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A B S T R A C T

Support Vector Machines are models widely used in supervised classification. The classical model minimizes
a compromise between the structural risk and the empirical risk. In this paper, we consider the Support
Vector Machine with feature selection and we design and implement a bi-objective evolutionary algorithm
for approximating the Pareto optimal frontier of the two objectives. The metaheuristic is based on the non-
dominated sorting genetic algorithm and includes problem-specific knowledge. To demonstrate the efficiency
of the algorithm proposed, we have carried out extensive computational experiments comparing the Pareto-
frontiers given by the exact method AUGMECON2 and the metaheuristic approach respectively in a set of well
known instances. In this paper, we also discuss some properties of the points in the Pareto frontier.
1. Introduction

Supervised classification is the procedure of classifying a set of
objects (also called vectors) into classes. The procedure is designed with
a training objects set and the goal is to use it for classifying new objects.
In supervised classification the statistical learning from data is devoted
to classification. The problem of classifying objects into classes is faced
in many different fields such as insurance companies (to differentiate
bad from good customers), medicine (to determine whether a tumor is
benign or malignant), chemistry or image data. The book by Vapnik
(2013) is a comprehensive introduction to the relevance of learning
theory for designing supervised classification.

1.1. The Support Vector Machine

The SVM was first introduced by Cortes and Vapnik (1995) and Vap-
nik (1995) as a new type of universal learning machine that implements
the strategy of keeping the value of the empirical risk fixed minimizing
the confidence interval. It is based on the way proposed by Vapnik
and Chervonenkis (1964) to build the optimal separating hyperplane
for pattern recognition, used by Vapnik and Chervonenkis (1974) in
the case of separable data and later generalized by Vapnik (1995)
for the case of non-separable data. The separating hyperplane is the
intermediate hyperplane of two parallel hyperplanes, one letting above
the vectors of the first class and the other letting below the vectors of
the second class. The distance between the two parallel hyperplanes
is called the margin. If data is linearly separable, this margin is said
to be hard. If a linear boundary is not feasible or misclassifications are
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allowed in the hope of achieving better generality, this margin is said to
be soft. For the soft margin SVM, good separating hyperplanes are those
such that the margin between the two parallel hyperplanes is large and
the distance of the misclassified vectors to the corresponding parallel
hyperplane is small. The SVM has proven to be a very effective tool
for supervised classification. The paper by Burges (1998) constitutes a
practical tutorial on SVM.

The output of an SVM is a classification hyperplane 𝜋 and the goals
are twofold: the maximization of the margin between two equidistant
parallel hyperplanes to 𝜋 and the minimization of the number of
misclassified vectors by the two equidistant parallel hyperplanes. In the
standard approach, to maximize the margin, one term of the objective
function to be minimized consists in the inverse of the margin that, in
turn, is a quadratic and convex term. Hence, the terms in the standard
objective function are not an exact translation of the problem goals but
a sensible modeling. In this paper, we analyze the effect on the Pareto
frontier of the translation. It is shown that the set of efficient points is
nearly but not exactly the same.

Feature selection is a widely used process for reducing the number
of variables. On the one hand, the selection of the most representative
variables allows to reduce the size of the problem to solve, what
evidently adds operationality to the problem. On the other hand, it
avoids the over-adjustment and thus confers robustness to the solution.

1.2. Literature review

Several authors have proposed models that consider feature selec-
tion. In the work carried out by Maldonado et al. (2014), the authors
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introduce two SVM mixed integer models with feature selection, the
work of Aytug (2015) solves the SVM with feature selection with
the help of benders decomposition. Recently, Gaudioso et al. (2017)
propose a Lagrangian relaxation approach for the SVM problem with
feature selection and the models developed by Maldonado et al. (2014)
are later enhanced (Labbé et al., 2019).

Despite the high prediction rate of the SVM technique in a wide
range of real applications, the classification accuracy of the SVM highly
depends on specifying the model parameters as well as selecting the
subset of features. Several metaheuristic have been developed with this
aim. To cite only some of them, (Huang & Wang, 2006) and later (Zhao
et al., 2011) propose genetic algorithms which are also compared to
the grid algorithm and others using standard benchmark instances; Lin
et al. (2008) propose a particle swarm optimization and demonstrate
its efficiency by comparing it to grid search in different public datasets;
García-Pedrajas et al. (2014) propose a memetic algorithm for dealing
with many instances and many features simultaneously by performing
joint instance and feature selection; Gauthama Raman et al. (2017)
present an adaptive and a robust intrusion detection technique for
parameter setting and feature selection in SVM; Aladeemy et al. (2017)
propose a variation of Cohort Intelligence algorithm for SVM with
feature selection; Bouraoui et al. (2018) propose a multi-objective ap-
proach to simultaneously optimize SVM parameters and feature subset
using different kernel functions; Faris et al. (2018) present a multi-
verse optimizer approach for feature selection and optimizing SVM
parameters based on a robust system architecture; Tao et al. (2019)
present a good classifier for data regarding hospitalization expenses
which is obtained by using feature selection in SVM; Ibrahim et al.
(2019) develop a novel metaheuristic, the Grasshopper Optimization
Algorithm, which is inspired by grasshoppers searching for food and
approved its ability to solve some biomedical datasets; Cheng et al.
(2020) explore the benefit of subdividing the training set into smaller
regions when training sets are large-scale; Dudzik et al. (2021) propose
an evolutionary technique that efficiently classifies difficult datasets,
including very large and extremely imbalanced cases; Al-Zoubi et al.
(2021) present an improved evolutionary variant of competitive swarm
optimizer and its superiority over a genetic algorithm is shown; All
these works learn from a training set and check the performance with
a testing set. Most of them select optimal features and optimize the
parameters of SVM simultaneously with the aim of reducing the number
of features while trying to maintain the predictive capability.

1.3. The Support Vector Machine from a multi-objective perspective: the
Pareto front

Solving the SVM, a decision maker has a solution to a particular
compromise between the structural and the empirical risk. Solving
the SVM for different compromises, the decision maker has different
alternative solutions for different scenarios. The benefit of a Pareto
front is that it provides a decision maker with a comprehensive set
of alternative solutions from which a better decision can definitely
be made. The Pareto front of any bi-objective optimization problem
gives a lot of relevant information to the decision maker, who can
achieve better results. The problem of obtaining the Pareto front for
the SVM with feature selection has not been solved by any of the
existing previous works within the field of SVM. All the previous multi-
objective exact or genetic algorithms with or without feature selection
focus on achieving the best classification results for a set of instances
but do not show the Pareto front to the decision maker. An efficient
tool for obtaining the Pareto front of the SVM with feature selection
was something important that remained to be done. In this paper, we
give several important properties of the Pareto front of the soft margin
SVM with feature selection and we design an efficient metaheuristic
tool for obtaining it. We do not split information into training sets and
testing sets because we do not give a single classifier. Our two objective
2

functions are the structural risk and the empirical risk, so we do not
need to tune SVM parameters and we move the decision to the decision
maker.

