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Abstract

We introduce a framework to discover interpretable regression models for
high-stakes decision making in the context of safety-critical systems. The core of
our proposal is a multi-objective hierarchical symbolic regression algorithm able
to compute cluster-speci�c rankings of regression models ordered by increasing
complexity. We discover the hierarchical structure by clustering the features'
importances of a post-hoc explainability framework (viz., SHAP) applied to a
highly �exible predictive model (viz., XGBoost). We rely on a symbolic regres-
sion algorithm based on the simulated annealing meta-heuristic to infer sparse
linear models which may include non-linear e�ects (e.g., log-transforms, multi-
plicative interactions...). This search is guided by two objectives: maximizing
predictive performance and minimizing complexity. It ends on a list of Pareto-
optimal models that fosters a dynamic interpretative process: the user navigates
from the least to the most complex model and decides the ones he can trust
depending on whether he understands them, and whether he is satis�ed by
the quanti�ed uncertainty of their parameters and predictions. Our approach
achieves promising results when compared to more than ten other interpretable
or black-box predictive models on eleven public regression datasets of various
volumes, dimensionalities or domains, and on a proprietary dataset for highway
crash prediction. On this last dataset, we demonstrate the usefulness of our
new ranking-by-complexity of inherently interpretable models.

* This paper is to appear in Engineering Applications of Arti�cial Intelligence
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1 Introduction
To make high-stakes decisions in safety critical systems based on the output of a data-driven
predictive model, it is necessary to consider if the model is trustworthy. Interpretability
helps assessing trustworthiness by making clear what the model knows when it makes a
decision. Indeed, a predictive model is interpretable when the process leading to a prediction
is understandable to humans [Rudin et al., 2022]. Elucidation of trustworthiness is also
facilitated by stressing what a predictive model does not know, through a clear quanti�cation
of uncertainty [Tomsett et al., 2020].

The constraints that make a predictive model interpretable are domain-speci�c [Rudin,
2019]. In this work, we choose to focus on regression analysis for safety critical systems with
access to tabular data where the explanatory variables are meaningful. In that context, we
consider that the prediction process is fully understandable when it is expressed as a simple
formula of the observed variables.

However, for tabular data, given a su�ciently rich hypothesis space, many models can
approach the minimum error rate. This phenomenon is referred to as the Rashomon e�ect
[Breiman, 2001]. Also, due to various inductive bias, important associations between ob-
served variables and target can often be indistinguishable from spurious associations speci�c
to the dataset [Teney et al., 2022]. Therefore, models with the minimum error rate are not
necessarily the best suited to help decision-making. In the absence of precise prior knowl-
edge of the conditional independencies relationships between the variables, it may be better
to discover a set of potential predictive models and to let the user decide which of them is
more trustworthy.

Based on these observations, we propose a framework that fosters a dynamic interpreta-
tive process by computing a small subset of cluster-speci�c models from a large hypothesis
space. Our approach can be broken down into two main steps.

Firstly, we consider that data can often be partitioned so that re�ned predictive models
apply to di�erent parts more e�ciently and more meaningfully than a global model. We
discover this structure by clustering the instances based on the features' scores returned by
the SHAP [Lundberg and Lee, 2017] post-hoc analysis of a �exible non-parametric model.

Secondly, we design a symbolic regression [La Cava et al., 2021] algorithm based on sim-
ulated annealing to explore an hypothesis space made of simple mathematical expressions
that correspond to expansions of linear models with the possible addition of some transforms
of the original variables (e.g. compositions of log-transforms, multiplicative interactions,
etc.) and with the use of a regularization term to control the bias/variance trade-o�. To
explore the hypothesis space, the meta-heuristic search conducts a multi-objective optimiza-
tion [Stinstra et al., 2008] on both a predictive performance metric and a complexity metric.
The complexity metric promotes interpretable models, especially by rewarding sparseness
and by penalizing colinearities.
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The search ends with a list of Pareto optimal models. These models are learned by
bayesian inference which ensures that they are formed through an interpretable generative
process and that they o�er a clear quanti�cation of uncertainty. The user can then navigate
among these models, from the least to the most complex, and decide if he can trust a given
model depending on whether he understands it, and whether he is satis�ed by the quanti�ed
uncertainty of its parameters and predictions.

We test our framework on twelve datasets, covering a broad variety of contexts in terms
of volume, data types and domains. Eleven of them are public regression datasets. The
last is a proprietary dataset in the domain of highway safety analysis where the task is
to build a crash prediction model. We obtain very promising results. Our framework
outperforms fully interpretable models such as linear models or shallow decision trees while
getting close to non-parametric models. In addition, through a realistic case study conducted
on the highway network dataset, we demonstrate how our framework enables a dynamic
interpretative process that can help �eld experts develop new safety policies.

The rest of the paper is organized as follows. Section 2 introduces the related work on
crash predictions models, model interpretability and symbolic regression. Section 3 describes
the proposed method, from the automatic discovery of a hierarchical structure in the data, to
the elaboration of Pareto optimal models for each cluster. Experimental results are discussed
in Section 4. Finally, in Section 5, we illustrate on the highway network dataset the main
components of the dynamic interpretative process made possible by our hierarchical symbolic
regression models.

2 Related Work
In this section, we �rst introduce key concepts of model interpretability. Then, we present
the main approaches used for crash prediction modeling, a representative case of safety-
critical systems, with a focus on their interpretability. Finally, we introduce references on
symbolic regression, the strategy we used to model crash data.

2.1 Model interpretability
In many sensitive area such as highway safety, AI systems are being used to assist �eld
experts in making high stake decisions which may indirectly a�ect humans' lives. There-
fore, stakeholders expect these systems to compel to several properties such as trustworthi-
ness, con�dence, fairness, accessibility and interactivity [Arrieta et al., 2020]. Some predic-
tive models, such as rule-based systems, generalized linear models (GLM) [McCullagh and
Nelder, 2019], generalized additive models (GAM) [Hastie and Tibshirani, 2017] or shallow
decision trees are commonly considered as being inherently interpretable and, indeed, they
meet all of the above criteria. Other models, such as ensemble of decision trees or deep
neural networks, are able to produce highly �exible decision boundaries and can therefore
reach better predictive performance on some datasets. However, they tend to work like black
boxes. Post-hoc explanations methods are then necessary to provide some interpretability.
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Let us introduce brie�y the most prominent representatives of these methods. First,
global explanation methods such as partial dependence plots [Friedman, 2001] or Sobol
indices [Sobol, 2001], quantify the main e�ects and the interaction e�ects of the explanatory
variables on the dependent variable. Then, some methods simulate a black box model with
a simpler, more interpretable one, through distilled additive explanations [Tan et al., 2018]
or subspace explanations [Lakkaraju et al., 2019]. Also, local explanation methods, such as
LIME [Ribeiro et al., 2016] or SHAP [Lundberg and Lee, 2017], focus on learning simple
local approximations to explain individual predictions.

The machine learning research community o�ers nuanced perspectives about the merits
of post-hoc explanations. As a representative example, [Lipton, 2018] suggests that post-
hoc explanations should not be ruled-out as valid, although indirect, means of knowledge
about the underlying data generating process. He also underlines the potential risk of
focusing on misleading information when relying on post-hoc explanations. Moreover, he
considers that transparent linear models may not always be more interpretable than deep
neural networks (DNN) because they often need heavily engineered features to obtain similar
performances. Likewise, [Poursabzi-Sangdeh et al., 2021] observe that practitioners can be
a�ected by the information overload phenomenon when the number of features becomes
too large. Otherwise, [Rudin, 2019] emphasizes the importance of taking into account the
whole data analysis process, including the preprocessing steps: �when considering problems
that have structured data with meaningful features, there is often no signi�cant di�erence
in performance between more complex classi�ers (DNN, boosted decision trees, random
forests) and much simpler classi�ers (logistic regression, decision lists) after preprocessing�.
She points out that there is not necessarily a trade-o� between accuracy and interpretability:
performance gaps can be reduced iteratively through better data processing and model
understanding. The latter is facilitated by the use of interpretable models.

In our work, we focus on predictive models used to inform high stake decision making
processes. Therefore, we consider that e�ective parametric models with simple functional
forms are more desirable than post-hoc explanations of black box models since they directly
provide the marginal e�ects of the explanatory variables.

