Let z ∈ C be such that |z| > δ. Then zI −R is invertible on BV with

(zI −R)−1 =
+∞∑
k=0

z−(k+1)Rk. (25)

Moreover, with µz ∈ B′
V defined in (19), we have

∀f ∈ BV , ν
(
(zI −R)−1f

)
= µz(f). (26)

Lemma 3.2 Let z ∈ C \ {1} be such that |z| ∈
(
max(δ, ϱ), 1

]
. Then zI − P is invertible on

BV , and

∀f ∈ BV , (zI − P )−1f = (zI −R)−1f +
µz(f)

1− µz(1S)
(zI −R)−11S . (27)

Moreover we have

∥(zI − P )−1∥V ≤ 1

|z| − δ

(
1 +

ν(V )∥1S∥V∣∣1− µz(1S)
∣∣(|z| − δ

)). (28)
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Proof of Theorem 3.1. Property (23) is established in Lemma 3.2. Now let ρ ∈
(
max(δ, ϱ), 1

)
.

We deduce from Lemma 2.1 and from Theorem 2.2 that

∀z ∈ C, |z| = ρ, µz(1S) :=

+∞∑
k=1

z−kβk(1S) ̸= 1.

Since z 7→ µz(1S) :=
∑+∞

k=1 z
−kβk(1S) is continuous on the compact set {z ∈ C : |z| = ρ},

it follows that the constant mρ introduced in (24b) is well-defined and is positive. Finally
let us prove (24a) with Cρ defined in (24b). It follows from the spectral decomposition (18)
applied here to γ = ρ that

∀n ≥ 1, ∥Pn − π(·)1X∥V ≤ ρn+1

2π
max

z∈C:|z|=ρ

∥∥(zI − P
)−1∥∥

V
.

Consequently the constant Cρ in (2) can be chosen as follows

ρ

2π
max

z∈C:|z|=ρ

∥∥(zI − P
)−1∥∥

V
≤ Cρ :=

ρ

2π
× 1

ρ− δ

(
1 +

ν(V )∥1S∥V
mρ(ρ− δ)

)
from (28) and mρ in (24b). This provides (24a) with Cρ as in (24b).

□

Proof of Lemma 3.1. Let z ∈ C be such that |z| > δ. Then zI −R is invertible on BV since
the spectral radius of R is less than δ from ∥Rk∥V ≤ δk. Then Formula (25) is classical.
Moreover note that for every f ∈ BV

+∞∑
k=0

∫
X
|z|−(k+1)|Rkf | dν ≤ |z|−1ν(V ) ∥f∥V

+∞∑
k=0

(
|z|−1δ

)k
<∞

from ∥Rk∥V ≤ δk and from δ < |z|. Therefore the permutation of the integral and the series
in the following equality is allowed:

ν((zI −R)−1f) = ν(
+∞∑
k=0

z−(k+1)Rkf) =
+∞∑
k=0

z−(k+1)ν(Rkf).

This gives (26) due to (14) and (19).

□

Proof of Lemma 3.2. Let z ∈ C\{1} such that |z| ∈
(
max(δ, ϱ), 1

]
. If zI−P is not invertible

on BV , then z is an eigenvalue of P from Theorem 2.1, which is impossible from Lemma 2.1.
Thus zI − P is invertible on BV . Next we have

zI − P = zI −R− T = Uz ◦ (zI −R) with Uz := I − T ◦ (zI −R)−1. (29)

We deduce from T = ν(·)1S and from (26) that

∀f ∈ BV , Uzf = f − µz(f)1S or f = Uzf + µz(f)1S .

Next
Uzf =

(
Uz ◦ (zI −R)

)
◦ (zI −R)−1f = (zI − P ) ◦ (zI −R)−1f

11



using (29), so that
f = (zI − P ) ◦ (zI −R)−1f + µz(f)1S

and
(zI − P )−1f = (zI −R)−1f + µz(f)(zI − P )−11S .

The last equality applied to f = 1S gives

(zI − P )−11S =
1

1− µz(1S)
(zI −R)−11S

where µz(1S) ̸= 1 from Corollary 2.1. This provides (27).

Next we have

∥(zI −R)−1∥V ≤ 1

|z| − δ
, in particular ∥(zI −R)−11S∥V ≤ ∥1S∥V

|z| − δ

from (25) and ∥Rk∥V ≤ δk. Moreover we have

∀f ∈ BV , |µz(f)| ≤
ν(V )

|z| − δ
∥f∥V

from (14) and ∥Rk∥V ≤ δk. Then (28) follows from (27) and the previous inequalities.

□

In the atomic case, that is when (S) holds with S ∈ X such that ∀(a, a′) ∈ S2, P (a, ·) =
P (a′, ·) and with ν(·) := P (s0, ·) for some (any) s0 ∈ S, then

∀n ≥ 1, βn(1S) = Ps0

(
RS = n

)
(30)

where RS := inf{n ≥ 1 : Xn ∈ S} is the first return time in S (see [HL22, Sec. 2]). When
the power series

∑+∞
k=1 Ps0

(
RS = n

)
zk can be computed, the positive constant mρ in (24b)

is easily tractable. This is illustrated in the following example.

Example 3.1 (Reflected random walk) Let P = (P (i, j))(i,j)∈N2 be the reversible Markov
kernel defined on X = N by

P (0, 0) = ε, P (0, 1) = 1− ε and ∀n ≥ 1, P (n, n− 1) := p, P (n, n+1) := q = 1− p (31)

with ε ∈ (0, 1) and p > 1/2. Define ∀n ∈ N, V (n) = (p/q)n/2. It is well-known that P
satisfies Assumptions (A) with the atom S = {0}, ν = P (0, ·), and δ = 2

√
pq. Here (Dα0)

holds with α0 = 1 (atomic case, see Appendix A). Moreover the second eigenvalue ϱ1 of P on
BV is given by (see [Bax05, Sec. 8.4], [HL14b, Prop. 4.1])

ϱ1 =
pq + (p− ε)2

p− ε
if ε <

p− q

1 +
√
q/p

and ϱ1 = 2
√
pq otherwise. (32)

The exact value of ϱ1 is obtained from algebraic computations in [Bax05, Sec. 8.4] and [HL14b,
Prop. 4.1]. The spectral meaning of (32) is the following (see Theorem 2.1): in the first case
P acting on BV admits eigenvalues in the annulus {z ∈ C : 2

√
pq < |z| < 1} with maximal

modulus given by [pq + (p − ε)2]/(p − ε); in the second case there is no eigenvalue in the
previous annulus. From Theorem 3.1, Estimates (24a)-(24b) hold for every ρ ∈ (ϱ1, 1) with

α0 = 1, ∥1S∥V = 1, δ = 2
√
pq and ν(V ) = ε+ (1− ε)(p/q)1/2.
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Moreover we deduce from [Bax05, Sec. 8.4] that for every u ∈ C such that |u| < (2
√
pq)−1

b(u) :=
+∞∑
k=1

Ps0

(
RS = n

)
uk = εu+

(1− ε)

2q

[
1− (1− 4pqu2)1/2

]
where, for every Z = reiϑ ∈ C with r > 0 and ϑ ∈ (−π/2, π/2), the complex number Z1/2

is defined by Z1/2 =
√
r eiϑ/2. Note that Z = 1 − 4pqu2 is of the previous form. Then it

follows from (30) that, for every z ∈ C such that |z| > 2
√
pq, we have µz(1S) = b(z−1).

Consequently, for every ρ ∈ (ϱ1, 1), the positive constant mρ in (24b) is given by

mρ := min
θ∈[−π,π)

∣∣1− b
(
ρ−1e−iθ

)∣∣.
For this discrete random walk, the numerical values in Table 1 of the multiplicative constant
Cρ in (24a)-(24b) are consistent.

