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Transport in hierarchical porous materials: 

diffusion experiments and random walk simulations 

V. Wernert, B. Coasne, P. Levitz, K. Nguyen, E.J. Garcia, R.Denoyel.  

 

Abstract. We carry out random walk simulations on prototypical porous structures that are 

representative of actual hierarchical silica-based materials. The main throughput of the mesoscopic 

simulations proposed here is the tortuosity defined as the ratio of the fluid mean square displacements 

calculated in the absence and in the presence of the porous medium. This is a rigorous mathematical 

definition that has the advantage to be comparable to the ratio of self-diffusion coefficients for the 

bulk and confined fluid, which can be directly determined by means of diffusion experiments. Such 

tortuosity can also be compared with the ratio of bulk and effective electrical conductivities. These 

calculations are applied here to hierarchical materials such as those encountered in chromatography, 

membrane science or catalysis. The simulation results are compared to experimental data as well as 

to effective equations – such as Maxwell’s equation – which are often invoked to infer tortuosity 

expressions based on effective mean field theories.  

 

1. Introduction 

Understanding the role of porous material morphology on the transport properties of a fluid is central 

to many natural and engineering processes.1 This scientific issue is at the heart of many fields (geology, 

engineering, chemistry, and physics) with important applications such as catalysis, separation, cement 

chemistry, etc.2 The modeling of experimental results, for example peaks in chromatography or 

breakthrough curves, requires a large number of input parameters for a set of equations that describe 

flow properties, chemical reactions at interfaces, and diffusion. Generally, such an equation set is only 

well defined at a given time/length scale; it is therefore necessary to establish the coupling rules 

between the different scales. This is done for example in the General Rate Model in chromatography 

which simplifies the approach by considering that liquid flow only occurs in macropores whereas 

diffusion occurs everywhere.3,4 To be understood and modelled, the apparent diffusion in the whole 

system should be deduced from the diffusion contributions in each pore domain i.e. scale.5  This can 

be done easily by assuming that domains are either in parallel or in series but, except perhaps in the 

case of membranes made of several layers that can be considered in a serial arrangement, the actual 

situation is rather complex and cannot be described so simply. This is why Effective Medium Theory 

(EMT) models were proposed to describe the properties of heterogeneous systems6 with an expected 

better approximation than parallel or series arrangements. Maxwell’s equation is for example used in 

the field of chromatography7,8 to relate the overall effective diffusion to the diffusion in the different 

parts of the column. 

 

Regardless of their structure, compact beds of spherical particles or monoliths with a skeleton defining 

macroporous and mesoporous domains, chromatographic columns are typical hierarchical porous 

media where the arrangement of domains is optimized for efficient transport. In this context, hierarchy 

means that pores are organized in such a way that domains can be identified in terms of pore size, 

porosity and space arrangement but the system appears homogeneous at the macroscale. It is then 

interesting to test the applicability of Maxwell-like equations against experiments but also to coarse-

grained simulations (as it is difficult in experiments to disentangle only one phenomenon from the 
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overall macroscopic data). Random walk (RW) simulation is used to mimic diffusion9 without taking 

into account the interaction of the diffusing probe with t sur une large gamme de he pore walls and 

without any hydrodynamic drag effect with solvent due the displacement of a molecule of finite size 

in a pore of finite size. Experimentally, such conditions are difficult to realize even if it is possible to 

carry out experiments in non-adsorbing conditions with molecules that are small compared to pore 

size10. Here, we compare the predictions from Maxwell’s equation with random walk simulations for 

some simple pore morphologies. The objective is to quantify the porosity ranges where EMT can be 

applied as a reasonable approximation. This aspect is important as we recall that Maxwell’s equation 

was established for highly diluted spherical inclusions in a continuous medium. As a result, its 

applicability to concentrated systems remains a questionable approximation.11 The main throughput 

of the coarse-grained simulations proposed here is the determination of the tortuosity parameter 

defined as the ratio of the mean square displacements calculated with and without the porous medium. 

This is a rigorous mathematical definition that has the advantage to be equivalent to the ratio of 

diffusion coefficients for the bulk and confined fluid. Such diffusion processes, which correspond to 

Brownian motion, i.e. Fick’s diffusion, can be directly compared to diffusion experiments such as NMR 

and quasielastic neutron scattering. Moreover, tortuosity is accessible by other experiment types, such 

as electrical conductivity, which makes it a useful parameter to describe the influence of morphology 

on any type of transport – even if, practically, different values may be obtained with different 

experimental approaches.12 Discrepancies have been underlined, for example, between 

hydrodynamics and conductivity experiments,12 but a very good agreement is generally observed 

between conductivity and diffusion experiments for a large number of materials (ranging from simple 

chromatographic supports to complex structures such as cements).8,13,14 Diffusion coefficients can be 

derived from measurement concentration versus time or distance, like in chromatography15, or in NMR 

methods.13,16 The disagreement between different experimental methods may arise from the use of 

different probes that interact differently with the walls of the porous material. Seen as a topological 

parameter, tortuosity must be determined in conditions where the probe has negligible interaction 

with the walls. On another side, the agreement between conductivity and RW simulations has been 

shown for simple configurations.17 

 