2.2 Crash Prediction Models and their interpretability
Many methods have been proposed for crash frequency analysis [Lord and Mannering, 2010].
The parametric statistical models, mostly represented by GLM, explicitly associate the crash
related variable to a vector of explanatory variables. Crash frequencies being positive inte-
gers, they have originally been modelled by Poisson regressions [Jones et al., 1991, Joshua
and Garber, 1990, Miaou, 1994]. However, an over-dispersion phenomenon is often observed
in highway safety studies. Therefore, the more �exible Poisson-gamma models, also called
negative binomial models, being able to adjust the variance, are often preferred to Pois-
son regression for crash prediction [Miaou and Lord, 2003, Lord et al., 2005, El-Basyouny
and Sayed, 2006, Lord and Kuo, 2012]. With the above models, roadway safety experts
can understand the risk factors through the analysis of a few parameters associated with
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uncertainty estimates.
CPM can also be black box models, such as SVM [Li et al., 2008] or arti�cial neural net-

works [Zeng et al., 2016, Chang, 2005]. With their ability to model non-linear relationships,
they often have better predictive performance than Poisson-gamma models. They have been
supplemented by sensitivity analysis methods to give access to an estimate of the relationship
between observed variables and crash related ones [Li et al., 2008, Yu and Abdel-Aty, 2013].
Nevertheless, these methods (e.g. partial dependence plots) assume independence between
variables and may lead to skewed interpretations in presence of multicollinearities [Molnar,
2020]. [Khoda Bakhshi and Ahmed, 2021] compare four explanation tools, including partial
dependence plots (PDP), individual conditional expectation (ICE), centered ICE, and accu-
mulated local e�ects (ALE). They validate that PDP should not be the unique explanation
method and must be accompanied by ICE. For highly correlated spaces they also indicate
that ALE plots should be endorsed. More recently, several studies [Mihaita et al., 2019,
Parsa et al., 2020] use SHAP [Lundberg and Lee, 2017] to identify in�uencing factors and
their interactions for incident duration prediction and real-time accident detection.

Finally, parametric models such as GLM can be re�ned into multilevel models to ac-
count for correlated responses within clusters [Jones and Jørgensen, 2003, Kim et al., 2007,
Huang and Abdel-Aty, 2010]. For instance, crashes occurring in a given geographical re-
gion may possess speci�c characteristics while not di�ering entirely from crashes in other
regions. Ignoring this may produce misspeci�ed and poorly estimated models [Jones and
Jørgensen, 2003]. In [Veran et al., 2020], we automated the discovery of such a hierarchical
structure by analyzing the results of the SHAP post-hoc explanations of a highly �exible
black box machine learning model. In this paper, we further exploit the discovery of this
hierarchical structure by using symbolic regression to capture sparser or more complex but
still interpretable relationships between the explanatory variables and the crash count.

2.3 Symbolic Regression
Symbolic regression (SR) consists in exploring a large space of functional forms to discover
a predictive model with a good trade-o� between accuracy and simplicity. Each element of
this space is a parametric regression model whose performance is measured (e.g., with cross-
validation) on a given dataset after �tting its parameters. Thus, both the parameters and
the functional form of a predictive model are learned based on available data. A wide variety
of approaches have been tried to e�ectively explore the space of functional forms. Many of
them are based on genetic programming (GP) [McKay et al., 1995, Augusto and Barbosa,
2000, Schmidt and Lipson, 2009, Haeri et al., 2017, Burlacu et al., 2020, La Cava et al.,
2021] where a population of mathematical expressions evolves through selection, crossover
and mutation to improve a �tness function. As another example, the metaheuristic algorithm
of Pareto simulated annealing [Stinstra et al., 2008] has been used to discover a set of models
which are optimal in terms of a balance of both accuracy and simplicity metrics. Thanks to
the use of Meijer G-functions, SR can also be approached by algorithms based on gradient
descent [Alaa and van der Schaar, 2019]. Bayesian processes, with algorithms based on the
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Figure 1: Proposed framework for an interpretable hierarchical symbolic regression

Markov Chain Monte Carlo strategy have been used as well to solve the SR problem [Jin
et al., 2019].

Finally, recent studies apply deep learning methods to symbolic regression. SR based on
neural networks [Udrescu and Tegmark, 2020] can discover hidden simplicity in the data (e.g.
symmetry, separability) to decompose complex problems into simpler sub-problems. Lately,
this approach has been improved with the integration of an information complexity metric
by means of Pareto optimization [Udrescu et al., 2020]. [Petersen et al., 2019] use a hybrid
approach that combines genetic algorithms and a recurrent neural network (RNN) trained
by reinforcement learning to generate better symbolic models at each iteration. Finally,
[Valipour et al., 2021] consider the problem as a sub task of language modelling and train a
generative RNN model with reinforcement learning to produce symbolic equation skeletons
whose constants are further adjusted by the Broyden�Fletcher�Goldfarb�Shanno (BFGS)
algorithm [Fletcher, 2013].

SR �nds applications in numerous domains such as physics [Schmidt and Lipson, 2009],
�nance [Chen, 2012], climate modeling [Stanislawska et al., 2012] or renewable energies
[La Cava et al., 2016]. So far, only few studies applied symbolic regression to safety analysis.
[Meier et al., 2014] use prioritized grammar enumeration, a dynamic programming version
of symbolic regression, to predict crash severity a few milliseconds before collision. [Patelli
et al., 2020] design a GP-based symbolic regression to predict the tra�c �ow. To the best
of our knowledge, symbolic regression has not been applied to long term crash predictions.

3 Interpretable hierarchical symbolic regression

3.1 Overview
In this section, we introduce our proposed framework, made of three modules depicted
in Fig. 1. The hierarchical structure module clusters the dataset under knowledge of the
dependent variable. To do this, we draw from an analysis of a �exible black box model with
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the SHAP [Lundberg and Lee, 2017] explanatory framework. Then, to the whole training
dataset and to each cluster, we apply a variant of the symbolic regression (SR) method to �nd
expansions of linear models with e�ective and interpretable functional forms. To this end,
we designed a multi-objective simulated annealing algorithm to solve the SR problem. Thus,
we discover Pareto optimal predictive models with various trade-o�s between accuracy and
complexity. In our case, symbolic regression serves two purposes. First, it discoversglobal
models, learned from the whole training dataset, that capture the associations between the
explanatory variables and the target. Second, based on the hierarchical structure of the
instances, our SR-based algorithm implements a partial pooling strategy to re�ne a global
model into cluster-speci�c ones.

3.2 Supervised learning of a hierarchical structure
As in our previous work [Veran et al., 2020], we �rst train a state-of-the-art black box model.
We selectXGBoost1 [Chen and Guestrin, 2016], a gradient boosting tree model known for
its robustness, computational e�ciency and high accuracy on tabular datasets [Chen and
Guestrin, 2016, Borisov et al., 2021]. Then, we apply a SHAP [Lundberg and Lee, 2017]
analysis to quantify the contribution of each original explanatory variable to each individual
prediction. To each observation, SHAP associates a linear functiong:

g(z0) = � 0 +
MX

i =1

� i z0
i (1)

whereM is the number of simpli�ed featuresz0
i 2 f 0; 1gM and � i 2 R are their contributions

which correspond to the game theoretic concept of Shapley values.
Among the di�erent implementations of SHAP, we select TreeSHAP, an e�cient tree-

based algorithm for fast and consistent computations of exact Shapley values [Lundberg
et al., 2018, 2020]. TreeSHAP accounts for feature dependence and also reduces the com-
plexity of Shapley value computation from exponential to low order polynomial time when
compared to kernelSHAP, the initial model-agnostic implementation of SHAP [Lundberg
et al., 2018]. Moreover, [Lundberg et al., 2020] observed that TreeSHAP consistently out-
performs alternative methods across a benchmark of 21 di�erent local explanation metrics.

Furthermore, in [Lundberg and Lee, 2017], the authors also propose aforceplot visual-
ization (see Fig. 2) to materialize how much each contribution shifts the output relatively
to the overall expected value of the black box model.

When applied to all observations, the SHAP forceplots can be clustered by similarities
of their pro�les. For example, on the highway network dataset, we discover clusters of road-
way segments which are similar based on how the black box model transforms the original
explanatory variables into an accident count. More precisely, we do a hierarchical agglom-
erative clustering of the observations based on the explanatory variables' contributions as
provided by the SHAP analysis. We use the Ward linkage criteria and the optimal number of

1https://xgboost :readthedocs :io/en/stable/
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Figure 2: Forceplot of the explanatory variables' contributions to the estimated crash
count for a speci�c observation. On this example, the tra�c has the biggest positive
contribution and explains most of the crash count shift from its overall expected value.

clusters is set by detecting the greatest increase in the squared Euclidean distance between
clusters [Thorndike, 1953]. We also train a decision tree classi�er to learn how to associate a
new observation to a cluster. In Section 4, we report on cross-validation measures showing,
on various datasets, that this association is very accurate.

3.3 Symbolic Regression with Pareto simulated annealing

3.3.1 General description

Most versions of symbolic regression (SR) discover an expansion of a linear model with the
addition of non-linear e�ects by searching a space of functional forms. Section 2.3 gave
an overview of the various methods that have been used to perform this search. Among
them, we select simulated annealing, an e�ective metaheuristic known for its robustness in
optimization problems involving a large search space [Eren et al., 2017, Delahaye et al., 2019].
Thus, we represent the problem as a local search. Moreover, we adopt a multi-objective
extension of the simulated annealing algorithm to perform the search while optimizing both
the complexity and the accuracy of the models [Stinstra et al., 2008]. The search ends on a
set of mutually non-dominated predictive models, the Pareto front.