ε
0.05 0.25 0.5

p = 0.6 (δ, ϱ1) (0.9798,0.9864) (0.9798,0.9798) (0.9798,0.9798)
(Cρ, ρ) (2.46× 104,0.9932) (3.19× 104,0.9899) (4.18× 104,0.9899)

p = 0.7 (δ, ϱ1) (0.9165,0.9731) (0.9165,0.9165) (0.9165,0.9165)
(Cρ, ρ) (1000.08,0.9866) (840.49,0.9583) (992.72,0.9583)

p = 0.8 (δ, ϱ1) (0.8000,0.9633) (0.8000,0.8409) (0.8000,0.8000)
(Cρ, ρ) (187.29,0.9817) (81.79,0.9204) (93.68,0.9000)

p = 0.9 (δ, ϱ1) (0.6000,0.9559) (0.6000,0.7875) (0.6000,0.6250)
(Cρ, ρ) (63.36,0.9779) (19.99,0.8942) (13.94,0.8125)

Table 1: Exact ϱ1 with δ = 2
√
pq (see (32)), and estimate (24a) of V−geometric ergodicity

with multiplicative constant Cρ in (24b) and ρ = (1 + ϱ1)/2

4 A bound for the norm of solutions to Poisson’s equation

Recall that the existence of Poisson’s equation is studied under weak drift condition in [GM96]
(also see [MT93, Th. 17.4.2]). In this section the solutions to Poisson’s equation are easily
obtained since we assume that P satisfies Assumptions (A) of Section 1 which include the
geometric drift condition (DSc). Indeed assume that Assumptions (A) holds and let α0 ∈
(0, 1] be given in (Dα0). Then we know that P satisfies Inequality (2), from which we deduce
that the operator (I − P +Π) is invertible on BV α0 with

(I − P +Π)−1 =

+∞∑
n=0

(P −Π)n =

+∞∑
n=0

(Pn −Π) (33)

where Π := π(·)1X. Then, for any f ∈ BV α0 , it is easily checked that f̂ := (I − P +Π)−1f is
a solution to Poisson’s equation on BV α0

(I − P )f̂ = f −Πf. (34)

Note that E1 := {h ∈ BV α0 , Ph = h} = C · 1X from (2) (i.e. 1 is a simple eigenvalue of P )
and that the difference of two solutions to Poisson’s equation on BV α0 belongs to E1. Hence

13



two solutions to Poisson’s equation on BV α0 differ by a constant function. Now, let f ∈ BV α0

be such that π(f) = 0. In Theorem 4.1 below we prove that the function

f̃ := (I −R)−1f =
+∞∑
n=0

Rnf

is a solution in BV α0 to Poisson’s equation, where R is the non-negative operator of Section 2.
Next, since π(f) = 0, the function

f̂ = (I − P +Π)−1f =
+∞∑
n=0

Pnf

satisfies π(f̂) = π(f) = 0. In fact f̂ is the unique solution in BV α0 to Poisson’s equation
which has a null π−integral. Finally we have f̂ = f̃ − π(f̃)1X since f̃ and f̂ only differ by a
constant function.

In Theorem 4.1 below we give a simple and explicit bound for ∥f̃∥V α0 , which is relevant
for the perturbation issue of Section 6. This allows us to derive an explicit bound for ∥f̂∥V α0 ,
that will be relevant in Section 5.

Theorem 4.1 Assume that P satisfies Assumptions (A). Let α0 ∈ (0, 1] be given in (Dα0).
Then, for any f ∈ BV α0 such that π(f) = 0, the following assertions hold.

1. f̃ := (I −R)−1f is a solution in BV α0 to the Poisson equation (34), and

∥f̃∥V α0 ≤ 1

1− δα0
∥f∥V α0 . (35)

2. f̂ := (I − P + Π)−1f is the unique solution in BV α0 to Poisson’s equation (34) which
has a null π−integral, and

∥f̂∥V α0 ≤ 1 + π(V α0)∥1X∥V α0

1− δα0
∥f∥V α0 (36a)

≤ 1− δα0 + ν(V α0)∥1X∥V α0

(1− δα0)2
∥f∥V α0 . (36b)

Again, we may assume that α0 = 1 in (Dα0) for the proof below. If α0 < 1, then replace V
and δ with V α0 and δα0 respectively.

Proof. Recall that ∥Rk∥V ≤ δk (see (13)), so that I −R is invertible on BV with (see (25))

(I −R)−1 =
+∞∑
k=0

Rk. (37)

Next, we have

I − P = I −R− T = U ◦ (I −R) with U := I − T ◦ (I −R)−1. (38)

Let f ∈ BV be such that π(f) = 0 and let f̃ := (I −R)−1f . Then we obtain from (38)

(I − P )f̃ =
(
U ◦ (I −R) ◦ (I −R)−1

)
f = Uf.
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From T = ν(·)1S and from (26) applied to z = 1, we obtain that

Uf = f − µ1(f)1S

where µ1 is defined in (19). Moreover we know from Theorem 2.2 that µ1 is a P−invariant
positive finite measure, more precisely µ1 = µ1(1X)π (see also [HL20, HL22]). Hence we have
µ1(f) = 0 since π(f) = 0, so that Uf = f . Thus f̃ is a solution to the Poisson equation on
BV . Moreover, it follows from (37) and ∥Rk∥V ≤ δk that

∥f̃∥V = ∥(I −R)−1f∥V =
∥∥ +∞∑

k=0

Rkf
∥∥
V
≤ 1

1− δ
∥f∥V . (39)

The proof of the first assertion is complete.

Now let f ∈ BV be such that π(f) = 0 and let f̂ := (I − P + Π)−1f . Recall that
f̂ = f̃ − π(f̃)1X. Hence

∥f̂∥V ≤ ∥f̃∥V + |π(f̃)| × ∥1X∥V (triangular inequality)

≤
(
1 + π(V )∥1X∥V

)
∥f̃∥V (since |f̃ | ≤ ∥f̃∥V V )

≤ 1 + π(V )∥1X∥V
1− δ

∥f∥V (from (39)).

This gives (36a). Finally (36b) follows from the inequality π(V ) ≤ ν(V )/(1 − δ) which can
be easily derived from (20). The second assertion is proved. □

5 Bounds for the second eigenvalue of P

Using the results of Sections 2-3-4, we first present some results on the location of the eigen-
values of P on BV α0 , from which bounds for the second eigenvalue ϱα0 (see (2)) can be
deduced. For any a ∈ C and for any r > 0, define

D(a, r) := {λ ∈ C : |λ−a| < r}, C(a, r) := {λ ∈ C : |λ−a| = r}, D(a, r) = D(a, r)∪C(a, r).

Proposition 5.1 Suppose that P satisfies Assumptions (A). Let α0 ∈ (0, 1] be given in
(Dα0), and define

r̂1 :=
1− δα0

1 + π(V α0)∥1X∥V α0

. (40)

Then λ = 1 is the single spectral value of P on BV α0 in the open disk D(1, r̂1), that is: for
every λ ∈ D(1, r̂1) \ {1}, the operator λI − P is invertible on BV α0 .

The real number r̂1 in (40) satisfies

r̂1 ≥ r̃1 :=
(1− δα0)2

1− δα0 + ν(V α0)

since π(V α0) ≤ ν(V α0)/(1− δα0). Therefore r̂1 may be replaced with r̃1 in the conclusion of
Proposition 5.1 when π is unknown.
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Proof. Note that r̂1 < 1−δα0 . Therefore, if λ ∈ D(1, r̂1), then |λ| > δα0 . Thus it follows from
(17) that any spectral value of P on BV α0 in D(1, r̂1) is actually an eigenvalue. Consequently
we have to prove that λ = 1 is the single eigenvalue of P on BV α0 in D(1, r̂1). Let λ ∈ C\{1},
be an eigenvalue of P on BV α0 , and let fλ ∈ BV α0 be such that fλ ̸= 0 and Pfλ = λfλ. Then

(1− λ)fλ = (I − P )fλ. (41)

Since λ ̸= 1, we have π(fλ) = 0. It follows that

(I − P +Π)−1 ◦ (I − P )fλ = (I − P +Π)−1 ◦ (I − P +Π)fλ = fλ.

Then we obtain by composing to the left of (41) by (I − P +Π)−1 that

(1− λ)f̂λ = fλ where f̂λ := (I − P +Π)−1fλ

so that f̂λ = (1− λ)−1fλ. It follows from (36a) applied to f = fλ that |1− λ|−1 ≤ r̂ −1
1 , thus

|1− λ| ≥ r̂1. This proves the expected statement. □

Proposition 5.2 Assume that P satisfies Assumptions (A). Let α0 ∈ (0, 1] be given in
(Dα0). Let z ∈ C be such that |z| = 1, z ̸= 1, and define

rz :=
(
1− δα0

)(
1 +

ν(V α0)∥1S∥V α0∣∣1− µz(1S)
∣∣(1− δα0

))−1

. (42)

Then there is no spectral value of P on BV α0 in the open disk D(z, rz), that is: ∀λ ∈ D(z, rz),
the operator λI − P is invertible on BV α0 .

Proof. Let z ∈ C be such that |z| = 1, z ̸= 1. Then zI − P is invertible on BV α0 from
Theorem 3.1, so that µz(1S) ̸= 1 due to Theorem 2.2. Since rz < 1 − δα0 we have to prove
that there is no eigenvalue of P on BV α0 in D(z, rz) (as in the proof of Proposition 5.1). Let
λ ∈ C be an eigenvalue of P on BV α0 (thus λ ̸= z), and let fλ ∈ BV α0 be such that Pfλ = λfλ
and ∥fλ∥V α0 = 1. We have (zI − P )fλ = (z − λ)fλ, so that (zI − P )−1fλ = (z − λ)−1fλ.
Using |z| = 1, it follows from (23) applied to fλ that |z− λ|−1 ≤ r−1

z , thus |z− λ| ≥ rz. This
proves the desired statement.