From the point of view of the model, the selection of features is
carried out by introducing binary variables to the model that indi-
cate which features are selected. Thus, the SVM model with feature
selection becomes a mixed-integer model and therefore a non-convex
model. Since the SVM problem without feature selection is a linear
programming problem and thus a convex problem, its Pareto frontier
can be obtained by varying the parameter 𝐶. However, since the SVM
problem with feature selection is not convex, obtaining its Pareto
frontier requires other techniques. The drawbacks of scalarization for
non-convex problems as well as recent results on non-convex multi-
objective optimization problems and methods can be consulted in the
book by Pardalos et al. (2017). There are several methods that are ca-
pable of generating a set of well-distributed Pareto solutions on convex
and non-convex frontiers. AUGMECON2 is one of these methods, which
is precisely that used in this paper.

In this paper we present a metaheuristic approach to approximate
the Pareto-optimal frontier simultaneously considering the two SVM
objectives and making the selection of features. As far as we know
this type of metaheuristic has not been proposed before. The main
advantage of the metaheuristic we propose compared with the ones
in the literature, is that our approach gives a good description of the
Pareto front of the SVM with feature selection whereas the others
focus on optimizing the subset of features and parameters, and then
efficiently classify some benchmark datasets.

This paper is organized as follows, Section 2 presents the SVM
mathematical model and its connections with the related hyperplane
distances. In Section 3, some properties concerning the concept of
efficiency and the objectives considered are established. The exact
approach employed to solve the SVM with feature selection is presented
in Section 4 and, in Section 5, the metaheuristic algorithm, based on
the non-dominated sorting genetic algorithm is described in detail.
Finally, the computational experiment to evaluate the efficiency of our
approach is presented and discussed in Section 6.
2. Support Vector Machine model

Consider a training set 𝛺 of vectors partitioned into two classes.
Vectors are represented by a pair (𝑥𝑖, 𝑦𝑖) ∈ R𝑛 × {−1, 1}, where 𝑛 is the
number of features observed for each vector, 𝑥𝑖 contains the feature
values for vector 𝑖 and 𝑦𝑖 indicates to which of the two classes of 𝛺
vector 𝑖 belongs. If 𝛺 is linearly separable, there exist 𝑣 ∈ R𝑛, 𝜃 ∈ R,
nd 𝜇 ∈ R+

0 such that all vectors in the class for which 𝑦𝑖 = 1 satisfy
𝑇 𝑥𝑖 ≤ 𝜃 − 𝜇 and all vectors in the class for which 𝑦𝑖 = −1 satisfy
𝑇 𝑥𝑖 ≥ 𝜃 + 𝜇. W.l.o.g. dividing by 𝜇, the Support Vector Machine
roblem consists in determining the hyperplane 𝑓 (𝑥) = 𝑤𝑇 ⋅ 𝑥 + 𝑏 that
ptimally separates the vectors in the training set. Optimality is twofold,
ne wishes to maximize the distance between two parallel hyperplanes
upporting some vectors of the two classes and to minimize the sum of
lassification errors. The classical hard margin SVM model (Bradley &
angasarian, 1998) minimizes a compromise between the above two

bjectives called respectively the structural risk and the empirical risk.

min
,𝑏,𝜉

1
2
‖𝑤‖

2 + 𝐶
𝑚
∑

𝑖=1
𝜉𝑖 (1)

s.t. 𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 𝑖 = 1,… , 𝑚, (2)

𝜉𝑖 ≥ 0 𝑖 = 1,… , 𝑚, (3)

The 𝑛-dimensional vector 𝑤 contains variables 𝑤𝑗 that, as well as 𝑏,
ake values in R and represent the coefficients of the two parallel
yperplanes 𝑤𝑇 𝑥 + 𝑏 = 1 and 𝑤𝑇 𝑥 + 𝑏 = −1. The first term 1

2‖𝑤‖

2

of the objective function (1) represents the structural risk since ‖𝑤‖

is twice the inverse of the distance between these two hyperplanes.
The second term 𝐶

∑𝑚
𝑖=1 𝜉𝑖 is the empirical risk given by the sum of the

deviation of misclassified objects multiplied by 𝐶 which is a parameter
that regulates the trade-off between the two objectives. Parameter



Expert Systems With Applications 204 (2022) 117485J. Alcaraz et al.

t
t

𝑂

2

d
o
e
u
t
s
h

𝑏
d

𝑑

w
h
a

E
a
c
m
i
t
i

S

𝑑

w

D
o

w
a

s
o
v
a
e
o

i
S
o
c
t
t
p
o
q

h
d
c
e
P
0
P
f

P

P
e
t
d

P

𝐶 establishes how important it is to avoid missclassification in the
raining data. Constraints (2) and (3) ensure that either vectors 𝑖 in
he class represented by 𝑦𝑖 = 1 satisfy (𝑤𝑇 𝑥𝑖 + 𝑏) ≥ 1 and vectors in

class 𝑦𝑖 = −1 satisfy (𝑤𝑇 𝑥𝑖 + 𝑏) ≤ −1 or constraint (2) is violated by a
positive amount 𝜉𝑖, denoted deviation. The slack variables 𝜉𝑖 make the
difference with the soft margin SVM model.

In the following we consider the two objectives 𝑂1 = 1
2‖𝑤‖

2 and
2 =

∑𝑚
𝑖=1 𝜉𝑖 separately.

.1. SVM objective function and hyperplane distances

As stated before the goals in SVM are the maximization of the
istance between two parallel hyperplanes supporting some vectors
f the two classes and the minimization of the sum of classification
rrors. It is easy to check that the objective values 𝑂1 and 𝑂2 allow
s to exactly compute these two goal values, i.e., the distance between
he two parallel hyperplanes defined by the variables 𝑤 and 𝑏 and the
um of the distance of the misclassified vectors to the corresponding
yperplane.