3.3.2 De�nition of a solution

The functional form of a model is extracted from a set of expression trees. Each expression
tree is perfect, binary and consists of internal operator nodes and leaves. Leaves are either
represented by a constant or an explanatory variable. Operator nodes can be unary (e.g.,
cos, sin, tan, exp, ln, left, right ) or binary (e.g., + ; � ; =) and have two children. For unary
operators, we indicate with the subscripts " l " (for "left") and " r " (for "right") to which
child the operation is applied. For instance, if the operator isln l , then the logarithm is
applied to the left child. The left and right operators apply the identity function to the left
and right child, respectively.

We extract the symbolic expression by a breadth-�rst traversal of the expression tree. In
practice, as operators, constants and input variables are de�ned withSympy, an open-source
Python library for symbolic computation [Meurer et al., 2017], the traversal returns aSympy
expression. Finally, the functional form S of a solution is obtained by the combination and
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Figure 3: A functional form associated with a set of expression trees.

algebraic simpli�cation of the Sympysymbolic expressions of a set of expression trees (see
Fig. 3).

3.3.3 Initialization of a �rst solution

Function initialize of algorithm 1 generates a �rst solution represented by a setM cur

of random expression trees, withS cur the associated functional form. To this end, this
function �rst creates balanced binary trees, each of the same depth. Then, for each tree, an
inorder traversal associates an index to each node. Odd indices refer to internal nodes while
even indices refer to the leaves (see Fig. 4a). In this way, we have an e�cient means to search
for a node in a tree and to know directly what type of node it is (see Section 3.3.4). At the
same time, internal nodes are initialized with an operator chosen with equiprobability from
the set of prede�ned operators introduced in Section 3.3.2. Each leaf has a 50% probability
of being initialized either to a constant or to one of the explanatory variables. In the latter
case, each explanatory variable is equiprobable.

3.3.4 Neighbourhood of a solution

Function generate of algorithm 2 generates a new solutionS new in the neighbourhood of
the current solution S cur . It randomly selects an expression tree fromM cur and a node
index from f 0; :::; 2T � 2g, T being the tree depth. Then, a recursive search �nds the node
with the selected index. When the node is an operator (viz., its index is odd), it is replaced
by a randomly selected operator. Likewise, when a leaf is selected (viz., its index is even), it
is replaced by a randomly selected constant or explanatory variable. Fig. 4 illustrates this
process.

If unchecked, functiongenerate could lead to ill-de�ned operators. For instance, a loga-
rithm could be applied to a potentially negative domain. Therefore, functionintegrityCheck
infers recursively the domain of each operator node and, based on rules from interval arith-
metic, checks its validity (Table 1 introduces some of these rules). With interval arithmetic,
we have an e�cient way to ensure that the functional form generated from the random pro-
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Algorithm 1 Symbolic regression with Pareto simulated annealing

Require: m: number of expression trees;Tmin = 0:0001: initial temperature (heat-
ing phase) and minimum temperature (cooling phase);� h = 1:15; � c = 0:85: ra-
tios between two adjacent temperatures in the heating phase and cooling phase,
respectively; sh = sc = 300: number of iterations between two updates of tem-
perature;  c = 1:15: ratio that controls the growth of sc; max: maximum number
of iterations during the cooling phase.

1: function Simulated Annealing (Tmin ; � h; sh; � c; sc;  c; max)
2: T = Tmin . Annealing temperature
3: � = ? . Pareto front
4: acc= 0; rej = 0 . Number of accepted and rejected solutions
5: � = 0 . Acceptance rate
6: i = 0
7: M curr ; S curr  initialize (m)
8: while � � 0:9 do . Heating phase
9: i; �; M curr ; S curr ; acc; rej  explore (T; i; �; M curr ; S curr ; acc; rej)

10: if i mod sh = 0 then
11: T  T � � h, �  acc=(acc+ rej )
12: acc 0; rej  0
13: i = 0; � = ?
14: M curr ; S curr  initialize (m)
15: while T > Tmin and i < max do . Cooling phase
16: i; �; M curr ; S curr ; acc; rej  explore (T; i; �; M curr ; S curr ; acc; rej)
17: if i mod sc = 0 then
18: T  T � � c, sc  sc �  c

19: return �
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cess does not contain any unde�ned values [Keijzer, 2003]. For more details on the integrity
check, we refer to [Stinstra et al., 2008].

(a) x1x2 + x2 (b) x1 + 2x2 (c) x1 + 2x2 (d) x1 + x2 + x0x2

Figure 4: A sequence of transformations applied to an expression tree. (a) An initial
expression tree. Blue integers refer to node indices. (b) A transformation is applied
to operator node 1, thus modifying the underlying functional form. (c) The transfor-
mation applied to leaf node 6 is muted due to itsleft operator parent. (d) Later in
the process, node 6 can be reactivated when its parent is transformed.

Operation Lower bound Upper bound Invalid if
[a; b] + [ c; d] a + c b+ d
[a; b] � [c; d] a � d b� c
[a; b] � [c; d] minf ac; ad; bc; bdg maxf ac; ad; bc; bdg
[a; b]=[c; d] minf a=c; a=d; b=c; b=dg maxf a=c; a=d; b=c; b=dg 0 2 [c; d]
left([a; b]; [c; d]) a b
ln l ([a; b]; [c; d]) a ln(a) ln(b) a � 0
a ln l designates aln operator applied to the left child

Table 1: Rules for interval arithmetic, from [Stinstra et al., 2008, p.318]. We suppose
that an operator node has two children. The left one is de�ned on[a; b] and the right
one on[c; d].

3.3.5 Cost of a solution

The cost of a solution is measured in terms of both the prediction error (see function
measurePerformanceof algorithm 2) and the complexity of the functional form (see function
measureComplexity of algorithm 2).

To obtain a robust estimate of the prediction error of S new , we compute the average
RMSE on the validation subsets of a 5-fold cross-validation process. On each training subset,
the coe�cients � i of S new are learned by solving anl2-regularized linear regression. The
regularization parameter is determined on each training subset of the 5-fold cross-validation
by an e�cient generalized cross-validation [Golub et al., 1979]. Once the estimate of the
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Algorithm 2 Pseudo code of functionexplore

1: function explore (T; i; �; M curr ; S curr ; acc; rej)
2: M new  generate (M curr )
3: if integrityCheck (M new ) then
4: S new  simplify (M new )
5: if S new 6= S curr then
6: perfnew  measurePerformance(S new )
7: complnew  measureComplexity (S new )
8: if accept (perfnew ; complnew ; perfcurr ; complcurr ; �; T ) then
9: � , M curr , S curr , perfcurr , complcurr  update(

� , M new , S new , perfnew , complnew )
10: acc acc+ 1
11: else
12: rej  rej + 1
13: else
14: M curr  M new

15: i  i + 1
16: return i; �; M curr ; S curr ; acc; rej

prediction error is obtained, the coe�cients � i are �tted one last time on the whole training
dataset.

We improve the strategy introduced in [Stinstra et al., 2008] to propose a new measure
of the complexity of a solution. We penalize both the collinearities and the number of terms
present in the symbolic expression of the functional form. The complexity of a solutionS
composed ofm terms is de�ned as:

Complexity(S ) =
mX

i =1

�
1 + max

��
jr ij j; j 2 f 1; 2; :::; mg ni

	� �
Ci (2)

wherer ij is the Pearson's correlation coe�cient, computed on the training dataset, between
terms i and j , and Ci is the complexity of the term i . We use algebraic rules to compute
the complexity of each term, some of which are presented in Table 2. The complexity of a
unary operator (e.g., the natural logarithm) is determined by approximating the operator,
on its inferred domain, by a polynomial of increasing degree (at most 10) until the score of
the �t, as measured on a validation set, is below a prede�ned threshold. The complexity
of the unary operator is then de�ned as the degree of the best polynomial approximation.
It should also be noted that, according to equation 2, the more terms a solution has, the
more complex it is. We were able to con�rm experimentally that the measured complexity
represents well the complexity perceived by the safety experts.
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Term i Complexity Ci Example ComputedCi

const 0 2 0
x 1 x4 1
f (x)n n � C(f (x)) a x2

2 2
f (x) � g(y) C(f (x)) + C(g(y)) x1x2

2 3
f (g(y)) C(f (x)) � C(g(y)) ln(3x2

2) Cunary (ln) � 2 b

a C(:) is the complexity of the inner function
b Cunary (:) is the complexity of the unary operator

Table 2: Algebraic rules used to compute the complexity of each term, adapted from
[Stinstra et al., 2008, p.320]

3.3.6 Comparison of two solutions

The search ends with a set of Pareto optimal solutions that belong to the boundary beyond
which neither the prediction error nor the complexity can be improved without deteriorating
the other objective. This can be formally de�ned in terms of a dominance relation. LetU1

be the prediction error and U2 be the complexity metric.