□

Under Assumptions (A) let z0 = eiϑ0 ∈ C, ϑ0 ∈ (0, π/2), be defined by

C(0, 1) ∩ C(1, r̂1) = {eiϑ0 , e−iϑ0} (43)

with r̂1 defined in (40), and let Γ0 be the following closed subset of C(0, 1):

Γ0 := {z ∈ C : z = eiϑ, ϑ ∈ [ϑ0, 2π − ϑ0]
}
.

Note that
m0 := min

z∈Γ0

∣∣1− µz(1S)
∣∣ > 0.

Indeed let α0 ∈ (0, 1] be given in (Dα0). Then for every z ∈ Γ0 we know that zI − P is
invertible on BV α0 (Theorem 3.1), so that µz(1S) ̸= 1 (Theorem 2.2). Then the positivity
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of m0 follows from the continuity of the function z 7→ µz(1S) :=
∑+∞

k=1 z
−kβk(1S) on the

compact set Γ0. Finally let

r̂0 :=
(
1− δα0

)(
1 +

ν(V α0)∥1S∥V α0

m0

(
1− δα0

) )−1

. (44)

Note that r̂0 ≤ rz0 from the definition of m0 and that rz0 ≤ r̂1 since |z0 − 1| = r̂1 and the
eigenvalue 1 cannot belong to D(z0, rz0) from Proposition 5.2. Consequently r̂0 ≤ r̂1, and we
can define ξ0 as the unique complex number such that

|ξ0| < 1 and ξ0 ∈ C(1, r̂1) ∩ C(z0, r̂0). (45)

Corollary 5.1 Assume that P satisfies Assumptions (A). Let α0 ∈ (0, 1] be given in (Dα0)
and let ξ0 be defined in (45). Then the second eigenvalue ϱα0 of P on BV α0 (see (2)) is such
that ϱα0 ≤ |ξ0|.

Proof. From the definition of m0 and from Proposition 5.2 we deduce that, for every z ∈ Γ0,
there is no spectral value of P on BV α0 in the open disk D(z, r̂0), that is: ∀z ∈ Γ0, ∀λ ∈
D(z, r̂0), the operator λI − P is invertible on BV α0 . Then Corollary 5.1 follows from Propo-
sitions 5.1 and from the spectral properties of Section 2. □

Note that the series
∑+∞

k=1 βk(1S) is convergent (see (19)) and that µ1(1S) =
∑+∞

k=1 βk(1S) =
1 since 1 is an eigenvalue of P (Theorem 2.2). Thus

1− µ−1(1S) =
+∞∑
k=1

(
1− (−1)k

)
βk(1S) = 2

+∞∑
k=1

β2k−1(1S) (46)

and 1 − µ−1(1S) ∈ [2ν(1S), 2] since we have β1(1S) = ν(1S) and
∑+∞

k=1 βk(1S) = 1. Recall
that P is said to be reversible with respect to π if π(dx)P (x, dy) = π(dy)P (y, dx). Under
Assumptions (A) and with α0 ∈ (0, 1] given in (Dα0), define

∀t > 0, ψ(t) :=
δα0(1− δα0)t+ ν(V α0)∥1S∥V α0

(1− δα0)t+ ν(V α0)∥1S∥V α0

, (47)

∀n ≥ 1, ηn := 2
n∑

k=1

β2k−1(1S) and η∞ := 2
+∞∑
k=1

β2k−1(1S) = 1− µ−1(1S). (48)

Note that for any n ≥ 1, η∞ ≥ ηn ≥ 2β1(1S) = 2ν(1S) > 0.

Corollary 5.2 Assume that P satisfies Assumptions (A), and let α0 ∈ (0, 1] be given in
(Dα0). Moreover assume that P is reversible with respect to π, that π(V 2α0) <∞, and that
the following implication holds for every λ ∈ C, |λ| > δα0 and for every f ∈ BV α0 :

Pf = λf, f ̸= 0 =⇒ π(|f |) ̸= 0. (49)

Then
∀n ≥ 1, ϱα0 ≤ ψ(η∞) ≤ ψ(ηn). (50)
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Recall that the bounds of ϱα0 in (50) can be used in the L2(π)−geometric ergodicity (see
(3)). Also recall that limn ηn = η∞ and η∞ ∈ [2ν(1S), 2]. The second bound in (50) applied
to n = 1 gives ϱα0 ≤ ψ(2ν(1S)), but this bound is not accurate in general because ν(1S) is
small, so that the bound ψ(ν(1S)) is close to 1.

Proof. From reversibility we know that P is a self-adjoint bounded linear operator on L2(π),
and that the spectral values of P on L2(π) are contained in [−1, 1], e.g. see [RR97, Bax05].
Moreover note that every f ∈ BV α0 is such that π(|f |2) < ∞ from π(V 2α0) < ∞. Now let
λ ∈ C, |λ| > δα0 , be an eigenvalue of P on BV α0 , and let f ∈ BV α0 be such that Pf = λf and
f ̸= 0. Then π(|f |) ̸= 0 from (49), so that λ is an eigenvalue of P on L2(π). Therefore every
eigenvalue λ ∈ C of P on BV α0 such that |λ| > δα0 actually belongs to (−1,−δα0) ∪ (δα0 , 1].
Next, note that r−1 defined in (42) (with z = −1) satisfies r−1 < 1− δα0 , thus δα0 < 1− r−1.
Also observe that 1−r−1 = ψ(η∞) from an easy computation, (46) and 1−µ−1(1S) > 0. Thus,
using Theorem 2.1, the first inequality in (50) holds if we establish that there is no eigenvalue
of P on BV α0 in I1 := (1− r−1, 1) and in I−1 := [−1,−1 + r−1). This is true for I1 since we
know from Theorem 2.2 that λ = 1 is the unique solution to Equation

∑+∞
k=1 λ

−k βk(1S) = 1
in the interval (δα0 , 1]. Moreover this is true for I−1 since we know from Proposition 5.2
applied to z = −1 that there is no spectral value of P on BV α0 in the open disk D(−1, r−1).
Thus ϱα0 ≤ |−1+r−1| = 1−r−1. Finally easy computations show that ψ in (47) is decreasing
on (0,+∞). This proves the second inequality in (50) since 0 < ηn ≤ η∞. □

Remark 5.1 In the atomic case, Equality
∑+∞

k=1 βk(1S) = 1 reads as Ps0(RS < ∞) = 1,
and η∞ = 2Ps0

(
RS ∈ 2N + 1

)
(see (30)). Moreover Conditions (Dα0) holds with α0 = 1

(see Appendix A). Consequently, when the assumptions of Corollary 5.2 hold with an atom
S, then we have the following upper bound for the second eigenvalue ϱ1 of P on BV :

ϱ1 ≤ ψ(2p1) =
2δ(1− δ)p1 + ν(V )∥1S∥V
2(1− δ)p1 + ν(V )∥1S∥V

with p1 := Ps0

(
RS ∈ 2N+ 1

)
.

Remark 5.2 Assumption (49) is used in the previous proof to ensure that every eigenvalue
λ of P on BV α0 such that |λ| > δα0 is also an eigenvalue of P on L2(π). If P is of the form
P (x, dy) = p(x, y)dµ(y) where µ is a positive measure on (X,X ) and if P admits an invariant
probability measure π(dx), then π(dx) is absolutely continuous with respect to µ (i.e. π(dx) =
π(x)µ(dx)). If moreover the density function π is positive on X, then Condition (49) holds.
Indeed, if f ∈ BV α0 is such that π(|f |) = 0, then f = 0 µ−a.s., so that ∀x ∈ X, (Pf)(x) = 0.
This proves (49). More generally note that Condition (49) is fulfilled when for every f ∈ BV α0

we have:

f = 0 π-almost surely =⇒ ∀x ∈ X, ∃n = nx ≥ 1, (Pnf)(x) = 0. (51)

The bounds of the second eigenvalue in Corollaries 5.1-5.2 are quite simple, but their inter-
est is essentially theoretical. In particular the bound (50) in the reversible case is in general
inaccurate because of the form of the function ψ (even in the atomic case of Remark 5.1).
By contrast, the following positive reversible case is much more favourable. Recall that a
reversible Markov kernel P with respect to π is said to be positive if the following condition
holds

∀f ∈ L2(π), ⟨Pf, f⟩L2(π) =

∫
X
(Pf)(x)f(x)π(dx) ≥ 0. (52)
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Under this condition, every eigenvalue λ of P on L2(π) is non-negative from (52). Con-
sequently, if P satisfies the assumptions of Corollary 5.2 and if P is positive, then every
eigenvalue λ of P on BV α0 such that |λ| > δα0 is actually positive. However, as already
mentioned in the proof of Corollary 5.2, λ ∈ (δα0 , 1) is not an eigenvalue of P on BV α0 since∑+∞

k=1 λ
−k βk(1S) > 1 (Theorem 2.2). Thus the following statement holds.