In general, tortuosity is not considered as a well-defined parameter in the literature since no common 

definition has been adopted until now. The basic intuitive mathematical definition as a ratio of the 

length of the way through the porous medium between two points to the direct distance between 

these points does not bring any useful information when compared to real phenomena where 

trajectories explored by molecules obey complex laws that couple Brownian motion and advective 

flow. In contrast, the RW tortuosity – defined as  the ratio of the mean square displacements as 

underlined above – is a rigorous mathematical definition that is directly related to a physical diffusion 

coefficient (the self-diffusivity). Moreover, it can be easily shown that other definitions of tortuosity 

based on conductivity or permeability also correspond to the ratio of distances to the square.12 

Nevertheless, whereas in simulations one can consider a point like tracer with elementary 

displacements very small as compared to pore size, real experiments are done with finite size probes 

whose center cannot explore all the void space. Consequently, any experimental tortuosity value 

based on diffusion or conductivity experiment is an “apparent tortuosity”, which gets closer to the 

“absolute  tortuosity “as the probe size decreases. All along this article, the term of “apparent 

tortuosity” will be kept while the term of “absolute tortuosity” will be restricted to the value obtained 

by RW simulations. The apparent tortuosity obtained by measurements with the smallest probes 

should be very close to the absolute tortuosity. It is assumed that the “absolute tortuosity” is a 
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parameter independent of the experimental method employed and characteristic of morphology 

effects on transport.  

 

The remainder of this paper is divided in three sections. In the theoretical section 2, the equations 

used to relate tortuosities at the different scales, RW simulations and model materials built to conduct 

our study are described. The use of solids reconstructed from tomography methods, based on Xray or 

TEM , provide a mean to assess transport from realistic numerical porous materials.18,19 Other 

considered numerical materials are based on simple shape pores but assembled in a way that mimics 

the hierarchical structure met in chromatography systems, i.e. assembly of porous spherical particles 

or assembly of porous cylinders. In section3, the experimental approach is described. It consists of 

probing the diffusion of molecules with various sizes under non-adsorbing conditions in 

chromatographic columns displaying different structures. The apparent tortuosities are determined as 

a function of molecular size. In section 4, the results given by Maxwell’s equations, combining the 

tortuosities of domains and that of the whole column, are compared to experimental ones as well as 

to RW simulations in porous media mimicking real samples. A better understanding of how the 

tortuosities of various domains combine to yield the total tortuosity of a hierarchical porous material 

is expected. This may pave the way for the rational design of materials with structures that improve 

their transport properties.  

 

2. Models and simulation methods 

2.1. EMT equations 

The porous media considered here are numerical models made up of two domains: large pores 

between spheres or skeleton and small pores inside spheres or skeleton. Some EMT models are 

currently used to estimate the diffusion properties (resp. conductivity) of a molecule in a porous 

material as a function of the diffusion (resp. conductivity) properties in the various domains: Maxwell, 

Landauer, Garnett, and Torquato models.7,8,20,21 Initially, Maxwell’s equation was introduced to 

determine the conductivity of a suspension of dilute conducting spheres in a conductive medium. The 

derivation of this equation is based on the supplementary assumptions that the contribution of 

spheres is additive and that the limit conditions for conductivity is that of the bulk.  It can be written 

as6,11: 

𝜎𝑒𝑓𝑓−𝜎0

𝜎𝑒𝑓𝑓+2𝜎0 = 𝜑𝑝 [
𝜎𝑝−𝜎0

𝜎𝑝+2𝜎0]                                                                                                                                      (1) 

where 𝜎𝑒𝑓𝑓  is the effective conductivity of the suspension, 𝜎0  the conductivity of the conductive 

medium in which the conductive spheres are dispersed. 𝜎𝑝 and 𝜑𝑝 are the conductivity and volume 

fraction of the spheres. Some authors6,21 have proposed to directly write this equation in term of 

diffusion coefficient by replacing the conductivity by the diffusion coefficient leading to: 

𝐷𝑒𝑓𝑓1−𝐷𝑚

𝐷𝑒𝑓𝑓1+2𝐷𝑚 = 𝜑𝑝 [
𝐷𝑝−𝐷𝑚

𝐷𝑝+2𝐷𝑚
]                                                                                                                                      (2) 

where  𝐷𝑒𝑓𝑓1 is the effective diffusion coefficient of the dispersion, 𝐷𝑚 the bulk diffusion coefficient, 

and 𝐷𝑝 the effective diffusion coefficient inside the porous spheres.  
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Following Crank22, the effective diffusion coefficient “is the diffusion coefficient of a hypothetical 

homogeneous medium exhibiting the same steady state behaviour as the two-phase composite”. 