Let (𝑤, 𝑏, 𝜉) a feasible solution to the SVM model. Then, 𝜋1 ≡ 𝑤𝑇 𝑥+
= 1 and 𝜋2 ≡ 𝑤𝑇 𝑥 + 𝑏 = −1 are the two parallel hyperplanes and the
istance between them is

(𝜋1, 𝜋2) =
2

‖𝑤‖

= 2
√

2𝑂1
. (4)

The sum of the distance of the misclassified vectors is the sum of
the distance of the misclassified vectors of class ‘‘1’’ to the hyperplane
𝜋1 plus the sum of the distance of the misclassified vectors of class ‘‘−1’’
to the hyperplane 𝜋2. If 𝜉𝑖 = 𝑚𝑎𝑥{0, 1 − 𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏)}, this sum is the
following:

∑

𝑖∶𝜉𝑖>0,𝑦𝑖=1
𝑑(𝑥𝑖, 𝜋1) +

∑

𝑖∶𝜉𝑖>0,𝑦𝑖=−1
𝑑(𝑥𝑖, 𝜋2) =

∑

𝑖∶𝜉𝑖>0,𝑦𝑖=1

𝜉𝑖
‖𝑤‖

+
∑

𝑖∶𝜉𝑖>0,𝑦𝑖=−1

𝜉𝑖
‖𝑤‖

=
𝑂2

√

2𝑂1
.

(5)

Summarizing, from any feasible solution of the SVM model (𝑤, 𝑏, 𝜉)
ith objective values 𝑂1 and 𝑂2, the distance between the two parallel
yperplanes defined by 𝑤 and 𝑏 and the sum of the distances between
ny misclassified vector and its hyperplane can be explicitly computed.

xample 1. Let 𝛺 = {1, 2, 3, 4, 5, 6} be the set of vectors in Fig. 1. Let us
ssume that vectors of class −1 are presented in gray and the vectors of
lass 1 appear in black. Table 1 gives three feasible solutions to the SVM
odel. These feasible solutions are the intermediate hyperplanes. Fig. 1

llustrates the intermediate hyperplanes (non-dashed lines) as well as
he parallel hyperplanes (dashed-lines) for the three solutions. The
ntermediate hyperplane is always defined by 𝑤1𝑥+𝑤2𝑦+𝑏 = 0 while the

parallel hyperplanes are 𝜋1 ∶ 𝑤1𝑥+𝑤2𝑦+𝑏 = −1 and 𝜋2 ∶ 𝑤1𝑥+𝑤2𝑦+𝑏 =
1. Table 2 gives the associated objective values as well as the distances
between the two parallel hyperplanes defined by the feasible solutions
and the distances between each misclassified vector and its hyperplane:
the distance between the two parallel hyperplanes is 4.0931 in the first
SVM solution, 1 in the second SVM solution and 2.6833 in the third
VM solution. In Table 1, the 𝜉-variables with a positive value indicate

misclassified vectors: vector 2 is misclassified in the first case, all the
vectors are well classified in the second case and vectors 1 and 6 are
misclassified in the third case. In the latter calculation, vectors 1 and
2 are misclassified or not with respect to hyperplane 𝜋1 while vectors
3, 4, 5, and 6 are misclassified or not with respect to the hyperplane
𝜋2. ‘‘-’’ values in distance columns of Table 2 indicate that the vector
is well classified. 𝑂1 in Table 2 is 0.5(𝑤2

1 + 𝑤2
2), where 𝑤1 and 𝑤2 are

in Table 1 and 𝑂2 in Table 2 is 𝜉1 + 𝜉2 + 𝜉3 + 𝜉4 + 𝜉5 + 𝜉6, where 𝜉𝑖 are
in Table 1. Values in Table 2 illustrate that 𝑑(𝜋1, 𝜋2) = 2∕

√

2𝑂1 and
(1, 𝜋1) + 𝑑(2, 𝜋1) + 𝑑(3, 𝜋2) + 𝑑(4, 𝜋2) + 𝑑(5, 𝜋2) + 𝑑(6, 𝜋2) = 𝑂2∕

√

2𝑂1.
3

Table 1
Feasible solutions to the SVM model for the example in Fig. 1.

Fig. 𝑤1 𝑤2 𝑏 𝜉1 𝜉2 𝜉3 𝜉4 𝜉5 𝜉6
Fig. 1(a) 0.0606 0.4848 −1.5455 0 1.0303 0 0 0 0
Fig. 1(b) 0 2 −7 0 0 0 0 0 0
Fig. 1(c) 0.3333 −0.6667 0.3333 1 0 0 0 0 3.3333

3. SVM efficiency and distance efficiency

We define two different types of efficient points depending on the
goal considered.

Definition 1. A point (𝑤, 𝑏, 𝜉) is SVM efficient iff there exists no other
point (𝑤′, 𝑏′, 𝜉′) satisfying (2) and (3) such that

• 𝑂1(𝑤′, 𝑏′, 𝜉′) ≤ 𝑂1(𝑤, 𝑏, 𝜉), and
• 𝑂2(𝑤′, 𝑏′, 𝜉′) ≤ 𝑂2(𝑤, 𝑏, 𝜉)

ith a least one strict inequality.

efinition 2. A point (𝑤, 𝑏) is distance efficient iff there exists no
ther point (𝑤′, 𝑏′) such that

• 𝑑(𝜋′
1, 𝜋

′
2) ≥ 𝑑(𝜋1, 𝜋2), and

• ∑

𝑖∶𝜃′𝑖>0,𝑦𝑖=1
𝑑(𝑥′𝑖 , 𝜋1)+

∑

𝑖∶𝜃′𝑖>0,𝑦𝑖=−1
𝑑(𝑥′𝑖 , 𝜋2) ≤

∑

𝑖∶𝜃𝑖>0,𝑦𝑖=1 𝑑(𝑥𝑖, 𝜋1)+
∑

𝑖∶𝜃𝑖>0,𝑦𝑖=−1 𝑑(𝑥𝑖, 𝜋2).

ith a least one strict inequality, where 𝜃𝑖 = 𝑚𝑎𝑥{0, 1 − 𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏)}
nd 𝜃′𝑖 = 𝑚𝑎𝑥{0, 1 − 𝑦𝑖(𝑤′𝑇 𝑥𝑖 + 𝑏′)}.

Intuitively, in an efficient solution, one of the parallel hyperplanes
hould hold on at least one vector 𝑥𝑖1 with 𝑦𝑖1 = 1 and the other hold
n at least one vector 𝑥𝑖2 with 𝑦𝑖2 = −1, i.e., that each of them holds a
ector of a different class. These vectors lying on one of the hyperplanes
re called the support vectors. However, Proposition 3 shows that there
xist SVM efficient solutions such that both parallel hyperplanes lean
n vectors of the same class.

It is generally agreed that the number of support vectors in practice
s very large. For instance, Geebelen et al. (2012) point out that the
VM run time complexity can be considerably higher compared to
ther methods, because of the large number of support vectors, which
onstitutes an important drawback and Cuong and Thien (2016) argue
hat in the SVM technique the number of support vectors obtained from
he training phase is usually large, and slows down the classification
hase. Many methods are proposed to treat this issue with the target
f reducing the number of support vectors but without loss of solution
uality.