Corollary 5.3 Assume that P is a positive reversible Markov kernel with respect to π sat-
isfying Assumptions (A) and (49). Let α0 ∈ (0, 1] be given in (Dα0), and assume that
π(V 2α0) <∞. Then we have

ϱα0 ≤ δα0 . (53)

Recall that α0 = 1 in the atomic case. If S is an atom, then the conclusion of Corollary 5.3 has
been proved in [Bax05, Th. 1.3] where Condition (49) is not assumed to hold. Therefore, the
previous corollary extends this result to the non-atomic case, provided that Condition (49)
holds true and that the space BV is replaced with BV α0 . The bound ϱα0 ≤ δα0 can be used
in (3) too.

If P is reversible with respect to π and if ℓ ≥ 2 is any even integer, then the ℓ−th iterate
P ℓ of P is a positive reversible Markov kernel with respect to π. Moreover, if ϱ(P ℓ) is the
second eigenvalue of P ℓ on BW for some W ≥ 1, then ϱ(P ℓ)1/ℓ is the second eigenvalue of P
on BW . Indeed, writing n = kℓ+ r (euclidean division) and defining Πf = π(f)1X, we have

Pn −Π = P kℓ+r −Π = (P −Π)r
(
(P ℓ)k −Π

)
from which we easily deduce the desired result. Then the following statement follows from
Corollary 5.3 applied to P ℓ.

Corollary 5.4 Assume that P is reversible with respect to π. Moreover assume that, for
some even integer ℓ ≥ 2, the Markov kernel P ℓ satisfies Assumptions (A), so that P ℓ satisfies
Conditions (DSc) and (Dα0) with some δ(P ℓ) ∈ (0, 1) and some α0(P

ℓ) ∈ (0, 1]. Finally

suppose that P ℓ satisfies (49) and that π(V 2α0(P ℓ)) <∞. Then we have ϱα0 ≤ δα0(P ℓ)/ℓ.

The use of Corollaries 5.3 and 5.4 are illustrated by the three following examples. Corol-
lary 5.3 is applied in the first two. Moreover a simple condition to check Condition (49) in
Metropolis-Hastings algorithms is provided (Remark 5.2 does not apply since the Metropolis
kernel has a discrete part).

Example 5.1 (The Metropolis-Hastings algorithm) The objective is to apply Corol-
lary 5.3 in the context of Markov chain Monte Carlo (MCMC) algorithms where the re-
versibility property of the transition kernel is in force. Specifically, we consider the Metropolis-
Hastings algorithm. Let π (the target density) be a positive distribution density function on
X = Rd, and let q(x, ·) be a proposal density on X = Rd for any x ∈ Rd. Let us introduce the
acceptance probability

∀(x, y) ∈ Rd × Rd, p(x, y) :=

{
min

(
1 , π(y) q(y,x)

π(x) q(x,y)

)
if π(x) q(x, y) > 0

1 if π(x) q(x, y) = 0.

Recall that the associated Metropolis-Hastings kernel is defined by

P (x, dy) := s(x) δx(dy) + p(x, y)q(x, y) dy with s(x) := 1−
∫
Rd

p(x, z)q(x, z) dz, (54)
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where δx(dy) denotes the Dirac distribution at x. It is well-known that P is reversible with
respect to π. The next step is to propose a criterion that ensures that Condition (49) is
satisfied in this context. For any x0 ∈ Rd, let fx0 be the Dirac function at x0, that is:
fx0(x0) = 1 and ∀x ̸= x0, fx0(x) = 0. Then Pfx0 = s(x0)fx0, thus s(x0) is an eigenvalue
of P on the space BW for any function W ≥ 1. Therefore a necessary condition for P
to be W−geometrically ergodic is that s∞ := supx∈Rd s(x) < 1. Now assume that s∞ <
1. Moreover assume that the Metropolis-Hastings Markov kernel P defined in (54) satisfies
Assumptions (A), and let α0 ∈ (0, 1] be given in (Dα0). Then P satisfies Condition (49)
provided that

∀x ∈ S, s(x) ≤ δα0 . (55)

Indeed note that (55) is equivalent to the condition s∞ ≤ δα0 since ∀x ∈ Sc, s(x) ≤ δα0 from

∀x ∈ Sc, s(x)V (x)α0 ≤ (PV α0)(x) ≤ δα0V (x)α0

(use the definition of P in (54) and (Dα0)). Now assume that s∞ ≤ δα0 and prove (49).
Let λ ∈ C, |λ| > δα0, and let f ∈ BV α0 , f ̸= 0, be such that Pf = λf . We must prove that
π(|f |) ̸= 0. Suppose that π(|f |) = 0. Since π > 0, we have f(y) = 0 for almost every y ∈ Rd

with respect to Lebesgue’s measure on Rd. Then

∀x ∈ Rd,

∫
Rd

f(y) p(x, y)q(x, y) dy = 0,

and ∀x ∈ Rd, λf(x) = (Pf)(x) = s(x) f(x). Since f ̸= 0, there exists x0 ∈ Rd such that
f(x0) ̸= 0, so that s(x0) = λ. But this is impossible since ∀x ∈ Rd, s(x) ≤ δα0 < |λ|.

Next, we manage Assumptions (A) on the specific Metropolis-Hastings algorithm for the
standard Gaussian distribution π arising from the proposal Gaussian density q(x, ·) = N (x, 1).
The bounds of the second eigenvalue provided in [Bax05, Sec. 8.2] for this example can be
compared with the bound (53). Let X := R. Since q(x, y) = q(y, x), the acceptance probability
is p(x, y) = min(π(y)/π(x), 1) and it may be checked that function s(x) = P (x, {x}) is

s(x) =
3

2
− Φ(2|x|)− ex

2/4

√
2

(
2− Φ(3|x|/

√
2)− Φ(|x|/

√
2)
)

and s∞ = supx∈R r(x) ≤ 1/2. Let r, d > 0 be two positive scalars. Set Vr(x) := er|x| for any
x ∈ X and Sd := [−d, d]. First, we know from [Bax05, Sect. 8.2] that P satisfies (DSc) with

δd,r := λ(d, r) = max
|x|≥d

λ(x, r)

λ(x, r) = er
2/2

[
Φ(−r)− Φ(−r − x)

]
+

1√
2
e(x−r)2/4Φ

(
(r − x)/

√
2
)
+

er
2/2−2rx

[
Φ(−x+ r)− Φ(−2x+ r)

]
+

1√
2
e(x

2−6rx+r2)/4Φ
(
(r − 3x)/

√
2
)

+Φ(0) + Φ(−2x)− 1√
2
ex

2/4
[
Φ(−x/

√
2) + Φ

(
− 3x/

√
2
) ]

where Φ denotes the standard Gaussian distribution function. Second, we deduce from [Bax05,
p. 726] that PVr is bounded on S = [−d, d] by Kd,r := ed×r λ(d, r). Third, P satisfies (S)

with the two minorization measures ν
(1)
d (dx) =

(
e−d2/

√
2π

)
e−x2

1[−d,d](x) dx and ν
(2)
d (dx) =
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infy∈[−d,d] p(x, y) q(x, y) dx (see [Bax05, p. 727]). We know from [Bax05, Lem. 3.1]) that P
is a positive reversible with respect to π. Using the value of (r, d) from which the best rate

of convergence is obtained in [Bax05] for the measures ν
(i)
d , i = 1, 2, and moreover using the

tuned value (r, d) providing the best rate (53), we obtain the numerical results of Table 2. In

all these cases we get α0 = 1 from (70) in Appendix A since Mr,d := Kr,d− ν
(i)
d (Vr) with (see

[Bax05, Sec. 8.3])

ν
(1)
d (Vr) =

√
2 e−d2+r2/4

[
Φ
(√

2(d− r/2)
)
− Φ

(
− r/

√
2
) ]

ν
(2)
d (Vr) = 2 e((r−d)2−d2)/2

[
Φ(2d− r)− Φ(d− r)

]
+
√
2e(d−r)2/4

[
1− Φ

(
(3d− r)/

√
2
) ]

is such that Mr,d − δr,d ≤ 0. Therefore all the convergence rates are for V−geometric ergod-
icity. It is clear that Condition (55) is satisfied and π(Vr) <∞.

ν
(1)
d

rate ϱ1 d
r [Bax05] (53) [Bax05] (53)

0.16 0.9747 0.9634 1.10 1.39

0.36 0.9510 1.10

ν
(2)
d

rate ϱ1 d
r [Bax05] (53) [Bax05] (53)

0.22 0.9667 0.9480 1.11 1.49

0.43 0.9344 1.2

Table 2: The convergence rates of [Bax05, Tab. 2,3, Th 1.3] and from Corollary 5.3

The rate 0.9344 is the minimal value provided by (53) when tuning (r, d). Then it gives a
bound for the second eigenvalue in the V -geometric ergodicity with V (x) = e0.43|x|. Recall
that Inequality (3) applies with the rate 0.9344 too.