Consequently, there is a direct equivalence between the effective conductivity of a porous medium 

determined between two electrodes and the effective diffusion coefficient deduced from the 

molecular flow due to a concentration gradient C between two reservoirs surrounding the same 

porous medium. However, it is worth noticing that some authors5 replace the conductivity by the 

product of the porosity and diffusivity, i.e. D.  The reason for this substitution arises mainly from the 

way diffusion coefficients are measured. If the diffusion coefficient is deduced from the spatial 

repartition of species in the porous medium, like in NMR or peak parking experiments, the effective 

diffusion coefficient is related to a concentration gradient in the porous medium that is proportional 

to C, where   is the total porosity of the system and C the concentration drop of the diffusing 

species between outside reservoirs as defined above. Consequently, the relationship between the 

effective diffusion coefficients measured by this second method type and the first one is: 

𝐷𝑒𝑓𝑓1 = 𝜖𝐷𝑒𝑓𝑓2                                                                                                                                                    (3) 

The distinction between the two definitions lead some authors to coin Deff1 as the apparent diffusion 

coefficient.23 The tortuosity defined as the ratio between the bulk diffusion coefficient and the 

effective diffusion coefficient determined by the second method can be considered equivalent to that 

derived from RW simulations. It is then assumed here that 𝐷𝑒𝑓𝑓 = 𝐷𝑒𝑓𝑓2. In the following, the derived 

equations are then obtained by replacing the conductivity by the product (porosity) x (diffusivity). By 

replacing 𝜑𝑝  by (1 − 𝜀𝑒) , where 𝜀𝑒  is the interparticle porosity, Maxwell’s equation expressed in 

terms of tortuosity can now be written: 

𝜏 =
𝐷𝑚

𝐷𝑒𝑓𝑓 =  𝜖𝑡[𝑟𝑚] [
1−(1−𝜀𝑒)𝛽

1+2(1−𝜀𝑒)𝛽
]                                                                                                          (4)         

were εt[rm] is the total porosity accessible to the diffusing molecule of size rm, τ is the total apparent 

tortuosity of the column, and 𝛽 = (𝛺 − 1)/(𝛺 + 2). In the last equation,   is defined as:  

 𝛺 =
𝜖𝑝.𝐷𝑝

𝑒𝑓𝑓
[𝑟𝑚]

𝐷𝑚
=

𝜖𝑝

𝜏𝑝
                                                                                                                                 (6) 

 Ω is the ratio of the effective diffusion coefficient in the spheres Dp
eff[rm] to the bulk diffusion 

coefficient Dm,  𝜖𝑝  the porosity of spheres and 𝜏𝑝  their tortuosity. With these definitions, the 

tortuosities determined by conductivity and diffusivity experiments for the same system should 

coincide: 

𝜏 =
𝐷𝑚

𝐷
𝑒𝑓𝑓 =

𝜖𝑝.𝜎0

𝜎𝑒𝑓𝑓                                                                                                                                                          (7) 

provided the following physicochemical conditions are met: non-adsorbing condisdering and small 

probe fluids. This has been confirmed experimentally quite often.12,24  

 

Bruggeman’s equation is an extension of Maxwell’s equation where it is now supposed that the limit 

condition for conductivity (far-field) is the effective conductivity. This is a self-consistent approach 

where the details of the shape and organisation of domains are omitted (in fact, the domain shape and 

organization are included in an effective way in the domain size definition d). Using the same notation 

as in equation (1) and considering  𝜑𝑝 = 1 − 𝜀𝑒, Bruggeman’s equation for two domains in 3D writes: 
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𝜀𝑒
𝜎0−𝜎𝑒𝑓𝑓

𝜎0+2𝜎𝑒𝑓𝑓 + (1 − 𝜀𝑒).
𝜎𝑝−𝜎𝑒𝑓𝑓

𝜎𝑝+2𝜎𝑒𝑓𝑓 = 0              (8) 

In this paper, other equations will be tested such as Torquato’s model19: 

𝜏 =
𝐷𝑚

𝐷𝑒𝑓𝑓 = 𝜀𝑡[𝑟𝑚] [
1+2(1−𝜀𝑒)𝛽−2𝜀𝑒𝜉2𝛽2

1−(1−𝜀𝑒)𝛽−2𝜀𝑒𝜉2𝛽2 ]            

(9) 

 

where ξ2 is the so-called three-point parameter. When ξ2 = 0, Eq. (9) simplifies to Eq. (4). A value of ξ2 

= 0.3277 is used when the particles are in physical contact like in chromatographic columns.25   

Garnett’s model reads21: 

𝜏 =
𝐷𝑚

𝐷𝑒𝑓𝑓 =
𝜀𝑡[𝑟𝑚]

2

2(3−2𝜀𝑒)+2𝜀𝑒𝛺

2(3−2𝜀𝑒)𝛺+2𝜀𝑒
                                                                                                        (10) 

This model ignores the physical contact between the packed particles, i.e. the spatial distribution of 

the bulk eluent matrix surrounding these particles.  