Intuitively, the set of SVM efficient solutions and the set of parallel
yperplanes that lean on vectors of different classes and that are
istance efficient, henceforth distance efficient hyperplanes, should
oincide. However, it is not the case. There are solutions that are SVM
fficient but not define distance efficient hyperplanes and conversely.
roposition 1 states that SVM efficient solutions (𝑤, 𝑏, 𝜉) with 𝑤 =
do not define distance efficient hyperplanes at distance infinity.

roposition 2 states that distance efficient solutions with large values
or the sum distances of misclassified vectors are not SVM efficient.

Let 𝑆𝑆𝑉𝑀 = {(𝑤, 𝑏, 𝜉) ∶ (2), (3)} be the set of feasible SVM solutions.

roposition 1. Some SVM efficient points are not distance efficient points.

roof. The point (𝑤, 𝑏, 𝜉) = (0, 0, 1) belongs to 𝑆𝑆𝑉𝑀 and is SVM
fficient since 𝑂1(𝑤, 𝑏, 𝜉) ≥ 0 for all points (𝑤, 𝑏, 𝜉) ∈ 𝑆𝑆𝑉𝑀 . However,
here does not exist a corresponding pair of hyperplanes at infinite
istance. □

roposition 2. Some distance efficient points are not SVM efficient points.
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Fig. 1. Example with 𝑚 = 6 and 𝑛 = 2. Gray color indicates class ‘‘−1’’, black color indicates class ‘‘1’’.
Table 2
Distances and objective values for the example in Fig. 1.
Fig. 𝑑(𝜋1 , 𝜋2) 𝑑(1, 𝜋1) 𝑑(2, 𝜋1) 𝑑(3, 𝜋2) 𝑑(4, 𝜋2) 𝑑(5, 𝜋2) 𝑑(6, 𝜋2) 𝑂1 𝑂2

Fig. 1(a) 4.0931 – 2.1086 – – – – 0.1194 1.0303
Fig. 1(b) 1 – – – – – – 2 0
Fig. 1(c) 2.6833 1.3416 – – – – 4.4721 0.2778 4.3333
4
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Table 3
SVM efficient solutions.
𝑂1 𝑂2 𝑑(𝜋1 , 𝜋2)

∑

𝑖∶𝑚𝑎𝑥{0,1−𝑦𝑖 (𝑤𝑇 𝑥𝑖+𝑏)}>0,𝑦𝑖=1
𝑑(𝑥𝑖 , 𝜋1)+

∑

𝑖∶𝑚𝑎𝑥{0,1−𝑦𝑖 (𝑤𝑇 𝑥𝑖+𝑏)}>0,𝑦𝑖=−1
𝑑(𝑥𝑖 , 𝜋2)

𝑎1 𝑏1 2∕
√

2𝑎1 𝑏1∕
√

2𝑎1
𝑎2 𝑏2 2∕

√

2𝑎2 𝑏2∕
√

2𝑎2
. . .
𝑎𝑡−1 𝑏𝑡−1 2∕

√

2𝑎𝑡−1 𝑏𝑡−1∕
√

2𝑎𝑡−1
𝑎𝑡 𝑏𝑡 – –

Proof. Let Table 3 be the set of efficient SVM efficient points, where
1 > 𝑎2 > ⋯ 𝑎𝑡 and 𝑏1 < 𝑏2 < ⋯ 𝑏𝑡. Let (𝑤, 𝑏, 𝜉) be a point in 𝑆𝑆𝑉𝑀

such that 𝑂2(𝑤, 𝑏, 𝜉) = 𝐵 > 𝑏𝑡. Such a point exists since given a point
(𝑤1, 𝑏1, 𝜉1) ∈ 𝑆𝑆𝑉𝑀 , any point (𝑤1, 𝑏1, 𝜉2) with 𝜉2𝑖 > 𝜉1𝑖 for all 𝑖 belongs
to 𝑆𝑆𝑉𝑀 . If 𝑂1(𝑤, 𝑏, 𝜉) > 𝑎1𝐵2∕𝑏21, then (𝑤, 𝑏, 𝜉) is not SVM efficient
since the point that gives (𝑎𝑡, 𝑏𝑡) dominates it but it is distance efficient
since 2∕

√

2𝑂1 < 2∕
√

𝑎1 and 𝐵∕
√

2𝑂1 < 𝑏1∕
√

2𝑎1. □

The next proposition states that it might happen that both efficiency
riteria, distance and SVM, yield to different Pareto frontiers, however,
t follows from the proof that this is only the case at the border of the
areto frontier. In general, both criteria agree on the classification.

emark 1. The SVM Pareto frontier and the distance Pareto frontier
oincide for intermediate points.

The following proposition states that for the SVM efficient points
ith 𝑤 = 0 both parallel hyperplanes lean on vectors of the same class.

roposition 3. SVM efficient points with 𝑤 = 0 have all the support
ectors in the same class.

roof. Let (0, 𝑏, 𝜉) an SVM efficient point. (𝑥𝑖, 𝑦𝑖) is a support vector
f class ‘‘1’’ iff 𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) = 1 and 𝑦𝑖 = 1. It is a support vector
f class ‘‘−1’’ iff 𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) = 1 and 𝑦𝑖 = −1. Let (𝑥𝑖1 , 𝑦𝑖1 ) be a

support vector of class ‘‘1’’ and (𝑥𝑖2 , 𝑦𝑖2 ) be a support vector of class
‘‘−1’’. From the proof of Proposition 4 it is known that (0, 𝑏, 𝜉) satisfies
𝑏 = max𝑦𝑖=1(1 − 𝜉𝑖) = min𝑦𝑖=−1(𝜉𝑖 − 1), but max𝑦𝑖=1(1 − 𝜉𝑖) = 1 − 𝜉𝑖1 = 1
and min𝑦𝑖=−1(𝜉𝑖 − 1) = 𝜉𝑖2 − 1 = −1, what is absurd. □

Example 2 (Cont. Example 1.). The three feasible solutions in Table 1
correspond with parallel hyperplanes leaning on support vectors of the
two classes. The first row in Table 1 gives one parallel hyperplane
leaning on vectors 3 and 6 and the other leaning on vector 1. The
second row gives one parallel hyperplane leaning on vectors 3 and 4
and the other leaning on vector 2. The third row gives one parallel
hyperplane leaning on vectors 3 and 5 and the other leaning on vector
2. The second row gives an SVM and distance efficient solution.