Example 5.2 (Gaussian autoregressive Markov chain) Let us apply Corollary 5.3 to
the autoregressive Gaussian Markov chain on X = R associated with Gaussian transition
kernel P (x, ·) = N (θx, 1− θ2) with θ ∈ (−1, 1). The P -invariant distribution is π = N (0, 1)
for any θ ∈ (−1, 1). This Markov model is also known as contracting normals if introduced
as a component of a two-component Gibbs sampler. The convergence rate in V−geometric
ergodicity is investigated in [Bax05, Sect. 8.3] with V (x) := 1 + x2 and S := [−d, d]. When
θ > 0, P is positive reversible from [Bax05, Sect. 8.3] . As in [Bax05, Tab. 4], we only
consider this case here. Moreover it follows from Remark 5.2 that P satisfies Condition (49).
Then, if d > 1, we know from the computations in [Bax05, Sect. 8.3] that P satisfies (DSc)
with

δd,θ = θ2 + 2
1− θ2

1 + d2
< 1

and Condition (S) with the minorization measure

νd,θ(dy) = min
x∈[−d,d]

1√
2π(1− θ2)

exp

(
− (y − θ x)2

2(1− θ2)

)
1[−d,d](y) dy.

We deduce from [Bax05, p. 728] that Condition (K) holds with

Kd,θ := sup
x∈[−d,d]

(PV )(x) = 2 + θ2(d2 − 1).
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The value of α0 ∈ (0, 1] so that Inequality (Dα0) holds true is obtained according to Ap-
pendix A. Note that π(V α0) < ∞ for any α0 ∈ (0, 1]. Therefore, Corollary 5.3 applies. Ta-
ble 3 provides the rates of convergence from (53) in Corollary 5.3 and from [Bax05, Table 4,
Th 1.3] which provided the best estimates, compared to previous works, for the V−geometric
ergodicity (except for θ := 1/2 where the exact rate is known to be 1/2).

Rate
θ d ϱ1 from [Bax05] ϱα0 from (53) α0

0.5 1.5 0.897 0.892 0.336
1.6 0.891 0.290

0.75 1.2 0.9847 0.9844 0.191
1.3 0.9834 0.141

0.9 1.1 0.99948 0.99947 0.029
1.14 0.99944 0.022

Table 3: The estimates of [Bax05, Table 4, Th 1.3] for V−geometric ergodicity and from
Corollary 5.3 for V α0−geometric ergodicity

The numerical findings in Tables 2 and 3 show that the bound ϱα0 ≤ δα0 proved in
Corollary 5.3 is slightly better (sometimes even quite significantly better in Table 2) than the
bounds of the V -geometric rate of convergence obtained in [Bax05, Sec. 8.2-8.3]. Recall that
our convergence rates in Table 3 hold for V α0−geometric ergodicity. In any case, recall that
the rates apply in the L2(π)−geometric ergodicity (3).

Example 5.3 Let us give a simple example for which the second eigenvalue of P is known
and compared with the bound provided by Corollary 5.4 (applied here with ℓ = 2). Let P =
(P (i, j))(i,j)∈N2 be the reversible Markov kernel defined on X = N by

P (0, 0) = 0.1, P (0, 1) = 0.9 and ∀n ≥ 1, P (n, n− 1) := 0.6, P (n, n+ 1) := 0.4. (56)

Define ∀n ∈ N, V (n) = (0.6/0.4)n/2. The second eigenvalue of P on BV is ϱ1 = 0.98, see
[Bax05, Sec. 8.4], [HL14b, Prop. 4.1]. Note that P satisfies the assumptions of Corollary 5.4
with ℓ = 2. Indeed, P 2 satisfies (S) with S = {0, 1}, ν = ν(0)δ0 + ν(1)δ1 with

ν(0) = min
(
P 2(0, 0), P 2(1, 0)

)
= 0.06, ν(1) = min

(
P 2(0, 1), P 2(1, 1)

)
= 0.09,

and P 2 satisfies (DSc) with V as above defined and with δ(P 2) = 4×0.6×0.4 = 0.96. Finally
the real number α0(P

2) ∈ (0, 1] has to be chosen such that P 2 satisfies (Dα0), that is

∀i ∈ {0, 1}, (P 2V α0(P 2))(i) ≤ 0.96α0(P 2) (0.6/0.4)i α0(P 2)/2 + 0.06 + 0.09× (0.6/0.4)α0(P 2)/2.

We find α0(P
2) = 0.71. Consequently we deduce from Corollary 5.4 that

ϱα0 ≤
√
0.96α0,2 ≤

√
0.9714 = 0.9856.

This bound is not very far from the exact value 0.98.
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6 Application to perturbed Markov kernels

Recall that Liu and Li provide in [LL18] an interesting control on the invariant probability
measure for truncated stochastic matrices, which can be thought of as the control of the
invariant probability measure of a specific perturbation of a Markov kernel. Their bound is
quite relevant in the atomic case (see Remark 6.1). Here, using Theorem 4.1, their result is
extended to general perturbed Markov kernels in the non-atomic case.

Let {Pθ}θ∈Θ be a family of transition kernels on (X,X ), where Θ is an open subset of some
metric space. We assume that the family {Pθ}θ∈Θ satisfies the following conditions: there
exist S ∈ X and ν ∈ M+ such that

ν(1S) > 0 and ∀θ ∈ Θ, ∀x ∈ X, ∀A ∈ X , Pθ(x,A) ≥ ν(1A) 1S(x) (SΘ)

and there exists a Lyapunov function V : X→[1,+∞) such that

∃δ ∈ (0, 1), ∀θ ∈ Θ, ∀x ∈ Sc, (PθV )(x) ≤ δ V (x) (DΘ,Sc)

K := sup
θ∈Θ

sup
x∈S

(PθV )(x) <∞. (KΘ)

Thus the whole family {Pθ}θ∈Θ has is a small-set S with the same positive measure ν and
satisfies the geometric drift conditions (DSc)-(K) in a uniform way in θ ∈ Θ. Throughout
this section, Assumptions (AΘ) will stand for the set of Assumptions (SΘ)-(DΘ,Sc)-(KΘ).
Then for every θ ∈ Θ there exists a unique Pθ−invariant probability measure πθ on (X,X )
such that πθ(V ) <∞. Moreover, under Assumptions (AΘ), there exists α0 ∈ (0, 1] such that

∀θ ∈ Θ, PθV
α0 ≤ δα0 V α0 + ν(V α0)1S . (Dα0

Θ )

In fact Property (Dα0
Θ ) can be proved as for (Dα0) (see Appendix A) since the data of

Assumptions (AΘ) are the same for every θ ∈ Θ. Now, let θ0 ∈ Θ be fixed, and define

∀θ ∈ Θ, ∆θ,α0(x) := ∥Pθ(x, ·)− Pθ0(x, ·)∥′V α0 , (57)

that is: ∆θ,α0(x) is the V
α0-weighted total variation norm of Pθ(x, ·)− Pθ0(x, ·). Next let us

introduce the following condition:

∀x ∈ X, lim
θ→ θ0

∆θ,α0(x) = 0. (∆α0
Θ )

The stationary distribution πθ0 of Pθ0 is supposed to be unknown and not directly com-
putable, and Pθ for θ ̸= θ0 must be thought of as a perturbed Markov kernel of Pθ0 . Then, if
the stationary distribution πθ of Pθ is computable for θ ̸= θ0, Theorem 6.1 below provides an
explicit control for the V α0-weighted total variation norm ∥πθ − πθ0∥′V α0 , provided that the
function ∆θ,α0 in (57) is computable, so that the real number πθ(∆θ,α0) in (58a)-(58b) below
is available. Provided that V is replaced with V α0 , Inequalities (58a)-(58b) below extend the
statement [LL18, Th. 2] to the above general perturbation context.