Landauer’s model reads26: 

 
𝐷𝑒𝑓𝑓

𝐷𝑚
=

𝑎+√𝑎2+
1

2
𝛺

𝜀𝑡[𝑟𝑚]
 

(10) 

 

with  𝑎 = 1/4 × [3𝜀𝑒 − 1 + 𝛺(2 − 3𝜀𝑒)] 

 

2.2. Random Walk simulations 

Porous media construction. Several types of materials were considered to carry out the RW 

simulations and compare calculated tortuosities with experimental ones. A first set of materials based 

on the assembly of non-porous particles was built to check quantitatively our simulations against 

experiments for simple configurations. Moreover, the tortuosity of a compact assembly of non-porous 

spheres can be used to describe the transport of large molecules that are excluded from particles or 

skeleton porosity. A second set of materials is made by assembling porous spheres or cylinders, 

supposed to model chromatographic columns made of spherical particles or of monoliths, respectively. 

In the case of spherical particles, a first medium is prepared as an assembly of small non-porous 

spheres with radius r in the simulation box enabling to get a porosity i. In this medium a sphere of 

radius R is cut which possesses this internal porosity i. The external porosity is given by the volume 

between the box and this porous sphere. The simulation is then carried out in an assembly of boxes 

organized in a cubic configuration. The impact of this specific organization on the results will be 

discussed later. The external porosity is modulated by modifying the value of R. The internal porosity 

is modulated by varying the radius r at constant number of small non-porous spheres. These non-

porous spheres are organized also in a cubic arrangement in some cases. For example, a first medium 

was made of 1728 spheres of diameter 50 in the box 600×600×600 voxels. The internal porosity is 

0.476. A second one was made of 1728 spheres of diameter 60. The spheres overlap and the porosity 

is 0.203. Tests were also done (i) with non-porous spheres in a random configuration prepared as 

already described15 and (ii) with a Vycor-like material, built from off-lattice reconstruction based on a 

TEM image and small angle X-ray scattering27, in which spheres were also cut. The same procedure 

was carried out with cylinders made of assembly of non-porous spheres. Crossed-cylinders are 

considered in a cubic configuration. The various structures are shown in figure 1. 
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Initial structures   Final structures  

 

(a) 

 

c)  

 

b) 

 

d) 

Box size 600x600x600  Box size 600x600x600  

Figure 1: a) Assembly of non-porous spheres. Random or cubic arrangement of spheres with radius r 

in a box. Porosity i. r varies from 25 to 36 and I from 0.476 to 0.0268. b) A Vycor like material built 

from tomography is placed in the box. The resulting porosity is i=0.30. c) A sphere is cut in one of the 

boxes a) or b) to create a new box with a porous sphere of internal porosity i.. The hierarchical material 

is composed of cubic arrangement of the boxes. External porosity is imposed by the ratio of spheres 

volume to box volume. d) Crossed cylinders are cut in the boxes a) or b) to create a new box with 

porous cylinders with internal porosity i. The hierarchical material is composed of cubic arrangement 

of the boxes. External porosity is imposed by the ratio of cylinders volume to box volume. 

 

Random walk simulation. In this work, the tortuosity τ was calculated by using the random walk 

method28,29 as described elsewhere17. A porous medium is created based on cubic simulation boxes 

made of 600×600×600 voxels marked 0 if they belong to the voids and 1 if they belong to the solid 

phase. Briefly, a “walker” is introduced at random in the pores (voxels marked as 0) and a counter 

called time t is initialized (t = 0). Then, successive displacements are realized randomly. The walker 

jumps to the next position only if the chosen voxel belongs to the pore space, otherwise a new 

neighbor is chosen. The counter t is incremented by 1 at every trial. For every t, the squared 

displacement is calculated from the starting point. This calculation is repeated for a pre-established 

number of steps.  Once the maximum number of steps is reached, a new walker is introduced. When 

the walker gets out of the box, the walker enters a new box created by periodic conditions. The mean 

square displacement at each t for N walkers is calculated as:  
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〈𝑟2〉 =
1

𝑁
∑ 𝑟𝑖

2𝑁
𝑖=1                                                                                                                                                      (12) 

The tortuosity is calculated at each time t as: 

𝜏 =
〈𝑟2〉(𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒)

〈𝑟2〉(𝑝𝑜𝑟𝑜𝑢𝑠 𝑚𝑒𝑑𝑖𝑎)
                                                                                                                                         (13) 

The simulation finishes when the relative error calculated using equation (14) falls below 0.01%. 