S a dominates S b

�

8i 2 f 1; 2g : Ui (S a) � Ui (S b) and 9j 2 f 1; 2g s.t. Uj (S a) < U j (S b)

Thus, the search returns a set of non-dominated solutions called the Pareto front.

3.3.7 Exploration by Pareto simulated annealing

Simulated annealing (SA) is an iterative local search process used to solve optimization
problems for which a simple hill-climbing approach would most often converge on a poor local
optimum. At each iteration, SA generates randomly a solutionS new in the neighborhood of
the current solution S cur . The probability P of acceptingS new as the new current solution
is a function of both a temperature parameterT and the di�erence in cost � E between the
two solutions.

P = e� � E=T (3)

Annealing Temperature T SA mimics the physical process of annealing in metallurgy
where a material is �rst heated before being gradually cooled in order to reach an equilibrium
state with increased ductility and hardness. SA follows a similar two-steps process.

The heating phase aims at discovering an initial temperatureT0 that favors exploration
over exploitation in the beginning of the search. The heating process starts from a low
temperature at which a deteriorating neighbour of the current solution is rarely accepted.
Then, every sh iterations, the temperature is increased according to a geometric series of
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ratio � h > 1. The process ends at a temperatureT0 at which at least 90% of the randomly
generated neighbours are accepted.

During the cooling phase, the annealing temperature is progressively decreased, every
sc iterations, according to a geometric series of ratio� c < 1. High temperatures favor
the exploration of the space of functional forms by preventing the process from converging
too early on a local optimum. On the contrary, the more the temperature decreases, the
less likely it is for a deteriorating neighbour to replace the current solution. The value of
� c controls the speed at which the annealing temperature decreases. If� c is too small,
the optimization may stay stuck too early in the neighborhood of a poor local optimum.
Whereas, if� c is too close to1, the optimization may take too long to reach a good optimum.
Moreover, parameter sc increases according to a geometric series of ratio c > 1. Thus,
more iterations are allocated to lower temperatures to favor the exploitation of promising
functional forms. Finally, the search ends when either the temperature falls below a threshold
or the number of iterations reaches a prede�ned maximum.

� E and the acceptance of a new solution For a single-objective optimization
problem, � E is simply the di�erence of the objective function evaluated at two neighbour-
ing solutions. For our multi-objective optimization problem, we use the dominance-based
performance metric introduced above. When a new solutionS new dominates, or is as good
as, S cur , it is accepted as the new solution (see functionaccept of algorithm 3). When
S new is less e�ective than S cur , it has a probability P de�ned by eq. 3 to be accepted. In
that case, � E is de�ned as:

� E (S cur ; S new ) =
1

j ~� j

�
j ~� S new j � j ~� S cur j

�
(4)

with � the set of solutions that approximate the Pareto front, j ~� j the cardinality of � [
f S cur ; S newg, and j ~� S j the number of solutions in j ~� j that dominate S (see Fig. 5). More-
over, to smooth the estimated acceptance probability distribution, new arti�cial points are
added to the attainment surface to get an evenly spread attainment surface over the two
dimensions of the Pareto front [Smith et al., 2004].

Finally, when S new is accepted, the Pareto front� is updated (see functionupdate of
algorithm 3) by removing the solutions dominated by S new and then adding S new to �
when it is not dominated by any other solution in � . Thus, at the end of each iteration, �
is the set of non-dominated solutions encountered during the search.

3.4 Automatic selection of a global model
In Section 5, where we illustrate the dynamic interpretative process made possible by our
framework, we emphasize the usefulness of being able to let the user choose a predictive
model on the Pareto front. In that way, the end user can precisely balance between the
predictive performance and the simplicity of the model. However, in our proposed method-
ology, we also need a principled way to automatically select a model on the Pareto front.
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Figure 5: Example of an approximated Pareto front and its attainment surface,
adapted from [Stinstra et al., 2008, p. 322]. From Eq. 4,� E(S cur ; S new ) = (2 � 4)=9 =
� 2=9

To do this, �rst, we consider the point 
 in the Pareto plan that, (i) on the performance
axis, is at the level of the most e�cient model encountered and, (ii) on the complexity axis,
is at the level of the simplest model encountered. Then, we select the modelS glob on the
Pareto front closest to 
 in the sense of the Euclidean distance. This model, located in the
elbow of the Pareto front, is likely to o�er a good trade-o� between predictive performance
and complexity. In the next stage of our approach, it is used as a starting point to build
cluster-speci�c models.

3.5 Cluster-speci�c models
To discover cluster-speci�c phenomena, for each cluster discovered by the approach intro-
duced in Section 3.2, a modi�ed version of the symbolic regression search is conducted.
It consists in merging the functional form built from the expression trees with the �xed
functional form of S glob (see Fig. 6): common terms are grouped together and new terms
are added to the formula. Hence, the marginal e�ects already represented byS glob can be
reduced or ampli�ed and new cluster-speci�c e�ects can be discovered. It corresponds to a
partial pooling approach where cluster-speci�c models can bene�t from the e�ects already
discovered by the global model.

3.6 Uncertainty estimation
Our approach results in global and cluster-speci�c expansions of linear models. Therefore,
the marginal e�ects of the terms composing the models are readily interpretable. However,
since the training set has been used to estimate thel2-regularization hyper-parameters, there
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Algorithm 3 Pseudocode ofaccept and update functions

1: function accept (perfnew ; complnew ; perfcurr ; complcurr ; �; T )
2: is_ accepted False
3: if perfnew � perfcurr and complnew � complcurr then
4: is_ accepted True . new solution dominates, or is as good as, the

current one
5: else
6: computeP according to Eq. 3
7: draw randomly j in [0; 1]
8: if P � j then
9: is_ accepted True

10: return is_ accepted

11: function update(�; M new ; S new ; perfnew ; complnew )
12: is_ dominated = False
13: for solution S in the Pareto front � do
14: if S dominatesS new then
15: is_ dominated = True
16: if is_ dominated = False then
17: remove solutions in� dominated by S new

18: add S new to �
19: return �; M new ; S new ; perfnew ; complnew

is no simple linear relationship between uncertainty in the parameters and uncertainty in
the target. Bootstrap techniques could estimate the uncertainty in the parameters. Still,
a standard bootstrap approach is not appropriate since the bias introduced by the penalty
term would not be correctly estimated. Double bootstrap techniques have been proposed
[Vinod, 1995, McCullough and Vinod, 1998] to take into account an estimation of the bias.
Nonetheless, they are computationally expensive (O(n3) wheren is the number of samples).
Also, asymptotic statistics have been derived to measure the uncertainty in the parame-
ters under a �xed setting of the regularization parameter [Firinguetti and Bobadilla, 2011].
They wouldn't be appropriate in our case since we estimate the regularization parameter by
leave-one-out cross-validation. Therefore, we make use of a well-known equivalence [Mehta
et al., 2019] between the ridge regression regularization parameter and the parameters of a
Gaussian prior for the Bayesian formulation of linear regression. It can be shown that the
variance � 2 of the zero-centered Gaussian prior must be de�ned as:

� 2 �
� 2

�
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Figure 6: Extraction of a cluster-speci�c functional form from a set of expression
trees and the �xed functional form of the global model

where � is the ridge regularization parameter and� 2 is the variance of the likelihood that
can be estimated by measuring the variance of the target on the training dataset. For
each Pareto optimal solution, we start from the discovered functional form and the value
of the ridge regularization hyper-parameter� to infer again the coe�cients, but this time,
using Bayesian inference with the above prior. The resulting posterior distributions give an
estimate of the parameters' uncertainty.

4 Experiments

4.1 Datasets and preprocessing
We test our framework on a highway network dataset (further referred to asFrench High-
way). The task is to predict yearly crash counts on 10 km long highway segments of a french
highway network (2300 km). The predictors include topographical data (number of lanes,
right shoulder width...), average annual daily tra�c (AADT), speed limits and average al-
titudes. The dataset covers 11 years of data, from January1st , 2008 to December31th ,
2018.

We also test our framework on 11 public regression datasets (see Table 3) from di�erent
domains and with various volumes (from546to 116640instances) and dimensionalities (from
7 to 117 features).

For preprocessing, categorical variables are one-hot-encoded and continuous variables
are standardized.
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Dataset #Instances #Features dependent variable
French Highway 4152 11 crash count
Insurance [Lantz, 2013] 1338 7 health insurance costs
Airbnb [Airbnb, 2019] 48895 12 housing prices
House(218_house_8L)� 22784 8 -
Puma (225_puma8NH)� 8192 8 -
Satellite (294_satellite_image)� 6435 36 -
Wind (503_wind) � 6574 14 -
Breast tumor (1201_BNG_breastTumor) � 116640 9 -
Music (4544_GeographicalOriginalofMusic)� 1059 117 -
Winey 4898 12 white wine quality
Toxicity y 546 9 aquatic toxicity
Gasy 36733 11 gas emission
� Datasets taken fromhttps://epistasislab :github :io/pmlb/index :html
y Datasets taken fromhttps://archive :ics :uci :edu/ml/index :php

Table 3: Datasets

4.2 Performance metric
To measure the performance of predictive models, we use the Root Mean Square Error
(RMSE):

RMSE =

vu
u
t 1

n

nX

i =1

(ŷi � yi )2

with n the number of observations,yi the target and ŷi the predicted value.