4. AUGMECON2 for the SVM with feature selection

4.1. AUGMECON2

The exact Pareto set in multi-objective integer programming can
be achieved by using the generation method AUGMECON (Mavrotas,
2009). AUGMECON2 (Mavrotas & Florios, 2013) is an improvement
of the previous method AUGMECON specifically developed for more
than two objectives. Both methods, AUGMECON and AUGMECON2,
coincide when the number of objectives is two.

Assume that 𝑓1(𝑥) and 𝑓2(𝑥) are the two objective functions to
be maximized, 𝑆 is the feasible region for the multi-objective integer
programming and 𝑟2 = 𝑈𝐵2 − 𝐿𝐵2 is the range of 𝑓2(𝑥).

The range 𝑟2 is divided into 𝑞 equal intervals using 𝑞−1 intermediate
equidistant grid points. Thus, 𝑞+1 grid points are used to vary paramet-
rically the RHS (𝑒 ) of 𝑓 (𝑥) ∶ 𝑒 = 𝐿𝐵 + 𝓁𝑟 ∕𝑞 for 𝓁 = 0,… , 𝑞. In the
5

2 2 2 2 2
AUGMECON methods the problem iteratively solved is the following:

max 𝑓1(𝑥) + 𝜖𝑠2∕𝑟2

s.t. 𝑓2(𝑥) − 𝑠2 = 𝑒2 (6)
𝑥 ∈ 𝑆, 𝑠2 ∈ R+

where 𝜖 is an adequately small number (usually between 10−3 and 10−6)
and 𝑠2 is the surplus variable of constraint (6).

In each iteration the surplus variable 𝑠2 is used for calculating the
bypass coefficient

𝑏 = 𝑖𝑛𝑡(𝑞𝑠2∕𝑟2).

𝑖𝑛𝑡() is the function that returns the integer part of a real number. If
𝑏 > 𝑟2∕𝑞, then in the next iteration the same solution will be obtained
with the only difference given by the surplus variable. The bypass
coefficient 𝑏 actually indicates how many consecutive iterations we can
bypass.

The AUGMECON2 method uses the lexicographic optimization for
computing the range 𝑟2. In general terms, the lexicographic optimiza-
tion of a series of objective functions consists in optimizing the first
objective function and then among the possible alternative optima
optimize the second objective function and so on.

4.2. Feature selection

Feature selection is a common problem in classification problems.
On the one hand, obtaining information on each feature involves a
cost and, on the other, it is not true that by increasing the number
of features, better results are obtained. The results may not improve
in terms of distance between the hyperplanes or in terms of mag-
nitude of misclassified vectors. Moreover, the higher the number of
characteristics, the worse the interpretability of the results will be.

In this paper we focus on the SVM model with feature selection with
a budget constraint. Thus, we add the feature selection to the model
and we check that all the results in Section 3 also apply when feature
selection is considered. Moreover, Eqs. (4) and (5) remain valid if one
computes the distances with the selected features for the SVM.

Regarding the model, it entails the addition of the following con-
straints.
∑

𝑗
𝑡𝑗 = 𝑝 (7)

|𝑤𝑗 | ≤ 𝑀𝑡𝑗 𝑗 = 1,… , 𝑛 (8)

𝑡𝑗 ∈ {0, 1} 𝑗 = 1,… , 𝑛 (9)

Inequality (7) states that the budget allows to have 𝑝 features at most.
Inequalities (8) are replaced by −𝑀𝑤𝑗 ≤ 𝑡𝑗 and 𝑡𝑗 ≤ 𝑀𝑤𝑗 for 𝑗 =
1,… , 𝑛. The new feasible region is 𝑆 = {(𝑤, 𝑏, 𝜉, 𝑡) ∶ (2), (3), (7), (8),
(9)}.

Remark 2. Propositions 1–3 remain valid when feature selection is
taken into account. In the proof of Proposition 1 it is enough to observe
that (𝑤, 𝑏, 𝜉, 𝑡) = (0, 0, 1, 𝑡) belongs to 𝑆 for any 𝑡 ∈ {0, 1}𝑛 with ∑

𝑗 𝑡𝑗 = 𝑝.
In the proof of Proposition 2 the point (𝑤, 𝑏, 𝜉) ∈ 𝑆𝑆𝑉𝑀 such that
∑

𝑖 𝜉𝑖 = 𝐵 > 𝑏𝑡 can be replaced by a point (𝑤, 𝑏, 𝜉, 𝑡) ∈ 𝑆 such that
∑

𝑖 𝜉𝑖 = 𝐵 > 𝑏𝑡 and the points (𝑤1, 𝑏1, 𝜉1) and (𝑤1, 𝑏1, 𝜉2) by (𝑤1, 𝑏1, 𝜉1, 𝑡)
and (𝑤1, 𝑏1, 𝜉2, 𝑡) respectively, all with the same binary vector with 𝑝
positive items, 𝑡. Analogously for the proof of Proposition 3.

When feature selection is taken into account, the first objective
function for the AUGMECON2 method is −𝑂1, the second is −𝑂2. Thus,
the problem iteratively solved by AUGMECON2 is the following,

min 𝑂1(𝑥) − 𝜖𝑠2∕𝑟2 (10)

s.t. 𝑂2(𝑥) + 𝑠2 = 𝑒2 (11)

𝑥 ∈ 𝑆, 𝑠2 ∈ R+ (12)
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The lexicographic upper bound 𝑈𝐵2 on 𝑂2 is defined as

𝑈𝐵2 = min{𝑂2(𝑤, 𝑏, 𝜉, 𝑡) ∶ (𝑤, 𝑏, 𝜉, 𝑡) ∈ 𝑆,𝑂1(𝑤, 𝑏, 𝜉, 𝑡) = 𝑂∗
1}

where

𝑂∗
1 = min{𝑂1(𝑤′, 𝑏′, 𝜉′, 𝑡′) ∶ (𝑤′, 𝑏′, 𝜉′, 𝑡′) ∈ 𝑆}

Clearly, 𝑈𝐵2 is an upper bound on the value of 𝑂2 for any SVM
efficient point. Further, it is easy to determine as shown in the following
proposition.