Theorem 6.1 Suppose that the family {Pθ}θ∈Θ satisfies Assumptions (AΘ). Let α0 ∈ (0, 1]
be given in (Dα0

Θ ), let θ0 ∈ Θ and assume that Condition (∆α0
Θ ) holds. Then

lim
θ→ θ0

∥πθ − πθ0∥′V α0 = 0 and lim
θ→ θ0

πθ
(
∆θ,α0

)
= 0.
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Moreover we have for every θ ∈ Θ∥∥πθ − πθ0
∥∥′
TV

≤
∥∥πθ − πθ0

∥∥′
V α0

≤ 1 + πθ0(V
α0)∥1X∥V α0

1− δα0
× πθ

(
∆θ,α0

)
(58a)

≤ 1− δα0 + ν(V α0)∥1X∥V α0

(1− δα0)2
× πθ

(
∆θ,α0

)
. (58b)

Remark 6.1 (Comparison with [LL18]) Let P := (P (i, j))(i,j)∈N2 be a stochastic infinite
matrix and for every k ≥ 1 let Pk be the linear augmentation (e.g. in the last column) of the
(k+ 1)× (k+ 1) northwest corner truncation of P . Hence Pk is a stochastic matrix of order
k + 1. Assume that P satisfies (S) with an atom S ⊂ N, and that there exist b > 0 and a
Lyapunov function V = (V (n))n∈N such that PV ≤ δV +b1S and ∥1X∥V = 1. Let π (resp. πk)
be the invariant probability measure of P (resp. of Pk). For the sake of simplicity we also
denote by Pk and πk the natural extensions to N of Pk and πk respectively. For every k ∈ N
define

∀i = 0, . . . , k, ∆k(i, V ) =
∑
j>k

P (i, j)
(
V (k) + V (j)

)
and δk :=

k∑
i=0

πk(i)∆k(i, V ). (59)

It is proved in [LL18, Th. 2] that∥∥π − πk
∥∥′
V

≤ 1 + π(V )

1− δ
× δk (60a)

≤ 1− δ + b

(1− δ)2
× δk. (60b)

Let us show that Properties (60a)-(60b) and (58a)-(58b) coincide in this truncation and
atomic context. Here Θ = N ∪ {∞} with P∞ = P and Pθ = Pk for θ = k ∈ N. More-
over recall that in the atomic case we have α0 = 1 in (Dα0

Θ ). Hence ∆k(i, V ) and δk in (59)
are nothing else but the error term in (57) and the real number πθ(∆θ,α0) of Theorem 6.1.
Moreover the constants in (60a)-(60b) are exactly those in (58a)-(58b) since we can choose
b = ν(V ) in the atomic case. This proves the claimed fact. Finally mention that the proof of
the property limk δk = 0 in [LL18] is not complete because of the incorrect statement [LL18,
lem. 1].

Again, we may suppose that α0 = 1 for the following proofs. If α0 < 1, replace V and
δ with V α0 and δα0 respectively. The next lemmas extend results in [Twe98, Sect. 3] and
[LL18, Eq. (3)] proved for truncated discrete Markov kernels.

Lemma 6.1 Under the assumptions of Theorem 6.1 we have: limθ→ θ0 ∥πθ − πθ0∥′V = 0.

Proof. It follows from (KΘ)-(DΘ,Sc) that

∀θ ∈ Θ, PθV ≤ cV with c := δ +K. (61)

Moreover we have for every f ∈ BV such that ∥f∥V ≤ 1

∀n ≥ 1, ∀x ∈ X,
∣∣(Pn

θ0f)(x)− (Pn
θ f)(x)

∣∣ ≤ n−1∑
j=0

cn−1−j
(
P j
θ0
∆θ,1

)
(x). (62)
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Indeed, proceed by induction. Inequality (62) holds for n = 1 since we have from the definition
of the V -weighted total variation norm∣∣(Pθ0f)(x)− (Pθf)(x)

∣∣ ≤ ∆θ,1(x).

Assume that (62) holds for some n ≥ 1. Let g ∈ BV be such that ∥g∥V ≤ 1. Then∣∣(Pn+1
θ0

g)(x)− (Pn+1
θ g)(x)

∣∣ ≤
∣∣(Pn

θ0(Pθ0 − Pθ)g
)
(x)

∣∣+ ∣∣((Pn
θ0 − Pn

θ )Pθg
)
(x)

∣∣
≤

∫
X

∣∣(Pθ0g)(y)− (Pθg)(y)
∣∣Pn

θ0(x, dy) +
n−1∑
j=0

cn−j
(
P j
θ0
∆θ0,1

)
(x)

≤
∫
X
∆θ0,1(y)P

n
θ0(x, dy) +

n−1∑
j=0

cn−j
(
P j
θ0
∆θ0,1

)
(x)

using the triangular inequality, the fact that ∥Pθg∥V ≤ c by (61) and the induction assump-
tion, and finally the definition of ∆θ,1. This gives (62) at order n + 1. Now let x0 ∈ X be
fixed and define

εn,Θ := sup
θ∈Θ

∥∥Pn
θ (x0, ·)− πθ

∥∥′
V
. (63)

Let f ∈ BV be such that ∥f∥V ≤ 1. Then we have from the definition of εn,Θ and from (62)∣∣πθ0(f)− πθ(f)
∣∣ ≤

∣∣πθ0(f)− (Pn
θ0f)(x0)

∣∣+ ∣∣(Pn
θ0f)(x0)− (Pn

θ f)(x0)
∣∣+ ∣∣(Pn

θ f)(x0)− πθ(f)
∣∣

≤ 2 εn,Θ +

n−1∑
j=0

cn−1−j
(
P j
θ0
∆θ,1

)
(x0).

Next fix n ≥ 1. We have

∀j = 0, . . . , n− 1, lim
θ→ θ0

(
P j
θ0
∆θ,1

)
(x0) = 0

from Lebesgue’s theorem applied to the probability measure P j
θ0
(x0, ·) using Assumption (∆α0

Θ )
(with α0 = 1 here) and

∀θ ∈ Θ, ∆θ,1 ≤ 2cV (64)

with c defined in (61). Hence

∀n ≥ 1, lim sup
θ→ θ0

∥∥πθ0 − πθ
∥∥′
V
≤ 2 εn,Θ.

Moreover we have from [Bax05, GP14]

lim
n
εn,Θ = 0 (65)

since Assumptions (AΘ) are stated in a uniform way in θ ∈ Θ. Property (65) can be also
derived from the results of Sections 2-3 when the parameter set Θ is assumed to be locally
compact, see Appendix C. It follows that lim supθ→ θ0

∥∥πθ0 − πθ
∥∥′
V
= 0, hence the assertion

of Lemma 6.1 holds. □

Lemma 6.2 Suppose that the assumptions of Theorem 6.1 hold. For any f ∈ BV , let us
introduce f0 := f − πθ0(f)1X. Set f̃0 := (I −Rθ0)

−1f0 with Rθ0 := Pθ0 − ν(·)1S. Then

πθ(f)− πθ0(f) = πθ
(
∆θf̃0

)
with ∆θ := Pθ − Pθ0 .
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Proof. Since πθ0(f0) = 0, we know from Theorem 4.1 applied to Pθ0 that f̃0 is a solution to

Poisson’s equation, that is f̃0 satisfies f̃0 − Pθ0 f̃0 = f0, or Pθ0 f̃0 = f̃0 − f0. Then, it follows
that

πθ
(
∆θf̃0

)
= πθ

(
Pθf̃0 − Pθ0 f̃0

)
= πθ(f̃0) + πθ

(
− f̃0 + f0

)
= πθ(f0) = πθ(f)− πθ0(f) (from the definition of f0).

□

Proof of Theorem 6.1. That limθ→ θ0 ∥πθ − πθ0∥′V = 0 is proved in Lemma 6.1. Next we get
from (64)

πθ(∆θ,1) ≤
∣∣πθ(∆θ,1)− πθ0(∆θ,1)

∣∣+ πθ0(∆θ,1) ≤ 2c∥πθ − πθ0∥′V + πθ0(∆θ,1).

Moreover we obtain that limθ→ θ0 πθ0(∆θ,1) = 0 from Lebesgue’s dominated convergence
theorem with respect to the probability measure πθ0 using Assumption (∆α0

Θ ) (with α0 = 1
here), (64) and πθ0(V ) < ∞. We have proved that limθ→ θ0 πθ

(
∆θ,1

)
= 0. Now let f ∈ BV

be such that ∥f∥V ≤ 1. Define f0 := f − πθ0(f)1X and f̃0 := (I −Rθ0)
−1f0 as in Lemma 6.2.

Apply Theorem 4.1 to the Markov kernel Pθ0 to obtain that∣∣πθ(f)− πθ0(f)
∣∣ ≤

∫
X

∣∣(Pθf̃0)(x)− (Pθ0 f̃0)(x)
∣∣πθ(dx) (from Lemma 6.2)

≤ ∥f̃0∥V
∫
X
∆θ,1(x)πθ(dx) (from the definition of ∆θ,1)

≤ 1

1− δ
∥f0∥V × πθ

(
∆θ,1

)
(from (35))

≤ 1 + πθ0(V )||1X ||V
1− δ

× πθ
(
∆θ,1

)
(from the definition of f0)

≤ 1− δ + ν(V )∥1X∥V
(1− δ)2

× πθ
(
∆θ,1

)
(from πθ0(V ) ≤ ν(V )/(1− δ)).