4.3 Implementation details
We implement our model in Python. In order to converge towards interpretable models, we
restrict the operators available to the symbolic regression tof left ; right ; lng for the unary
ones, andf� ; + ; �g for the binary ones. For the algebraic simpli�cation of the expression
trees by, e.g., grouping common terms together (see functionsimplify in algorithm 2), we
use a module2 from the Sympylibrary.

To �t the coe�cients of a newly discovered functional form, we use the scikitlearn 3

implementations of ridge regression. The optimal coe�cients of the linear models are com-
puted with l2-regularized least squares. Indeed, with the introduction of a weight decay,
better generalization performances can usually be achieved and the models are less prone to
the negative e�ects of multicollinearities. We optimize the l2-regularization parameter by
an e�cient form of leave-one-out cross-validation (viz., generalized cross validation).

2https://docs :sympy:org/latest/modules/simplify/simplify :html
3https://scikit-learn :org/stable/
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As explained in Section 3.6, in order to endow our �nal models with uncertainty es-
timates, we use Bayesian inference to compute the posteriors for the coe�cients of each
functional form on the Pareto front. We apply gaussian priors corresponding to the already
known optimal value of the regularization hyper-parameter (see Section 3.6). We rely on the
pymc34 library with the No U-Turn Sampler [Ho�man et al., 2014] to run simultaneously
two Markov chains for 3000 iterations, with a burn-in period of 1000 iterations.

4.4 Preliminary search for Symbolic Regression's hyper-parameters
On the French Highway and Insurance datasets, we conduct a grid-search for the symbolic
regression's hyper-parameters (viz. the number of expression trees and the depth of a tree).
We observe that deeper trees lead to more complex models. This is mainly due to the
possibility of deep compositions of functions. Thus, motivated by �nding a good compromise
between the complexity of the �nal models and their predictive performance, we restrict
the tree depth to 4. In this way, each expression tree, being a perfect binary tree, has8
leaves. Furthermore, the grid-search also reveals that there is no noticeable improvement
in predictive performance when the number of expression trees exceeds two-thirds of the
number of features after data preparation (viz., one hot encoding). The number of trees
used for each dataset is given in Table 5.

4.5 Models used for comparison
We compare our proposal to models of varying degrees of interpretability. Among the most
simple and interpretable models, we select thescikit-learn implementations of ordinary
least square regression (OLS) and decision trees of depth no more than 5 (to preserve
interpretability).

We also compare our current approach to a previous proposal of ours, a Bayesian hier-
archical GLM (BH-GLM ) [Veran et al., 2020]. The latter is based on the bayesian inference
of a linear hierarchical model with data-driven discovery of objective priors in the form of i)
a hierarchical structure and ii) strong �rst-order interactions. The hierarchical structure is
learned by the same method as the one introduced in Section 3.2. The retained strong �rst-
order interactions are obtained through the analysis of the structure of a trained self-adaptive
polynomial network. We also considerB-GLM , a variant with �rst-order interactions that
does not account for the hierarchical structure.

Moreover, we include two variants of Generalized Additive Models (GAM). For the �rst
one,GAM-splines, based on a spline basis, we use thePyGAM5 implementation. For the second
one, explainable boosting machine (EBM ), based on gradient boosting with bagging, we use
the implementation provided by the InterpretML framework [Nori et al., 2019].

We also compare our approach to genetic programming based symbolic regressions with

4https://docs :pymc:io/en/v3/
5https://pygam :readthedocs :io/en/latest/
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the reference implementations of thegplearn 6 package (SR-GP) and GP-GOMEA 7 (SR-
Gomea) [Virgolin et al., 2021], the latter being known to perform well on many real world
datasets [La Cava et al., 2021]. For both implementations, the set of operators is restricted
to the one we use in our approach (viz., f + ; � ; � ; lng). We also considerSR-Gomea-op, the
same model with a less restricted set of operators (viz., f + ; � ; � ; ln ; cos; sin;

p
g), the same

as the one used by [La Cava et al., 2021] in their recent survey.
For all the aforementioned interpretable models, we apply a no pooling approach that

accounts for the clusters discovered by ourHierarchical structure module (see Section 3.2).
This approach �ts a separate model for each cluster and considers that no similarities exist
between them.

Finally, we select three highly �exible black box models: (i) the scikit-learn imple-
mentation of Support Vector Machines (SVM) and (ii) Multilayer Perceptrons (MLP), and
(iii) the XGBoostgradient tree boosting library.

For fair comparisons, the hyper-parameters of the aforementioned models are optimized
by cross-validation with grid-search. For each model, the grid of hyper-parameters' values
are given in appendix A.

For the experiments, we consider several variants of our framework.SR-trad and SR-max
use only the global model of Section 3.4 whileHSR-trad and HSR-max use the cluster-speci�c
models of Section 3.5 (pre�x �H� stands forhierarchical). We also train our hierarchical sym-
bolic regression on clusters discovered with a hierarchical agglomerating clustering applied
to the training data, including the dependent variable. These models are further referred to
as HSR-naive-trad and HSR-naive-max. Finally, SR-NP-trad and SR-NP-max are cluster-
speci�c models learned with a no pooling approach, meaning that they do not include the
knowledge of the global model. The su�xes trad and max are used to distinguish mod-
els selected near the elbow of the Pareto front, that should have a good trade-o� (whence
trad ) between complexity and predictive performance, from models of maximum complexity
(whencemax).

Results, averaged from a 5-fold cross-validation, are reported in Table 5 and Table 6,
the latter for cluster-speci�c interpretable models trained with a no pooling approach.

4.6 Hierarchical structure module
For each dataset, the optimal number of clusters computed in theHierarchical structure
module is given in Table 4. Moreover, to validate the ability of this module to associate an
unknown sample to a cluster, a train-test split approach is applied on each training subset
of the 5-fold cross-validation. For each training subset, the decision tree classi�er is trained,
on 80% of the data, to predict, based on the explanatory variables, the cluster to which a
new observation belongs. Af 1-score is computed on the remaining20% of each training
subset. The decision tree classi�er is highly accurate on all datasets (see Table 4).

6https://gplearn :readthedocs :io/en/stable/
7https://github :com/marcovirgolin/GP-GOMEA
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Dataset #clusters f1 (std)
French Highway 4 0.995 (0.003)
Insurance 2 1.0 (0.0)
Airbnb 4 0.985 (0.005)
House 4 0.908 (0.026)
Puma 3 0.975 (0.013)
Satellite 3 0.964 (0.003)
Wind 3 0.944 (0.022)
Breast tumor 2 0.995 (0.004)
Music 3 0.96 (0.029)
Wine 3 0.957 (0.012)
Toxicity 2 0.95 (0.039)
Gas 2 0.99 (0.003)

Table 4: For each dataset: number of clusters selected and performance of the pre-
diction to associate a new observation to its cluster

4.7 Results
HSR-trad, the model that, according to our approach, should o�er a good trade-o� be-
tween performance and complexity, obtains better RMSE thanOLS and decision tree on
all datasets but Insurance and Music. As expected, HSR-max, the most complex model
resulting from our approach, obtains better RMSE than HSR-trad, except for the Insur-
ance dataset where they obtain similar predictive performance. Moreover, the fact that our
models have performance metrics with low standard deviations testi�es to their robustness.
Indeed, they are likely to discover similar solutions on similar datasets.

Our approach based on hierarchical symbolic regression is more e�cient thanB-GLM
and BH-GLM . This can be explained by the �exibility of our approach that captures a
greater variety of sources of nonlinearities and interactions between explanatory variables.

SR-GP, the symbolic regression based on genetic programming, obtains poor results
and is even dominated by the fully interpretable models on all datasets. The more recent
approach SR-Gomeaobtains better predictive performance thanSR-GP but is still domi-
nated by HSR-trad and HSR-max. SR-Gomea-opdoes not highlight signi�cant predictive
gains compared toSR-Gomeaon most datasets. This validates that restricting the opera-
tors makes it possible to obtain interpretable functional forms with more than satisfactory
predictive performance on real world datasets.

HSR-trad and HSR-max, the cluster-speci�c models, often show a clear improvement
when compared to the global modelsSR-trad and SR-max. The partial pooling approach
has a clear interest given thatHSR-trad and HSR-max outperform SR-NP-trad and SR-NP-
max, their no pooling variants. This can be explained by the fact that, in the no pooling
case, models are trained independently on cluster data, which results in a higher risk of
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over�tting [Gelman and Hill, 2006]. In our partial pooling approach, we use a global model
as an initial seed in order to tend to increase the bias and decrease the variance of the �nal
cluster-speci�c models, thus reducing the risk of over�tting and improving the predictive
performances. Moreover, we also observe that incorporating the data-driven discovery of a
hierarchical structure not only provides better predictive performances, it also o�ers better
interpretability by capturing cluster-speci�c phenomena (see Section 5).