𝑒𝑟 =
|𝜏𝑜𝑙𝑑−𝜏𝑛𝑒𝑤|

𝜏𝑛𝑒𝑤
× 100                                                                                                                                          (14) 

The first tortuosity calculations were carried out for simple structures (left column, figure 1) such as 

that used to build the multiscale porous materials. The results are given in figure 2 where the 

tortuosities of non-porous spheres or cube assemblies are shown as a function of system porosity. 

These assemblies can be distributed randomly or organized following face centered cubic (FCC) or 

body-centered cubic (BCC) structures.  Figure 2 also presents the predictions from Weissberg 

equation30 that has been experimentally verified on suspensions of spheres by conductivity 

measurements24. Such a comparison allows us to assess quantitatively the validity of our simulation 

procedure.  

 

Figure 2: Tortuosity  calculated by Random Walk simulations for dispersed systems made of the 

assembly of non-porous particles with simple shapes (see details in the figure). For Monodispere 

spheres and bidispersed spheres, there is no overlap between the spheres, whereas overlap is allowed 

for the other configurations  

 

The Weissberg equation reads: 

𝜏 = 1 − 𝑝𝑙𝑛(𝜖)                                                                                                                                                   (15) 
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with p ~ 0.5 for spheres24,30,31. For cubes, a good fit is obtained with p = 0.65 in agreement with 

experimental data.32,33 For crossed cylinders, the fit using equation (15) for porosities higher than 0.2 

yields p = 0.9. Below this porosity value, the tortuosity measured by random walk diverges because 

the percolation threshold is reached. A tortuosity of 6 is obtained for a porosity equal to 0.1. In this 

cubic arrangement of crossed cylinders (see figure 1d), the percolation threshold corresponds to a 

porosity of 0.058 if the cylinders are themselves non-porous: this value is obtained by considering in 

figure 1d crossed non-porous cylinders with a diameter equal to the box size. In the case of FCC or BCC 

cubes, the percolation threshold corresponds to a null porosity, whereas it is 0.035 for spheres as 

calculated by considering overlapping spheres with a diameter equal to the diagonal of one face of the 

simulation box. 

These data show two important results. (i) The results agree between simulation and experiment as 

shown by the results for spheres that can be easily tested experimentally. (ii) In a large porosity range, 

the tortuosity/porosity relationship depends more on the particle shape than on their arrangement in 

space since all data for spheres follow the same law, except for porosities lower than 0.2 (regardless 

of their organized or random distribution and mono/polydispersity). The same behavior is observed 

for random cubes, but it has been recently shown that, at very low porosity, the behavior for cubes 

may be different since cubes are oriented if they cannot overlap.34 For complex structures such as 

Vycor, a tortuosity value of 3.82 is obtained from RW simulation (whereas experimental values are 

around 4.2). This is a reasonable agreement since details of surface roughness cannot be assessed by 

the used reconstruction method so that the reconstructed solid used for RW simulations is probably 

smoother than the real material. 

 

3. Experimental approach 

The diffusion of molecular probes of various sizes in chromatographic columns was studied by means 

of Peak Parking experiments. Toluene and twelve polystyrene standards (named P1 to P12) with 

molecular weights Mw ranging between 162 and 1,850,000 g mol-1 were dissolved in the mobile phase 

(THF, Carlo Erba Reagents) at a concentration of 1 g/L. The columns are either composed of fully porous 

spherical particles made of silica (Lichrospher Si100, Merck) or of a monolithic silica (Chromolith, 

provided by Merck). The experiments were made by using the 1200 HPLC system (Agilent 

Technologies), including a quaternary gradient pump with a multi-diode array UV-VIS detector, an 

automatic sample injector with a 100 µL loop, an autosampler and a thermostated column 

compartment. The injection volume was set at 1 µL and all experiments were conducted at 298 K. The 

system is controlled by the Chemstation software. 

 

The peak parking (PP) method was used to measure the apparent diffusion coefficient of molecules 

through porous media. In the PP experiments, 1 µL of a dilute sample solution was injected at 0.5 mL 

min-1. The flow is stopped when the solute is supposed to be in the middle of the column and the 

molecule left to diffuse freely during a given time called the parking time tp. The flow is then started 

again at the same value and the peak variance of the solute band is measured by fitting the 

chromatograms with a Gaussian function. The values obtained without parking are subtracted from 

the ones obtained with parking. The variance was then plotted versus parking time, and the slope is 

used to calculate the effective diffusion by using the following equation:  

𝐷𝑒𝑓𝑓 =
∆𝜎𝑧

2

2.𝑡𝑝
=

1

2

∆𝜎𝑡
2

𝑡𝑝
(

𝜀𝑒

𝜀𝑡[𝑟𝑚]
) 𝑢2                                                                                                                                      (16) 
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where u is the interstitial velocity, ∆𝜎𝑧
2 the variance of the peak in unit of length, ∆𝜎𝑡

2 that in time. 