Proposition 4. Let 𝑚1 =
∑

𝑖∶𝑦𝑖=1 1 and 𝑚−1 =
∑

𝑖∶𝑦𝑖=−1 1. Then,

𝑈𝐵2 = min{𝑂2 ∶ (𝑤, 𝑏, 𝜉, 𝑡) ∈ 𝑆,𝑤 = 0} = 2min{𝑚1, 𝑚−1}

Proof. First, min{𝑂1 ∶ (𝑤, 𝑏, 𝜉, 𝑡) ∈ 𝑆} = 0. This minimum is achieved
for (𝑤, 𝑏, 𝜉, 𝑡) = (0, 0, 1, 𝑡) where 𝑡 is any binary vector with 𝑝 positive
items. Then, 𝑈𝐵2 is the optimal value of the problem (P) min{𝑂2 ∶
(𝑤, 𝑏, 𝜉, 𝑡) ∈ 𝑆,𝑤 = 0} (𝑂1 = 0 is equivalent to 𝑤 = 0). Replacing 𝑤 by
0 in (2) and (3) yields

𝑦𝑖𝑏 ≥ 1 − 𝜉𝑖 𝑖 = 1,… , 𝑚

𝜉𝑖 ≥ 0 𝑖 = 1,… , 𝑚

or equivalently

𝜉𝑖 ≥ max{0, 1 − 𝑏} if 𝑦𝑖 = 1

𝜉𝑖 ≥ max{0, 1 + 𝑏} if 𝑦𝑖 = −1.

Thus, in an optimal solution to (P), 𝜉𝑖 = max{0, 1− 𝑏} for all 𝑖 such that
𝑦𝑖 = 1 and 𝜉𝑖 = max{0, 1 + 𝑏} for all 𝑖 such that 𝑦𝑖 = −1, which implies
that

𝑈𝐵2 = 𝑚1 max{0, 1 − 𝑏} + 𝑚−1 max{0, 1 + 𝑏}.

The RHS of the last equation is a piecewise linear function of 𝑏 that
attains its minimum at 𝑏 = −1 if 𝑚1 ≤ 𝑚−1 and at 𝑏 = 1 otherwise,
yielding the desired value of 𝑈𝐵2.

Remark 3. The lexicographic lower bound on 𝑂2 is

𝐿𝐵2 = min{𝑂2 ∶ (𝑤, 𝑏, 𝜉, 𝑡) ∈ 𝑆}.

5. A metaheuristic approach for the SVM with feature selection

Multi-objective evolutionary algorithms (MOEAs) can be used to
solve difficult NP-hard optimization problems when several objectives
are considered. They become a good alternative to exact techniques
when these require an excessive computational effort to solve large or
even small instances. The Non-dominated Sorting Genetic Algorithm,
NSGA-II (Deb et al., 2002) is one of mostly used MOEAs and has been
successfully applied to find a diverse set of solutions and to converge
near the true Pareto-optimal set in very different types of optimization
problems with more than one objective. NSGA-II is an improvement of
its predecessor NSGA (Srinivas & Deb, 1995), which was one of the first
MOEAs. NSGA-II is based on the non-dominance concepts. In order to
compare solutions in a population, these are sorted in different fronts
𝐹𝑖. In 𝐹1 we have the solutions which are not dominated by any other
solution in the population. 𝐹2 is formed with the solutions which are
dominated by one or more solutions from 𝐹1 and so on. Solutions in
front 𝐹𝑖 are better than solutions in front 𝐹𝑗 if 𝑖 < 𝑗. The comparison
between solutions in the same front is carried out through a distance
function. This function represents the distance in the objective space
of a given solution to the rest of the individuals and therefore the best
solutions in the front will be those with a larger distance. This permits
to guide the process toward a uniformly spread-out Pareto-front. The
algorithm includes a procedure that, given a current population of
solutions, creates a new population by applying the genetic operators,
such as crossover and mutation. This procedure is not defined in the
6

general template of NSGA-II and needs to be carefully designed, along
with the encoding of the solutions and other procedures in order to
apply this algorithm to solve a given optimization problem. In the
next subsections, we present the algorithm based on NSGA-II that we
propose to solve the SVM with feature selection and describe the main
structures and procedures that are included in it.

5.1. Main loop

The multi-objective metaheuristic algorithm we have designed fol-
lows the general idea of NSGA-II, and the steps are shown in the
flowchart presented in Fig. 2. After creating the initial population it
is evaluated, i.e., each objective is computed for every solution in the
population. The two objectives considered are: the maximization of
distance between the hyperplanes supporting vectors of each class (𝑂′

1)
and the minimization of the sum of the missclassification errors (𝑂′

2).
These objectives correspond to columns 3 and 4 of Table 3. Then, the
fast non-dominated sorting is applied over the population. It groups
the solutions in the different fronts of dominance and calculates, for
each solution some parameters related to dominance which will be
used in the selection of parents to undergo the crossover operation.
Then, the iterative process starts and it will finish when a given
criterion is satisfied. In our case we have two different stopping criteria,
computation time and number of iterations. It is useful to have the
possibility of selecting different criteria in order to allow an appropriate
comparison with other techniques. Each iteration consists first of cre-
ating a new population, 𝑄𝑡 from the current population 𝑃𝑡 by applying
different mechanisms. Therefore, the following steps will be repeated
𝑁 times, creating one new solution in 𝑄𝑡 each time. First, we select a
couple of solutions, a mother and a father to undergo the crossover
operation. This selection of parents is carried out by the selection
mechanism through a tournament based on dominance parameters.
Then, mother and father undergo the crossover to determine a new
solution which occupies the corresponding place in 𝑄𝑡. After that,
the mutation mechanism alters, with a given probability of 𝑃 _𝑀𝑈𝑇
the information describing the solution to introduce variability in the
population or even to recover good characteristics which could be lost
during the evolution process. Once the new population has been built
and evaluated, a double sized population 𝑅𝑡 is formed with all the
solutions in 𝑃𝑡 and 𝑄𝑡. In order to reduce the size of the population
to 𝑁 we will choose the best individuals in 𝑅𝑡. Therefore, to make that
selection it is necessary to apply the non-dominated sorting to 𝑅𝑡. The
solutions in the best fronts will be copied first. If there is not free space
for all the solutions in a given front, we will select those individuals
with a larger distance to the rest. Therefore, when that happens the
i_distance_assignment procedure will be applied to the individuals in
that front to calculate this distance. The distance of a solution 𝑗, to the
rest of solutions of a front, 𝐹𝑖 is given by:

𝑑𝑗 (𝐹𝑖) =
𝑂′
1(𝑗 + 1) − 𝑂′

1(𝑗 − 1)
𝑚𝑎𝑥1(𝐹𝑖) − 𝑚𝑖𝑛1(𝐹𝑖)

+
𝑂′
2(𝑗 + 1) − 𝑂′

2(𝑗 − 1)
𝑚𝑎𝑥2(𝐹𝑖) − 𝑚𝑖𝑛2(𝐹𝑖)

here 𝑂′
1 and 𝑂′

2 represent the two objectives, 𝑂′
𝑘(𝑗) the value of

bjective 𝑘 in solution 𝑗, 𝑚𝑎𝑥1 and 𝑚𝑎𝑥2 are the maximum values of
oth objectives given by the solutions in 𝐹𝑖 and 𝑚𝑖𝑛1 and 𝑚𝑖𝑛2 are the
inimum values.