Our approach for discovering a hierarchical structure is robust, e�cient and obtain better
results on all datasets compared to the approach that considers more naive clusters. Indeed,
on all datasets,HSR-trad and HSR-max are substantially better than HSR-naive-trad and
HSR-naive-max (see Table 7).

HSR-max and GAM-splines have similar performances on all datasets but theInsurance
dataset whereHSR-max discovers a signi�cant interaction between the body mass index
and being a smoker. However, the no pooling variant ofGAM-splines is slightly better than
HSR-max on the Insurance dataset. Finally, EBM performs well on all datasets. It obtains
the best performances on theInsurance and Gas datasets and is similar, if not better, to
XGBoost on the French Highway, Airbnb, and Wine datasets.

4.8 Discussion
Con�rming previous studies [Lou et al., 2012, Caruana et al., 2015], we observe that EBM,
as a variant of GAM, is very e�cient on all datasets. Moreover, this model meets many of
the expected criteria for interpretability enumerated in [Arrieta et al., 2020]. However, it
also has limitations that can make it unsuitable for safety-critical systems. First, di�erent
optimization strategies adopted to learn an EBM model, can lead to di�erent interpretations
of its predictions [Chang et al., 2021]. However, for safety-critical systems, trust in the
identi�cation of the main risk factors is required by experts when they elaborate remedial
actions. Moreover, for satisfactory interpretability, it helps if a GAM has a small number
of components and if each component function is relatively smooth. However, EBM, due to
their reliance on boosted trees, can hardly maintain these constraints [Rudin et al., 2022].
With our approach, �eld experts are more likely to be con�dent in models with cluster-
speci�c behaviors and stable functional forms that highlight a selection of relevant factors
and their interactions.

Furthermore, for the French Highway dataset, as already observed in [Veran et al.,
2020], the best known strategy to estimate the number of crash counts is to average, for
each highway network segment, the number of accidents that occurred in previous years (c.f.,
the Local model in Table 5). However, such a model does not o�er much insight about the
associations between crash counts and risk factors. We observed that �exible models, such
as EBM, are able to approach in performance the local model by discovering quasi-identi�ers
of road segments. For example, an EBM discovers a complex nonlinear relationship between
the altitude and the number of accidents, see Fig. 7. Accidents appear more likely for the
lowest altitudes. However, this phenomenon should not be interpreted as a potential risk
factor linked to the altitude. In fact, the model is using the altitude as a proxy variable
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RMSE (std)
French Highway(8 a) Insurance (6) Airbnb (12) Puma (6) Satellite (24) Wind ( 9)

Local 5.052 (0.250) - - - - -
OLS 6.213 (0.496) 6077 (287) 0.50 (0.011) 4.471 (0.068) 1.213 (0.009) 3.289 (0.104)
Decision tree 6.134 (0.422) 4739 (324) 0.490 (0.011) 3.688 (0.05) 1.061 (0.022) 3.839 (0.112)
GAM-splines 5.80 (0.344) 6021 (299) 0.464 (0.011) 4.236 (0.065) 0.90 (0.009) 3.082 (0.084)
EBM 5.363 (0.233) 4533 (339) 0.450 (0.013) 3.283 (0.049) 0.851 (0.035) 3.140 (0.089)
SR-GP 8.06 (0.730) 5168 (360) 0.563 (0.026) 4.504 (0.086) 1.628 (0.438) 3.858 (0.216)
SR-Gomea 6.309 (0.303) 4885 (251) 0.502 (0.010) 0 3.362 (0.033) 1.164 (0.028) 3.306 (0.128)
SR-Gomea-op 6.297 (0.267) 4815 (250) 0.514 (0.01) 3.238 (0.059) 1.102 (0.032) 3.296 (0.101)
B-GLM 6.356 (0.513) 5151 (293) 0.497 (0.01) 4.282 (0.065) 1.117 (0.044) 3.295 (0.098)
BH-GLM 6.004 (0.46) 4925 (301) 0.474 (0.02) 3.871 (0.13) 0.952 (0.029) 3.291 (0.106)
XGBoost 5.571 (0.377) 4667 (346) 0.440 (0.011) 3.257 (0.056) 0.667 (0.033) 3.084 (0.075)
SVM 6.310 (0.645) 4953 (272) 0.503 (0.011) 4.493 (0.089) 1.261 (0.028) 3.307 (0.102)
MLP 6.140 (0.462) 4867 (347) 0.463 (0.013) 3.170 (0.052) 0.789 (0.047) 3.076 (0.087)

SR-trad 6.258 (0.509) 5219 (330) 0.510 (0.018) 3.961 (0.031) 1.175 (0.05) 3.342 (0.104)
SR-max 6.186 (0.469) 4889 (293) 0.507 (0.011) 3.528 (0.042) 1.018 (0.04) 3.176 (0.081)
HSR-trad 5.921 (0.54) 4840 (308) 0.475 (0.012) 3.30 (0.084) 0.95 (0.034) 3.205 (0.074)
HSR-max 5.80 (0.507) 4844 (304) 0.470 (0.011) 3.277 (0.082) 0.934 (0.056) 3.198 (0.074)

Breast tumor (6) Music (78) House(5) Wine (8) Toxicity (6) Gas (7)
OLS 10.023 (0.036) 0.465 (0.039) 41563 (1270) 0.754 (0.02) 1.256 (0.097) 8.112 (0.133)
Decision tree 9.844 (0.039) 0.705 (0.066) 35752 (1199) 0.753 (0.015) 1.394 (0.12) 7.705 (0.127)
GAM-splines 9.663 (0.047) 0.898 (0.101) 33460 (1405) 0.728 (0.029) 1.245 (0.106) 5.993 (0.10)
EBM 9.519 (0.049) 0.60 (0.036) 31062 (1192) 0.689 (0.019) 1.20 (0.095) 5.476 (0.072)
SR-GP 10.441 (0.277) 0.71 (0.154) 56615 (21299) 0.857 (0.068) 1.457 (0.264) 10.75 (1.107)
SR-Gomea 9.988 (0.056) 0.523 (0.081) 36750 (1693) 0.742 (0.022) 1.343 (0.189) 8.703 (0.144)
SR-Gomea-op 9.973 (0.049) 0.499 (0.036) 36865 (1434) 0.739 (0.021) 1.267 (0.116) 8.742 (0.278)
B-GLM 9.995 (0.034) 0.469 (0.045) 39811 (1375) 0.751 (0.019) 1.246 (0.089) 8.112 (0.137)
BH-GLM 9.751 (0.036) 0.467 (0.037) 35039 (1820) 0.737 (0.017) 1.237 (0.098) 6.87 (0.282)
XGBoost 9.435 (0.048) 0.507 (0.046) 29630 (1237) 0.68 (0.014) 1.157 (0.129) 5.705 (0.190)
SVM 10.045 (0.036) 0.472 (0.042) 44879 (1676) 0.748 (0.018) 1.286 (0.195) 6.954 (0.372)
MLP 9.67 (0.04) 0.498 (0.042) 36004 (851) 0.757 (0.071) 1.280 (0.153) 6.023 (0.239)

SR-trad 10.096 (0.064) 0.543 (0.081) 37412 (2150) 0.744 (0.024) 1.253 (0.089) 8.153 (0.686)
SR-max 10.03 (0.079) 0.476 (0.045) 34716 (2049) 0.731 (0.019) 1.233 (0.106) 7.395 (0.553)
HSR-trad 9.727 (0.056) 0.497 (0.05) 33542 (1127) 0.724 (0.019) 1.243 (0.097) 7.181 (0.618)
HSR-max 9.662 (0.061) 0.471 (0.053) 33102 (833) 0.712 (0.014) 1.214 (0.065) 6.421 (0.150)
a number of trees forSR-* and HSR-* models
b averages and standard deviations of the performance metric obtained on5-fold cross-validation

Table 5: Results obtained on 12 regression datasets

23



RMSE (std)
French Highway Insurance Airbnb Puma Satellite Wind

OLS 6.05 (0.45) 4971 (293) 0.484 (0.01) 3.867 (0.127) 1.101 (0.053) 3.291 (0.094)
GAM-splines 5.747 (0.467) 4913 (346) 0.751 (0.649) 3.523 (0.076) 0.899 (0.042)3.108 (0.087)
EBM 5.18 (0.275) 4512 (354) 0.444 (0.012) 3.320 (0.057) 0.874 (0.03) 3.200 (0.055)
SR-GP 6.165 (0.555) 5795 (691) 0.512 (0.015) 3.975 (0.178) 1.209 (0.096) 3.678 (0.099)
SR-Gomea 5.998 (0.257) 4872 (252) 0.478 (0.011) 3.273 (0.078) 1.025 (0.052) 3.283 (0.071)
SR-Gomea-op 5.959 (0.143) 4625 (307) 0.477 (0.009)3.217 (0.072) 0.991 (0.058) 3.287 (0.091)
BGLM 6.02 (0.47) 4872 (299) 0.484 (0.01) 3.547 (0.092) 0.986 (0.036) 3.287 (0.099)