More details on the method and the characteristics of the columns can be found elsewhere.35 Electrical 

tortuosity was also determined for comparison by methods already described either for particles or 

monoliths.24,35  

 

4. Results and discussion 

Figure 3 shows the apparent tortuosity derived from the effective diffusion coefficient determined by 

peak parking experiments with the set of non-adsorbing molecules selected here. The data are 

reported as a function of  which is the ratio of the molecule size rm and the average pore size rp of the 

small pore domain, i.e. 𝜆 = 𝑟𝑚/𝑟𝑝. For the smallest molecules, toluene and P1, which have access to 

the whole porosity, the apparent tortuosity is small: between 1 and 1.25. This agrees with the electrical 

tortuosity determined on the same samples.35 Then, upon increasing , the apparent tortuosity goes 

through a maximum before decreasing asymptotically towards a constant value which corresponds 

mainly to the diffusion of the largest molecules in the large pore domain. Indeed, above  = 1, polymers 

are totally excluded from the small pore domain. Clearly, the tortuosity assessed by the largest 

molecules is that of the large pore domain in which the probe molecule size can be considered small 

as compared to the pore size (even for large molecules). Indeed, the interparticle pore size of Si100 or 

the interskeleton pore size in monoliths are in the range 1-3 µm as determined by mercury 

porosimetry35 (whereas the size of the largest polymer P12 is around 0.1 µm).10 In the case of spherical 

porous particles, Si100, the value for the apparent interparticle tortuosity is 1.38 for an external 

porosity of 0.376 – in reasonable agreement with the value 1.48 obtained either by RW simulation or 

by Weissberg equation (14) (assuming p = 0.5).  In the case of the monolith, the interskeleton porosity 

is 0.69 and the measured apparent extraskeleton tortuosity is around 1.05. This value is clearly smaller 

than that obtained by random walk simulation between crossed cylinders, 1.28, as obtained by 

extrapolation in figure 2 for the same porosity. This value, which is smaller than expected, but also 

confirmed by electrical measurements, 1.13 in reference35, is difficult to understand: the organization 

of the skeleton is probably very different from that of crossed cylinders used in RW simulations. 
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Figure 3: Apparent tortuosity obtained by means of PP method as a function (top) of the ratio between 

the size of the probe molecule and the small pore domain mean pore size ratio  (rm/rp) and (bottom) as 

a function of the accessible internal porosity. Points linked by continuous lines are experimental data. 
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Broken lines correspond to the different EMT equations indicated in the legends: the calculations are 

made for the same porosities as in experiments. 

 

The position of the maximum in Fig. 3 is around  = 0.3 as already observed for several samples.35 The 

apparent tortuosity measured here is the combination of the diffusion behavior of large molecules in 

large pore and small pore domains. As  increases, the number of possible ways in small pore domains 

decreases36 whereas the proportion of molecules moving only in the large pore domain increases. The 

description of the process is further complicated by the fact that both the pore size distribution and 

the polymer sample are polydisperse. Moreover, whereas the diffusion of molecules in the large pore 

domain can be considered as a simple diffusion mechanism, transport inside the small pore domain is 

hindered by drag effects because molecule size may be very close to pore size. This phenomenon can 

be considered by introducing a correction to the diffusion coefficient. This is taken into account for 

example in the Renkin equation37 which leads to comparable results with more sophisticated models.38 

Recently, Reich et al36 proposed a new equation based on random walk simulations in reconstructed 

pore systems for tracers with different sizes. They established a new empirical equation for the 

hindrance factor (reverse of apparent tortuosity) as a function of . Nevertheless, this equation, which 

reflects the change of pore accessibility upon varying the probe size, does not consider the drag effect 

due to the displacement of molecules in a small pore because this drag effect, of hydrodynamic nature, 

is not considered in RW simulations (in fact, one would have to consider the collective diffusivity to 

include such collective interactions). This may be the reason why these authors find higher values for 

the hindrance factor than that obtained previously8,10 (where the accessibility change with molecular 

size was described in a less refined fashion but where the drag effect was considered thanks to Renkin’s 

equation). Coming back to the problem of the apparent tortuosity of a multiscale material, the key 

question here is to disentangle the different contributions to the observed transport. The description 

of drag effect being complex and out of the scope of this study, the question is to know whether a 