This distance is used to determine, between two solutions in the
ame front, which to choose to pass to the next generation. As it is
nteresting to obtain sets of solutions covering most of the Pareto-
ptimal frontier, the distance of one solution in a front provides the
egree of proximity to other solutions of the set around it.

When the stopping criterion is satisfied, the evolution process fin-
shes and the result of the algorithm will be the solutions belonging to
he first front, i.e. the non-dominated solutions of the final population.
his procedure is represented in pseudocode in Algorithm 1.
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In the following subsections, we will detail the main features of our
lgorithm, such as the encoding of the solutions, the way to generate
he initial population, the mechanism to select the parents to undergo
he crossover, the crossover technique and the process to carry out the
utation.

.2. Encoding

A feasible solution for the SVM with feature selection, where 𝑝 is
the number of features to select, can be built selecting 𝑝 + 1 vectors
n 𝛺, 𝑝 of them in class ‘‘−1’’ and the other in class ‘‘1’’ or viceversa.
n that way, the two parallel hyperplanes can be defined. One of
he hyperplanes supports 𝑝 vectors of a given class, and the other
7

v

yperplane is built supporting 1 vector in the other class and parallel
o the other hyperplane. Hence, the search space is formed by all the
airs of hyperplanes built in this way. Although the number of support
ectors chosen to build the hyperplanes are 1 and 𝑝, once constructed
he hyperplanes, many more vectors could support each one of the
yperplanes. Therefore, the two objectives 𝑂′

1 and 𝑂′
2 can be computed.

The first objective is to be maximized and the second to be minimized.
In that sense, the encoding proposed to represent the solutions to
the SVM with feature selection has three components: (i) mode: two
possible values. Mode = A indicates that we have 𝑝 vectors in 𝛺 in
class ‘‘−1’’ and one in class ‘‘1’’; Mode = B indicates that hyperplanes
re built with one vector in class ‘‘−1’’ and 𝑝 vectors in class ‘‘1’’. (ii)
ectors: an array with the indices of the 𝑝 + 1 vectors used to build
he two hyperplanes. The first position/s in the array will be occupied
ith the vector/s in class ‘‘−1’’ and the following position/s with the

ector/s in class ‘‘1’’. We can consider, w.l.o.g. that all the vectors in



Expert Systems With Applications 204 (2022) 117485J. Alcaraz et al.
Algorithm 1: NSGA-II-SVM-f
1 𝑃0 = create_initial_population(𝑁);
2 𝑡 = 0;
3 𝑃0 = evaluate_population(𝑃0);
4 𝐹 = fast_non_dominated_sort(𝑃0);
5 while not stopping_criterion do
6 for 𝑗 = 1 to 𝑁 do
7 (mother,

father)=tournament_dominance_selection(𝑃𝑡);
8 𝑄𝑡[𝑗]=crossover(mother, father);
9 if random() ≤ 𝑃𝑀𝑈𝑇 then
10 𝑄𝑡[𝑗]=mutation(𝑄𝑡[𝑗]);

11 𝑄𝑡 = evaluate_population(𝑄𝑡);
12 𝑅𝑡 = 𝑃𝑡 ∪𝑄𝑡;
13 𝐹 = fast_non_dominated_sort(𝑅𝑡);
14 𝑃𝑡+1 = ∅;
15 𝑖 = 1;
16 while |𝑃𝑡+1| + |𝐹𝑖| ≤ 𝑁 do
17 𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖;
18 𝑖 = 𝑖 + 1;
19 if |𝑃𝑡+1| < 𝑁 then
20 i_distance_assignment(𝐹𝑖) ;
21 sort(𝐹𝑖, i_distance);
22 𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖[1 ∶ (𝑁 − |𝑃𝑡+1|)];
23 𝑡 = 𝑡 + 1;
24 return 𝐹1

Fig. 3. Encoding for a solution with selection of 7 features.

𝛺 are numbered from 1 to 𝑚. (iii) features: an array with the indices
of the 𝑝 features selected in the solution. We can consider, w.l.o.g. that
the features are numbered from 1 to 𝑛. The encoding we propose for
the selected features consists of a non ordered list of a subset of the
complete set of features, and this type of encoding is similar to the one
proposed in Alcaraz et al. (2020) to encode a list of open facilities.
Therefore, the proposed encoding has a fixed length of 2𝑝+2 positions:
1 mode, 𝑝+1 vectors and 𝑝 features. Fig. 3 shows the encoding proposed
for a given database with a selection of 7 features. Therefore, the total
length of the chromosome is 16, the first position indicates the mode,
the following 8 indicate the vectors to build the hyperplanes and the
last 7 the features selected among the 𝑛 available. If the mode equals
A, the positions 1th to 7th in the vector array correspond to vectors in
class ‘‘−1’’ and position 8th to the only vector in class ‘‘1’’. By contrast,
if mode indicates B, the first position is occupied by a vector in class
‘‘−1’’, and positions 2th to 8th, by the seven vectors in class ‘‘1’’.

At this point, we would like to remark that although this encoding
could exclude some feasible solutions to the problem, those in which
the number of support vectors for one of the hyperplanes is lower than
the number of features, we think that this is not a drawback in practice
given that, as we discussed in Section 3, the number of support vectors
in the solutions to the problem is usually very large.

Example 3. Fig. 4 shows two different solutions for the data given
in Example 1, where 𝑚 = 6, 𝑛 = 𝑝 = 2. When 𝑛 = 𝑝 there is no
feature selection (all the features are present) therefore, all the features
will always appear in the features array. As we can observe, if 𝑝 = 2
we have three vectors in the array, two of one class and one of the
other. In the example, the first solution has mode = A, therefore the
8

Fig. 4. Encoding for two different solutions of Example 1.

first two vectors are in class ‘‘−1’’ and the third in class ‘‘1’’. On the
other hand, the second solution, with mode = B, uses the first vector in
class ‘‘−1’’ and the others in class ‘‘1’’ to build the parallel hyperplanes
and it corresponds with the solution presented in Fig. 1(a) and Tables 1
and 2.

5.3. Initial population

Each one of the solutions of the initial population, sized N, is
generated in the following way. First, the mode is generated, each
with probability 0.5. Then, the vector array is also generated in a
random way. Each vector is chosen from the eligible vectors in the
corresponding class. The selected features are also chosen in a random
way from the complete features set. Clones are allowed in the initial
population. It means that if the new generated created coincides in
both objective values with another solution previously generated, it is
included in the population. Generating the initial population randomly
has an advantage, the reduced computation times needed in contrast
to the methods that generate it using some heuristic that can generate
solutions with better objective value. These methods can generate
better solutions in terms of objective value but they need a considerably
larger amount of time. Most metaheuristic methods use the random
generation given that, if well designed, they can evolve from this
initial population of solutions, with a low quality, to a high quality
population.