SR-NP-trad 6.006 (0.473) 4842 (290) 0.489 (0.019) 3.536 (0.087) 0.975 (0.036) 3.312 (0.073)
SR-NP-max 6.043 (0.617) 4844 (318) 0.483 (0.011) 3.386 (0.063) 0.953 (0.069) 3.278 (0.063)

Breast tumor Music House Wine Toxicity Gas
OLS 9.8 (0.123) 1.028 (0.458) 35162 (1651) 0.736 (0.017) 1.264 (0.109) 7.169 (0.281)
GAM-splines 9.62 (0.067) 0.827 (0.031) 32633 (1111) 0.729 (0.019) 1.293 (0.168) 5.671 (0.168)
EBM 9.493 (0.057) 0.613 (0.058) 31298 (944) 0.683 (0.019) 1.207 (0.114) 5.423 (0.119)
SR-GP 10.242 (0.286) 0.762 (0.076) 49985 (7436) 0.807 (0.021) 1.395 (0.27) 9.966 (1.797)
SR-Gomea 9.798 (0.098) 0.624 (0.079) 33156 (863) 0.729 (0.017) 1.238 (0.066) 7.614 (0.205)
SR-Gomea-op 9.798 (0.103) 0.584 (0.06) 33091 (943) 0.734 (0.016) 1.273 (0.117) 7.747 (0.338)
B-GLM 9.798 (0.064) 0.721 (0.065) 40835 (1380) 0.739 (0.021) 1.293 (0.129) 6.47 (0.152)

SR-NP-trad 9.865 (0.141) 0.550 (0.038) 33922 (1158) 0.73 (0.019) 1.326 (0.125) 7.549 (0.515)
SR-NP-max 9.8 (0.117) 0.564 (0.059) 34021 (1251) 0.724 (0.018) 1.347 (0.199) 7.296 (0.728)

Table 6: Results obtained by cluster-speci�c interpretable models

RMSE (std)
French Highway Insurance Airbnb Puma Satellite Wind

SR-NP-naive-trad 6.446 (0.42) 6751 (521) 0.552 (0.017) 4.338 (0.229) 1.025 (0.04) 3.675 (0.139)
SR-NP-naive-max 6.377 (0.454) 6550 (365) 0.554 (0.036) 4.266 (0.18) 1.035 (0.148) 3.608 (0.079)
HSR-naive-trad 6.472 (0.462) 6429 (307) 0.584 (0.067) 4.156 (0.184) 1.012 (0.064) 3.547 (0.041)
HSR-naive-max 6.386 (0.473) 6328 (307) 0.545 (0.018) 4.062 (0.078) 0.991 (0.034) 3.562 (0.068)

SR-NP-trad 6.006 (0.473) 4842 (290) 0.489 (0.019) 3.536 (0.087) 0.975 (0.036) 3.312 (0.073)
SR-NP-max 6.043 (0.617) 4844 (318) 0.483 (0.011) 3.386 (0.063) 0.953 (0.069) 3.278 (0.063)
HSR-trad 5.921 (0.54) 4840 (308) 0.475 (0.012) 3.30 (0.084) 0.95 (0.034) 3.205 (0.074)
HSR-max 5.80 (0.507) 4844 (304) 0.470 (0.011) 3.277 (0.082) 0.934 (0.056) 3.198 (0.074)

Breast tumor Music House Wine Toxicity Gas
SR-NP-naive-trad 12.0 (0.161) 0.549 (0.05) 38810 (1892) 0.734 (0.027) 1.345 (0.173) 7.873 (1.55)
SR-NP-naive-max 11.953 (0.149) 0.576 (0.102) 38260 (1531) 0.723 (0.016) 1.262 (0.096) 7.105 (0.906)
HSR-naive-trad 11.932 (0.16) 0.524 (0.045) 37518 (1563) 0.735 (0.021) 1.363 (0.112) 7.46 (0.708)
HSR-naive-max 11.915 (0.108) 0.507 (0.056) 37640 (1741) 0.725 (0.019) 1.266 (0.071) 6.621 (0.15)

SR-NP-trad 9.865 (0.141) 0.550 (0.038) 33922 (1158) 0.73 (0.019) 1.326 (0.125) 7.549 (0.515)
SR-NP-max 9.8 (0.117) 0.564 (0.059) 34021 (1251) 0.724 (0.018) 1.347 (0.199) 7.296 (0.728)
HSR-trad 9.727 (0.056) 0.497 (0.05) 33542 (1127) 0.724 (0.019) 1.243 (0.097) 7.181 (0.618)
HSR-max 9.662 (0.061) 0.471 (0.053) 33102 (833) 0.712 (0.014) 1.214 (0.065) 6.421 (0.150)

Table 7: Comparison of two clustering strategies for the no pooling and partial pooling
approaches: a naive one based on the original features versus the one based on the
SHAP features (see Section 3.2)

24



Figure 7: Global explanation plot provided by the InterpretML framework for an
EBM model on the altitude variable on theFrench Highwaydataset

to identify a group of nearby road segments. Therefore, in that particular context, EBM,
despite its good predictive performance, does not always provide relevant information to
�eld experts. It can even, at times, mislead them.

5 Dynamic interpretative process

5.1 Introduction
Although plots like the one of Fig. 7 make it possible to identify potentially misleading
models' behaviors, the EBM model does not provide alternative associations between the
explanatory variables and the target. With our approach, the risk of misinterpretation
is reduced thanks to the successive models on the Pareto front: from less complex, which
capture only overall e�ects, to most complex, which are �exible enough to focus on hazardous
con�gurations speci�c to a few roadway segments. Through such a dynamic interpretative
process, �eld experts can use the model best suited to meet their needs. In the next section,
we illustrate this process on theFrench Highway dataset, supported by a graphical user
interface developed in dialogue with �eld experts (see appendix B). We suppose that our
framework has already been trained on ten years of data, from January 1st, 2008 to December
31th, 2017. Data from 2018 is used to validate that, based on out-of-sample predictions, the
framework provides useful information to safety experts. The �rst module of our framework,
described in Section 3.2, identi�ed four relevant clusters. For illustrative purposes, we focus
on a moderately hazardous cluster, composed mainly of rural and mountainous segments.
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Figure 8: Pareto front for the selected cluster.

5.2 From global to cluster-speci�c e�ects: an illustrative ex-
ample

Safety experts can navigate within the series of cluster-speci�c models that make up the
Pareto front (see Fig. 8), from the least complex one (viz. model 1) to the most complex one
(viz. model 4). Model 1 corresponds to the functional form of the global model (Section 3.4)
whose coe�cients are inferred based on cluster 0 data.

model 1: ŷ = 5 :95 + 0:000394x3 + 0 :312x10 + 2 :7x2

with ŷ being the predicted crash count,x3 the average annual daily tra�c, x10 the presence
of bridges (binary) and x2 the number of rest areas. From the e�ects plots of Fig. 10a, it
appears that, for this model, the amount of tra�c and the number of rest areas have the
more prominent marginal e�ects.

Model 1 captures only the global risk factors. When considering models of increasing
complexity, more speci�c e�ects will appear. For instance, model 2 (see Fig. 8) is de�ned
as:

model 2: ŷ = 3 :34 + 0:000555x3 + 2 :34x2 + 1 :43x1 + 0 :055x10 + 0 :117x0x8

where the additional variablesx0, x1 and x8 are, respectively, the speed limit, the number
of interchanges and the presence of tunnels. Out-of-sample predictions from models 1 and
2 di�er locally (see Fig 9a and Fig 9b). In particular, in mountainous areas, segments
considered as moderately hazardous by the �rst model, are now associated with a high risk
of accidents due to the discovery of a �rst-order interaction between the presence of tunnel
and the speed limit. Safety experts, by combining prior knowledge of the network with the
observed transition from model 1 to model 2, are con�dent that this interaction is one of the
main reasons why a large number of accidents have occurred on these segments during the
ten years covered by the training data. This discovery may support a proposal for reducing
the authorized speed limit on these speci�c segments.
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(a) Model 1 (b) Model 2

Figure 9: Crash count predictions for 2018 on roadway segments belonging to the
selected cluster.

(a) model 1 (b) model 2

(c) model 3 (d) model 4

Figure 10: E�ects plots for the four selected models. E�ects plots are obtained by
computing for all observations the e�ect of a variablej on the crash count, de�ned
by e�ect (i )

j = � j x
(i )
j , where � j is the coe�cient estimate of the j -th variable of the

model andx(i )
j is the value of variablej on the i -th observation [Molnar, 2020].
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(a) PD(x3) (b) PD (x6)

Figure 11: Histograms of partial derivatives for (a) the tra�c x3 and (b) the altitude
x6, for model 3.