The proof of Theorem 6.1 is complete. □

Remark 6.2 As introduced in [Twe98] for discrete set X, Condition (∆α0
Θ ) is the expected

continuity assumption in order to study the V α0-weighted total variation distance between πθ
and πθ0. When this condition is satisfied, not only the bound (58a) in Theorem 6.1 has the
expected form, but also the constant in (58a) is simple (and moreover explicit in (58b)). Let
us discuss Condition (∆α0

Θ ) and alternative assumptions used in prior works.

� The standard operator norm continuity assumption introduced in [Kar86] writes as
limθ→ θ0 ∥Pθ − Pθ0∥V α0 = 0, namely

lim
θ→ θ0

sup
x∈X

∆θ,α0(x)

V (x)α0
= 0.

This condition is clearly much more restrictive than Condition (∆α0
Θ ).

� The weak operator norm continuity assumptions used in [SS00, FHL13, HL14a, RS18,
MARS20] requires that

lim
θ→ θ0

sup
x∈X

∥Pθ(x, ·)− Pθ0(x, ·)∥′TV

V (x)α0
= 0. (66)
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To understand the difference between Conditions (∆α0
Θ ) and (66), consider the following

simple example derived from perturbed linear autoregressive models:

∀θ ∈ (0, 1), ∀x ∈ X = R, ∀A ∈ X , Pθ(x,A) :=

∫
R
1A(y) ν(y − θx) dy,

where X is here the Borel σ−algebra on R and where ν is some probability density
function (p.d.f.) with respect to Lebesgue’s measure on R. Let θ̂ ∈ (0, 1). It is well-
known that, under moment conditions on the p.d.f. ν, the family {Pθ}θ∈(0,θ̂) satisfies

Assumptions (AΘ) (e.g. see [RS18, HL23]). Here we only focus on Conditions (∆α0
Θ )

and (66). Let θ0 ∈ (0, θ̂) be fixed. Condition (∆α0
Θ ) writes as follows

∀x ∈ R, lim
θ→ θ0

∫
X
V (y)α0

∣∣ν(y − θx)− ν(y − θ0x)
∣∣dy= 0, (67)

while Condition (66) is:

lim
θ→ θ0

sup
x∈R

∫
X
∣∣ν(z − θx)− ν(z − θ0x)

∣∣dz
V (x)α0

= 0. (68)

Actually Conditions (67) and (68) are quite different. In (67) the convergence is simple
in x ∈ R, but the presence of V (y) in the integral may be problematic. In (68) the
absence of the function V in the integral is of course an advantage, but the convergence
has to be uniform on R (actually it has to be uniform on every compact of R thanks to the
division by V (x)). In this example Condition (68) is satisfied thanks to the continuity
of t 7→ ν(· − t) from R to the Lebesgue space L1(R) (see [HL23]). Consequently, if the
rate ρ and the associated multiplicative constant Cρ in (2) are known, then the bounds
obtained in [RS18, HL23] for ∥πθ−πθ0∥′TV hold and are explicit. Otherwise, the explicit
bounds (58a) and (58b) which depend neither on the rate ρ nor on the constant Cρ may
be used provided that the p.d.f. ν satisfies Condition (67).

A Complement on the real number α0

Let α ∈ (0, 1]. If x ∈ X \ S, then we have (PV α)(x) ≤ δα V (x)α from (DSc) and Jensen’s
inequality. Recall that K := supx∈S(PV )(x) (see (K)). We have 1 ≤ supx∈S(PV

α)(x) ≤ Kα

from 1X ≤ V α and PV α ≤ (PV )α using again Jensen’s inequality. Finally we get from
1X ≤ V

∀x ∈ S, (PV α)(x)− δα V (x)α − ν(V α) ≤ Kα − δα − ν(1X).

Passing to the limit when α→ 0 provides the existence of α0 ∈ (0, 1] such that (Dα0) holds
since ν(1X) > 0. Note that, if Condition (S) is fulfilled with an atom S and with ν(·) :=
P (a0, ·) for some (any) a0 ∈ S, then (Dα0) holds with α0 = 1. Indeed we then have

∀x ∈ S, PV (x)− δ V (x)− ν(V ) = −δ V (x) ≤ 0.

Since under Assumption (DSc) we have PV α ≤ δα V α on X \ S for any α ∈ (0, 1], the
computation of α0 in (Dα0) only concerns the elements x ∈ S. Under Assumption (S) define
σ := 1− ν(1X) ∈ [0, 1). The value σ = 0 corresponds to the atomic case for which α0 = 1. If
α0 = 1 does not work, the following statement is useful to find an explicit value for α0 ∈ (0, 1)
in (Dα0).
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Proposition A.1 Assume that P satisfies Condition (S) with S that is not an atom, so that
σ ∈ (0, 1). Then we have for any Lyapunov function V :

∀α ∈ (0, 1], ∀x ∈ S, (PV α)(x)− ν(V α) ≤ σ

σα
[
(PV )(x)− ν(V )

]α
. (69)

Proof. Let x ∈ S. Note that σx(·) := P (x, ·) − ν(·) is a non-negative measure on (X,X )
from Assumption (S), and that σx(1X) = 1 − ν(1X) = σ does not depend on x. Define the
following probability measure on (X,X ): σ̂x(·) = σx(·)/σ. Let α ∈ (0, 1]. It follows from
Jensen’s inequality that

(PV α)(x)− ν(V α)

σ
= σ̃x(V

α) ≤
[
σ̃x(V )

]α
=

[
(PV )(x)− ν(V )

]α
σα

,

from which we deduce (69).

□

The real number α0 can be computed as follows thanks to Proposition A.1. Let M :=
K − ν(V ) with K given in (K). Then

∀α ∈ (0, 1], ∀x ∈ S, (PV α)(x)− ν(V α)− δαV (x)α ≤ σ

σα
Mα − δα (70)

since V ≥ 1X. Then α0 ∈ (0, 1] can be chosen such that σ
σα0 M

α0 − δα0 ≤ 0 since

lim
α→ 0

[ σ
σα

Mα − δα
]
= σ − 1 < 0.

B Order of the eigenvalues of P

Under Assumptions (A) we deduce from Property (13) that z 7→ µz given in (19) is derivable
on the domain D0 = {z ∈ C : |z| > δα0} with α0 ∈ (0, 1] given in (Dα0), and that its
derivative is given by

∀z ∈ D0, µ′z := −
+∞∑
k=1

k z−(k+1) βk (71)

which is absolutely convergent in B′
V α0 .

Proposition B.1 Assume that P satisfies (A), and let α0 ∈ (0, 1] be given in (Dα0). Let
λ ∈ D0 be an eigenvalue of P on BV α0 (equivalently µλ(1S) = 1 from Theorem 2.2). Then
the two following assertions are equivalent:

(i) λ is of order one, that is Ker(P − λI)2 = Ker(P − λI) or equivalently Ker(P ∗ − λI)2 =
Ker(P ∗ − λI);

(ii) µ′λ(1S) ̸= 0.

Moreover, if we have µ′λ(1S) = 0, then the system {µλ, µ′λ} form a basis of the subspace
Ker(P ∗ − λI)2 := {ψ ∈ B′

V α0 : ψ ◦ (P − λI)2 = 0}.
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Proof. Again we suppose that α0 = 1 in (Dα0). Let λ ∈ C be an eigenvalue of P on BV such
that |λ| > δ. Assume that µ′λ(1S) = 0. From (21) we obtain the following equality in B′

V

µ′λ ◦ P = µλ + λµ′λ + µ′λ ◦ T

with ∀f ∈ BV , (µ′λ ◦ T )(f) = −
+∞∑
k=1

k λ−(k+1) βk(Tf) = − ν(f)

+∞∑
k=1

k λ−(k+1) βk(1S)

= −ν(f)µ′λ(1S) = 0.

Hence µ′λ ◦ P = λµ′λ + µλ. Recall that µλ ∈ Ker(P ∗ − λI) (Theorem 2.2) with µλ ̸= 0 since
µλ(1S) = 1. Thus µ′λ is nonzero and satisfies µ′λ ◦ (P − λI) = µλ ∈ Ker(P ∗ − λI), so that
µ′λ ∈ Ker(P ∗ − λI)2 \Ker(P ∗ − λI). We have proved the implication (i) ⇒ (ii). Conversely,
assume that there exists ψ ∈ B′

V , ψ ̸= 0, such that ψ ◦ (P − λI)2 = 0 and ψ ◦ (P − λI) ̸= 0.
Since ϕ := ψ ◦ (P − λI) ∈ Ker(P ∗ − λI), we deduce from the last assertion of Theorem 2.2
that ϕ = c µλ for some c ∈ C. Obviously we may suppose that c = 1 (replacing ψ with ψ/c).
Hence ψ ◦ P = λψ + µλ, and an easy induction gives

∀n ≥ 0, ψ ◦ Pn = λnψ + nλn−1µλ.