simple practical description of the effective diffusion in the material can be proposed based on 

effective diffusivities in each domain. To do so, the EMT equations proposed in the preceding 

paragraphs were applied and compared to experimental results for the spherical particle column and 

the monolith. The data are plotted as a function of  in figure 3a. In the case of spherical particles, the 

agreement between the experimental data and the theoretical predictions is reasonable on a large 

range of  = rm/rp values (except for Landauer’s equation which is not shown here). The simplest EMT 

model, Maxwell’s equation, is accurate enough to describe the apparent tortuosity of a hierarchical 

material made of a porous sphere assembly. Equations 4 to 7 allow calculating the total tortuosity of 

the sphere assembly knowing the apparent tortuosity of the spheres. The values of p(rm), apparent 

tortuosity of the polymer with size rm, used in the calculations are taken from Ref. 35 where they are 

determined by electrical measurements corrected using Renkin’s equation. In applying EMT equations, 

the transport mechanism (here diffusion) is assumed to be the same in large pore and small pore 

domains. This is an approximation, especially for small pore domains where the diffusion is hindered 

by drag effects. One then assumes that the drag effect just modifies the value of the effective diffusion 

coefficient by a constant factor leading to an apparent diffusion coefficient that is introduced in 

Maxwell’s equation. Despite such an approximation, Maxwell’s equation finally captures the results 

accurately. To test Maxwell’s equation in conditions where only diffusion is present, we apply this 

equation to the data obtained by means of RW simulations. This is done in figure 4 where the RW 

tortuosities are plotted as a function of total porosity in the case of spherical porous particles for 

different values of the small pore domain porosity and for different porous structures (sphere or Vycor-

like structures). The lines correspond to Maxwell’s equation applied using the different porosities, 
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external and internal, of the structures and the tortuosities p of the small pore domain as determined 

by RW simulation in the porous structures shown in figure 1.   

 

Figure 4: Random walk simulations and predictions of Maxwell’s equation for cubic arrangement of 

porous spheres made of the porous structure indicated in the legend (small pore domain). The total 

porosity is varied by changing the size of the sphere at constant internal porosity. Only the external 

porosity is changing. 

 

In figure 5, the same results are presented for the structure made of porous crossed cylinders with two 

values of the internal porosity of the small pore domain (cylinder made of spheres). Maxwell’s 

equation for cylinders, as often used to describe monolithic materials, is given by6,7: 

𝜏 =
𝐷𝑚

𝐷𝑒𝑓𝑓 =  𝜖𝑡[𝑟𝑚] [
1−(1−𝜀𝑒)𝛽

1+(1−𝜀𝑒)𝛽
]                          (17)                                    

where 𝛽 = (𝛺 − 1)/(𝛺 + 1) is different from equation 4. It is important to note that equation (17) 

corresponds in fact to a 2D arrangement of cylinders with a flow perpendicular to their axis (which is 

different from the crossed cylinders used in our RW simulations). Nevertheless, despite this strong 

approximation, the agreement between the simulated data and theoretical predictions remains 

reasonable. Other configurations have been tested for the arrangement of cylinders, using Maxwell’s 

theory in the case of random cylinders or needles6: the agreement remains of the same order. This 

result suggests that the configuration chosen here is closer to a 2D arrangement of cylinders than to a 

3D random arrangement of cylinders when transport properties are considered. 
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Figure 5: Random walk simulations (symbols) and predictions from Maxwell’s equation (thick lines) for 

crossed porous cylinders made of the porous structure indicated in the legend (small pore domain). The 

total porosity is varied by changing the size of the cylinders at constant internal porosity. Only the 

external porosity is modified. 

 

The results above show that Maxwell’s equation is a reasonable approximation to predict the 

tortuosity of hierarchical porous materials in a porosity range that is classical in chromatography. 

When applying this equation and the corresponding random walk simulation of figures 5 and 6, the 

tortuosity considered is the absolute tortuosity (as the probe can be considered infinitely small 

compared to pore size). In contrast, in figure 3, the experimental data correspond to molecules with 

sizes that are of the same order of magnitude as pore size. As  increases, the accessible internal 

porosity decreases. It is thus more appropriate to compare these results to RW simulations at constant 

external porosity and variable internal porosity. This is done in figure 7 where the RW tortuosity is 

plotted as a function of internal porosity. The small pore domain is here constructed by considering a 

cubic arrangement of spheres with increasing size and possible overlap.  Like for experimental data in 

figure 3, a maximum is observed for tortuosity. This maximum is observed at low internal porosities. 