Nonetheless, one of the major di�culties for the interpretation of more complex models
is related to the introduction of collinearities and interactions between continuous variables.
To illustrate this, consider model 3 from Fig. 8:

Model 3: ŷ = � 33:3 � 0:00489x10 + 1 :57x2 � 9:37� 10� 6x3x6 + 0 :00286x3 + 0 :15x6

Model 3 is characterized by an interaction between the averaged altitudex6 and the tra�c x3.
By focusing on this interaction, model 3 better �ts training data than model 2 but its e�ects
plots (see Fig 10c) are arguably more di�cult to interpret. However, our framework only
produces di�erentiable closed-form expressions for which it is always possible to compute
the partial analytical derivatives (PD) w.r.t. variables of interest, to quantify explicitly their
partial e�ects (i.e., a measure of the conditional e�ect of a variable on the target) [Aldeia
and de França, 2021]. In this sense, we can understand how a unit change in an explanatory
variable a�ects the crash count when other variables are held constant. For instance, the
partial derivatives for the tra�c x3 and altitude x6 are respectively:

PD(x3) =
� ŷ
�x 3

= 0 :00286� 9:37� 10� 6x6; PD(x6) =
� ŷ
�x 6

= 0 :15� 9:37� 10� 6x3

Histograms of the pointwise partial derivatives can be useful interpretative tools (see Fig. 11).
Although the partial e�ects of the tra�c x3 are mostly positive, a few are negative for
segments of high altitudes and above average tra�c (see Table 8). Thus, these variations
in partial derivatives emphasize that the relation between the crash count andx3 is more
complex than the linear dependency proposed by model 1 and model 2. By introducing this
novel interaction, model 3 manages to capture more variability in the dependent variable
than the previous models.

Finally, model 4 is much more complex:

Model 4: ŷ = � 34:7 + 8:5 � 10� 6x2
1 � 0:000671x1x3 � 8:5 � 10� 6x1x6 + 13:5x1

+ 0 :0113x10 + 1 :92x2 � 8:5 � 10� 6x3x6 + 0 :000679x3x8 + 0 :00269x3

� 0:0276x4 + 1 :61x5 + 0 :133x6 + 0 :12x7 � 0:276x8 + 0 :0472x9
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x3 x6

overall PD(x3) < � 0:0015 overall PD(x3) < � 0:0015
count 1491 64 1491 64
mean 10001 12206 274 579
std 1465 997 105 32
min 7685 10877 79 521
max 14658 14658 616 616

Table 8: Description of explanatory variables for the overall cluster-speci�c data and
for samples where partial derivatives w.r.t.x3 are the lowest.

As we can see from Fig. 10d, the introduction of new correlated terms improves slightly
the �t. To capture extra variability in the dependent variable, model 4 introduces highly
correlated combinations of terms. From model 3 to model 4, a sharp increase in complexity
for a small gain in performance should alert the user to the risk of no longer understanding
the inner workings of model 4: time must be spent at studying the various partial e�ects
before deciding if the model can still be trusted.

5.3 Speci�cities and bene�ts of the ranking-by-complexity ap-
proach

Thanks to our complexity metric (see Eq. 2), model 3 does not dominate model 2 even
though they have the same number of terms and their terms have equal complexities. If we
had not penalize collinearities, then model 2, which is of high interest to �eld experts, would
not have been included in the Pareto front. In this sense, the ranking-by-complexity favors
a progressive analysis of numerous instructive models.

Among Fig. 8 models, some can attain similar predictive performances while bringing
out di�erent e�ects of the explanatory variables. This can be understood from the point
of view of the Rashomon e�ect [Breiman, 2001] which characterizes problems where many
accurate-but-di�erent models exist to describe the same data [Semenova et al., 2019]. As
discussed by [Rudin, 2019], we argue that the availability of multiple e�cient predictive
models is useful since �eld experts may have more �exibility in choosing a model that they
�nd interpretable. Moreover, we help them in this process as our de�nition of the complexity
warns them when models are likely to be di�cult to understand.

Finally, the dynamic interpretative process can be a useful tool to construct new hand-
made predictive models, based on the knowledge learnt by analyzing the Pareto optimal
models. For instance, we have seen that the interactions introduced in model 2 and model 3
are both valuable. The user could consider building a new model with both of them.
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5.4 Towards causality
A central question remains: among these di�erent models, how can be distinguished the
trustworthy ones from the ones based on spurious associations due to inductive bias? As
illustrated above, one way is to rely on the diligence of the user equipped with expert knowl-
edge and e�ective tools. This could also be partially automated when prior knowledge of
the conditional independences between variables is formalized, e.g., as a causal graph [Pearl,
2009]. Such approaches are beyond the scope of our current work. However, our framework
fosters a dynamic interpretative process that, combined with a clear quanti�cation of uncer-
tainty, is a useful tool to identify variables of interest and to understand how they interact.
Therefore, we can surmise that our framework could facilitate the development of causal
models.

6 Conclusion
Predictive models are being used increasingly to make high stake decisions. For many ap-
plications, there is a need for both accuracy and interpretability. For instance, in highway
safety analysis, we argue that a preference should be given to predictive models that are
both accurate and fully interpretable in order to increase the con�dence of safety experts in
the identi�cation of hazardous segments. Motivated by these requirements, we propose an
interpretable symbolic regression framework that �rst discovers a hierarchical structure in
the data, and then learns global and cluster-speci�c models by means of a multi-objective
simulated-annealing-based symbolic regression. More speci�cally, we �rst train a state-of-
the-art non-parametric machine learning model and then compute for each observation the
Shapley values of the explanatory variables. Based on the similarity induced by these Shap-
ley values, we use an agglomerative clustering algorithm to partition the dataset. Moreover,
through an original multi-objective symbolic regression, we compute a Pareto front of global
predictive models. We select among these models the one o�ering a good trade-o� between
its predictive performance and its complexity. Afterwards, for each cluster of the previously
discovered hierarchical structure, the global model is used as the starting seed for a new
multi-objective symbolic regression. Finally, the best models, i.e. the ones appearing on the
Pareto fronts, are re-estimated through Bayesian inference in order to associate uncertainty
estimates to their coe�cients.

On twelve regression datasets, the framework outperforms most interpretable models.
On some datasets, we achieve performance comparable to that of non-parametric black box
models. Furthermore, we presented a case study based on the highway network dataset to
validate the new dynamic interpretative process made possible by our framework. As our
approach discovers transparent and parsimonious symbolic models, safety experts can be
more con�dent in their understanding of the relations between the explanatory variables
and the dependent variable. Moreover, thanks to Bayesian inference, the risk factors are
associated with measures of uncertainty. In addition, the use of Pareto optimization allows
�eld experts to build a multi-scale view of the risk factors, from the most general to the
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most speci�c.
Our framework relies on a speci�c approach to discover a hierarchical structure. Even

though we validated its robustness on numerous datasets, promising next steps involve an-
alyzing other methods that are compatible with ours. For instance, in [Rengasamy et al.,
2021a,b], the authors propose an e�cient ensemble feature importance method where mul-
tiple feature importance approaches are applied to a set of ML models and their crisp im-
portance values are combined to produce a �nal importance for each feature. Thus, we will
constitute a benchmark of feature importance methods [Arrieta et al., 2020] and evaluate
them based on their e�ciency, scalability, and on the quality of computed clusters.

Finally, future work will extend the framework for near real-time crash risk assessment.
In this context, since remedial actions will probably a�ect humans' lives even more directly,
having both e�cient and interpretable models will be all the more important to assist safety
experts in their work.
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Appendix A Hyper-parameters tuning

Model Hyper-parameters Values
GAM-splines lam f 0:001; 0:01; 0:1; 1; 10; 100; 1000g

EBM max_bins f 8; 16; 32; 64; 128; 256; 512; 1024g
min_samples_leaf f 1; 2; 5; 10; 20g

SR-GP population_size f 500; 1000; 1500g
generations f 20; 50; 100g

SR-Gomea initmaxtreeheight f 4; 6g
popsize f 500; 1000g

XGBoost learning_rate f 0:0001; 0:001; 0:01; 0:1g
max_depth f 2; 3; 5; 10; 15g
min_child_weight f 1; 3; 5; 7g
gamma f 0; 0:5; 1; 1:5; 2; 5g
col_sample_by_tree f 0:3; 0:4; 0:5; 0:7; 1g

SVM C f 0:0001; 0:001; 0:01; 0:1; 1; 10; 100; 1000; 10000g
kernel f linear; poly; rbfg
tol f 0:0000001; 0:000001; 0:00001; 0:0001; 0:001; 0:01; 0:1g

MLP hidden_layer_sizes f (16; 16); (16; 8); (8; 8)g
alpha f 0:000001; 0:00001; 0:0001; 0:001; 0:01; 0:1g
activation f tanh; relug
learning_rate_init f 0:0001; 0:001; 0:01; 0:1g
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Appendix B Data visualization tool
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