Next, composing on the left by ψ in (22), we obtain the following equalities in B′
V

λnψ + nλn−1µλ − ψ(1S)
n∑

k=1

λn−k βk − µλ(1S)
n∑

k=1

(n− k)λn−k−1 βk = O(δn).

Using µλ(1S) = 1 we deduce that

ψ − ψ(1S)
n∑

k=1

λ−k βk +
n∑

k=1

kλ−(k+1) βk + nλ−1

(
µλ −

n∑
k=1

λ−k βk

)
= o(1).

When n→+∞ we obtain that
ψ = ψ(1S)µλ + µ′λ

since µλ −
∑n

k=1 λ
−k βk = O((δ/|λ|)n) with |λ| > δ. Applying the above equality to the

function 1S gives µ′λ(1S) = 0 since µλ(1S) = 1. We have proved the implication (ii) ⇒ (i),
as well as the last assertion of Proposition B.1.

□

Under Assumptions (A) define for every z ∈ C such that |z| > δα0

χS(z) = µz(1S)− 1 =
+∞∑
k=1

z−k βk(1S) − 1.

We know from Theorem 2.2 that λ ∈ C such that δα0 < |λ| ≤ 1 is an eigenvalue of P on
BV α0 if, and only if, χS(λ) = 0. Moreover, from Proposition B.1, such an eigenvalue λ is of
order one if, and only if, χ′

S(λ) ̸= 0. An easy extension of Proposition B.1 shows that, for

every p ≥ 2, λ is of order p if, and only if, ∀i = 0, . . . , p− 1, χ
(i)
S (λ) = 0 and χ

(p)
S (λ) ̸= 0.
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C Proof of (65) when Θ is locally compact

The following statement shows that, under Assumptions (AΘ), the family {Pθ}θ∈Θ satisfies
(2) in a uniform way in θ when Θ is locally compact, so that Property (65) holds. Under

Assumptions (AΘ), we denote by ϱ
(θ)
α0 the second eigenvalue of Pθ on BV α0 .

Proposition C.1 Assume that {Pθ}θ∈Θ satisfies Assumptions (AΘ). Let α0 ∈ (0, 1] be given
in (Dα0

Θ ), let θ0 ∈ Θ and suppose that Assumption (∆α0
Θ ) holds. Moreover suppose that Θ

is locally compact. Then there exists a compact neighbourhood Vθ0 of θ0 in Θ such that

∀θ ∈ Vθ0 , ϱ(θ)α0
≤ max(δα0 , ϱ(θ0)α0

). (72)

Moreover, for every ρ ∈
(
max(δα0 , ϱ

(θ0)
α0 ), 1

)
, we have

∀θ ∈ Vθ0 , ∥Pn
θ f − πθ(f)1X∥V α0 ≤ ρ

2π(ρ− δα0)

(
1 +

ν(V α0)∥1S∥V α0

mρ,Θ

(
ρ− δα0

) )
ρn (73)

with mρ,Θ := min
{
|1− µ(θ)z (1S)

∣∣ : z ∈ C : |z| = ρ, θ ∈ Vθ0

}
> 0. (74)

Proof. Again we suppose that α0 = 1. Note that under Assumptions (AΘ) we have

∀k ≥ 1, ∀θ ∈ Θ, ∥Rk
θ∥V ≤ δk with Rθ := Pθ − ν(·)1S (75)

from (13) and from the uniformity of (AΘ) in θ ∈ Θ. Define

∀θ ∈ Θ, ∀k ≥ 1, β
(θ)
k = ν ◦Rk−1

θ . (76)

Hence
∀k ≥ 1, ∀θ ∈ Θ, β

(θ)
k (1S) ≤ ν(V )∥1S∥V δk−1. (77)

For every z ∈ C such that |z| > δ and for every θ ∈ Θ we define

µ(θ)z (1S) :=
+∞∑
k=1

z−kβ
(θ)
k (1S). (78)

Let f ∈ BV such that ∥f∥V ≤ 1. Observing that ∆θ,1(x) := ∥Rθ(x, ·)−Rθ0(x, ·)∥V and that
RθV ≤ V from (Dα0

Θ ) (with α0 = 1 here), we can prove as in (62) that

∀k ≥ 1, ∀x ∈ X,
∣∣(Rk

θ0f)(x)− (Rk
θf)(x)

∣∣ ≤ k−1∑
j=0

(
Rj

θ0
∆θ,1)(x) ≤

k−1∑
j=0

(
P j
θ0
∆θ,1)(x).

Note that β
(θ)
1 = ν. Then, using the definition (76) of β

(θ)
k , we have for every k ≥ 2

∣∣β(θ)k (f)− β
(θ0)
k (f)

∣∣ ≤ ∫
X

∣∣(Rk−1
θ f)(x)− (Rk−1

θ0
f)(x)

)
| dν(x) ≤

k−2∑
j=0

ν
(
P j
θ0
∆θ,1

)
.

Moreover we have
∀j = 0, . . . , k − 2, lim

θ→ θ0
ν
(
P j
θ0
∆θ,1

)
= 0
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from Lebesgue’s dominated convergence theorem with respect to the positive measure νP j
θ0

using Assumption (∆α0
Θ ), (64) and ν(P j

θ0
V ) <∞ (use (61)). This proves that

∀k ≥ 1, lim
θ→ θ0

∥β(θ)k − β
(θ0)
k ∥′V = 0. (79)

To simplify, for every θ ∈ Θ and for every z ∈ C such that |z| > δ, we set ϕ(θ, z) := µ
(θ)
z (1S)

(see (78)). We easily deduce from (77) and (79) that ϕ is continuous on Θ×{z ∈ C : |z| > δ}
(note that θ0 has been arbitrarily chosen in Θ). Let ρ ∈

(
max(δ, ϱ(θ0), 1

)
, where ϱ(θ0) denotes

the second eigenvalue of Pθ0 on BV . Let γ ∈ (0, 1 − ρ), and finally let Dρ,γ be the following
compact subset of C:

Dρ,γ :=
{
z ∈ C : |z| ≥ ρ, |z − 1| ≥ γ

}
.

We know from the definition of ϱ(θ0) and from Theorem 2.2 that

∀z ∈ Dρ,γ , ϕ(θ0, z) ̸= 1. (80)

Let us prove that there exists a neighbourhood Vθ0 ≡ Vθ0(ρ, γ) of θ0 in Θ such that

∀z ∈ Dρ,γ , ∀θ ∈ Vθ0 , ϕ(θ, z) ̸= 1. (81)

Assume that such a neighbourhood does not exist. Then there exists a sequence (ϑn)n≥1 ∈ ΘN

and a sequence (zn)n≥1 ∈ D N
ρ,γ such that limϑn = θ0 and ∀n ≥ 1, ϕ(ϑn, zn) = 1. Up to select

a subsequence we can suppose that limn zn = u for some u in the compact set Dρ,γ . Then
we deduce from the continuity of ϕ that

ϕ(θ0, u) = lim
n
ϕ(ϑn, zn) = 1.

This contradicts Property (80). Hence (81) is proved. Next let r̂1 be defined in (40) (with
α0 = 1 here), let γ ∈ (0,min(1 − ρ, r̂1/2)) and let Vθ0 ≡ Vθ0(ρ, γ) such that (81) holds. Let
us prove that

∀z ∈ C, |z| ≥ ρ, z ̸= 1, ∀θ ∈ Vθ0 , ϕ(θ, z) ̸= 1. (82)

First it follows from the uniformity in θ ∈ Θ of Assumptions (AΘ) and from Proposition 5.1
that, for every θ ∈ Θ, λ = 1 is the single spectral value of Pθ on BV in the open disk D(1, r̂1).
Thus we have

∀θ ∈ Θ, ∀z ∈ D(1, r̂1), z ̸= 1, ϕ(θ, z) ̸= 1 (83)

from Theorem 2.2. Then (82) follows from (81) and (83) since γ < r̂1/2.

Now we can complete the proof of Proposition C.1. Let ρ ∈
(
max(δ, ϱ(θ0), 1

)
. Using

the spectral properties of Section 2 and Theorem 2.2 we deduce from (82) that, for every
θ ∈ Vθ0 , the spectral gap ϱ(θ) of Pθ on BV is less than ρ. In fact this gives (72) since ρ is
arbitrarily close to max

(
δ, ϱ(θ0)

)
. Next note that the neighbourhood Vθ0 of θ0 in (82) can

be assumed to be compact since Θ is locally compact. Then (74) follows from the continuity
of ϕ on the compact set H := Vθ0 × {z ∈ C : |z| = ρ} since we know from (82) that
∀(θ, z) ∈ H, ϕ(θ, z) ̸= 1. Finally (73) follows from Theorem 3.1 applied to Pθ, θ ∈ Vθ0 . □
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