In the same figure, the results of Maxwell’s equation applied to the RW data are shown. The tortuosity 

is obtained thanks to equations 4-5-6 using the external porosity of the numerical material and the 

tortuosity of small pore domain obtained by RW simulation. Here again a maximum is obtained in the 

same porosity range as that obtained using the RW simulation. As for the previously discussed results 

in figures 4 and 5, the tortuosity obtained using Maxwell’s equation is lower than that derived from 

RW simulations but the evolution with internal porosity is the same. The same figure also reports the 

results obtained by applying Bruggeman’s equation.  
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Figure 6: tortuosity of a cubic arrangement of porous spheres as a function of the porosity of the porous 

spheres. The external porosity is constant and equal to 0.476. The internal tortuosity, obtained by RW 

simulation, is shown on the right hand axis.  

 

Above a porosity of 0.4, as already noticed, results are in good agreement regardless of the method 

used. The RW results range between the predictions from Bruggeman and Maxwell equations, with a 

large overestimation calculated when using the Bruggeman equation. The maxima observed here for 

the three methods indicate that the observed experimental results for apparent tortuosity in figure 3 

can be partly explained by a contribution of pure diffusion without any hydrodynamic effect 

consideration. Because the experimental maximum is higher than that of the RW simulation or of the 

Maxwell and Bruggeman models (comparing figures 3 and 6), it indicates that another phenomenon 

must be considered (i.e. the drag effect already introduced above). It can be also observed that the 

position of the maximum on the internal porosity scale is shifted to small values in the case of the 

simulation. As already discussed, the drag effect on the one hand and the polydispersity of the polymer 

probes on the other hand are probably among the reasons why the experimental maximum is located 

at larger internal porosity than the theoretical one. One can also observe that the maximum, in the 

case of experiments, is higher for spherical particles bed than for monolith. 

 

The main difference between our experiments and simulations is that the simulated solid is made up 

of a cubic arrangement of spheres. This means that, when the internal porosity is decreased by 

increasing the size of the non-porous constitutive spheres, the connectivity is not modified (i.e. the 

number of node and branches in the retraction graph is not modified). In the case of the real materials, 

a porosity decrease, which is considered as equivalent to increasing the probe size, may lead to a 

decrease in the connectivity as illustrated in the work of Reich et al36 on a reconstructed solid 
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representative of the monolith used here. It is possible that the connectivity loss is different between 

spherical materials and monoliths when the probe size increases. In order to see whether the shift of 

the maximum position in figure 3 (see experimental data) as compared to that in figure 6  (RW 

simulations) can be attributed to the drag effect, Maxwell’s equation applied to RW data is modified 

by replacing 
𝜖𝑝

𝜏𝑝
 by 

𝜖𝑝

𝜏𝑝
kf in equation (6), where kf is given by Renkin’s equation: 

𝑘𝑓 [𝑟𝑚]) = 1 − 2.104𝜆 + 2.09𝜆3 − 0.956𝜆5      (20) 

This equation is obtained by solving the Navier-Stoke equation for a sphere moving inside a cylindrical 

tube, keeping the first equations of an infinite set39, and using the central line approximation, i.e. the 

drag effect is the same whatever the molecule position and equal to the value in the center of the tube.  

The results are reported in figure 7 where experimental data, RW simulations and Maxwell equation 

applied to RW data before and after introducing the Renkin correction are shown. To link the RW data 

to rm/rp, the experimental relationship between internal porosity accessible to a given probe and rm/rp 

was used. Without reproducing exactly the experimental data, which is not possible here since the 

numerical and real materials are different, the comparison in Fig. 7 shows that the shift in the 

maximum after applying the correction leads to a predicted maximum closer to the experimental one.  

 

Conclusion 

Diffusion experiments, effective medium theory calculations and random walk simulations were 

carried out on hierarchical porous materials composed of two pore domains.  The different methods 

show that the apparent tortuosity versus probe size/pore size ratio graphs display a maximum. 

Because the maximum is present in our RW simulations, it indicates that it is due to diffusion itself i.e. 

independently of potential drag effect in pores. This analysis also shows that transport in a hierarchical 

material can be described using simple effective medium theories such as Maxwell’s equation to 

combine data at different scales (such as tortuosities of small pore and large pore domains) provided 

porosities are above 0.4.  The data at each scale can be obtained either from experimental data or 

numerical simulations. At low porosities, the agreement is rather qualitative, but introducing the 

contribution of hydrodynamics phenomena, which mostly influence the small pore domain, simply by 

adding the Renkin equation to Maxwell equation, allows making closer the position of the maximum 

between EMT and experiments. Simulations at the nanoscale of these phenomena could be also used 

to provide an efficient diffusion coefficient in the small pore domain.40,41,42  
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Figure 7: Tortuosity determined by random walk simulation (RW), peak parking experiments 

(Experiments), Maxwell’s equation applied to RW data (Maxwell 1) and Maxwell’s equation applied to 

RW data corrected using Renkin’s equation (Maxwell 2). Lines are guide for the eyes. 
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