5.4. Tournament selection based on dominance

This procedure selects two solutions from the current population
𝑃𝑡, a mother and a father, to produce an offspring, copied in the
new population 𝑄𝑡. To select each one of the parents, a tournament
is carried out between two solutions randomly chosen from 𝑃𝑡. Let
us consider two random candidates participating in the tournament.
The winner of the tournament is decided considering, in order, the
following criteria, where a criterion is employed if the previous one
produce a tie:

1. The winner is the solution which belongs to a lower front.
2. The winner is the solution which dominates a higher number of

solutions in 𝑃𝑡.
3. The winner is randomly chosen between both candidates.

The procedure returns two solutions, a mother as winner of the first
tournament and a father as the winner of the second. Therefore, the
selection is based on the dominance ideas. First, between two solutions
in different fronts, we prefer the solution which belongs to a lower
front. Otherwise, if both solutions belong to the same front, then we
choose the solution which dominates a higher number of solutions in
the population. In case of ties, the winner is randomly chosen among
the candidates.
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Table 4
Metaheuristic population with 8 solutions grouped in 4 different domination fronts.

Sol. Mode Vectors Features 𝑂′
1 𝑂′

2 Front #Dom. Dom. Sol.
sol.

𝑆1 B 1 3 6 1 2 4.0931 2.1086 𝐹1 4 𝑆4, 𝑆6, 𝑆7, 𝑆8
𝑆2 B 1 2 5 1 2 1.7650 0 𝐹1 3 𝑆5, 𝑆7, 𝑆8
𝑆3 A 1 2 4 1 2 8.4971 11.6276 𝐹1 1 𝑆8
𝑆4 B 1 5 6 1 2 4 4 𝐹2 3 𝑆6, 𝑆7, 𝑆8
𝑆5 B 2 3 4 1 2 1 0 𝐹2 1 𝑆8
𝑆6 B 2 3 5 1 2 2.6833 5.8138 𝐹3 1 𝑆8
𝑆7 B 1 3 5 1 2 1.3416 4.4721 𝐹3 1 𝑆8
𝑆8 A 1 2 6 1 2 0.8944 25.9384 𝐹4 0 –

Example 4. Let us suppose that the population of the metaheuristic
is formed, during the genetic process, with the 8 solutions presented
Table 4 when the dataset presented in Fig. 1 is being processed. The
second, third and fourth columns present the information that the
encoding includes, the mode, the vectors supported by the hyperplanes
and the features selected. Some of these solutions have been used pre-
viously in different figures. 𝑆1 matches Figs. 1(a) and 4(b), 𝑆3 matches
ig. 4(a) and 𝑆5 and 𝑆6 correspond to Fig. 1(b) and (c) respectively.
olumns 5 and 6 show the values for the two objectives considered

n the metaheuristic, 𝑂′
1 and 𝑂′

2. The next three columns represent
the front that each solution belongs to, the number of solutions each
solution dominates and the list of these dominated solutions. As we
can observe, the population is partitioned into 4 different fronts. The
first front, 𝐹1, has three different solutions, 𝑆1, 𝑆2 and 𝑆3 and these are
the solutions which are not dominated by any other. The second front,
𝐹2, is made up of the solutions which are dominated by one or more
solutions in front 𝐹1 but are not dominated by any solution in fronts
𝐹2, 𝐹3 or 𝐹4. Specifically, 𝑆4 is dominated by 𝑆1 and 𝑆5 is dominated
by 𝑆2. 𝐹3 is made up of two solutions, 𝑆6 (dominated by 𝑆1 and 𝑆4)
nd 𝑆7 (dominated by 𝑆1, 𝑆2 and 𝑆4). The last front, 𝐹4 has only one
olution, which is dominated by all the solutions in the population.

If the tournament selection based on dominance is employed to
elect the best between solutions 𝑆3 and 𝑆4, then 𝑆3 would be selected
ince it belongs to a lower front. If solutions 𝑆4 and 𝑆5, that belong
o the same front, are compared, the winner would be 𝑆4 because it
ominates a higher number of solutions. If we compare 𝑆6 and 𝑆7,
s they belong to the same front and dominate the same number of
olutions, the winner would be selected randomly.

.5. Crossover

We have designed a specific crossover operator which incorporates
nowledge of the problem in order to guide the process to the search
f quality solutions. In the crossover process, we first select the best
f the parents to undergo the operation, best_parent, considering the
riteria established in Section 5.4 to determine the winner of the
ournaments. Then, the mode of the offspring is inherited from the
est_parent. Inheriting the mode means also to inherit the structure of
he vector array. Then, two different procedures need to be carried
ut, in this order: (i) the crossover of the features arrays, and (ii) the
rossover of the vector arrays. In the following subsections we describe
hem.

.5.1. Crossover of features
The first step consists in selecting all the features which are common

n both parents. Those features are directly inherited by the offspring.
f the number of inherited features is lower than 𝑝 the rest of features is
hosen, one by one, in the following iterative way. First, we select the
arent from where to choose the next feature to inherit. The best_parent
as a probability of 𝑃𝐶𝑅𝑂𝑆𝑆_𝐵𝐸𝑆𝑇 of being chosen and the other a
robability of 1−𝑃𝐶𝑅𝑂𝑆𝑆_𝐵𝐸𝑆𝑇 . Once the parent selected, a random
9

eature, among the features which have not been inherited yet from
ts features array, is selected and inherited by the offspring. As higher
he 𝑃𝐶𝑅𝑂𝑆𝑆_𝐵𝐸𝑆𝑇 is, more important the role of the best_parent is
n the crossover of features. If 𝑃𝐶𝑅𝑂𝑆𝑆_𝐵𝐸𝑆𝑇 = 0.5 means that the
rocess chooses the parent where to inherit the features from, in a
andom way, without assigning a prevailing role to the parent with a
etter performance in terms of dominance ideas. Once the crossover
f features has finished, the parent from which more features have
een inherited is called the preferred_parent and this will be used in
he crossover of vectors.

.5.2. Crossover of vectors
As the preferred_parent has had a predominant role in the crossover

f features, the idea is to maintain this role in the crossover of vectors.
s the mode has been inherited from the best_parent, the structure of the
ector array also coincides. Let us remind that if the inherited mode is
, the first 𝑝 positions in the vector array are occupied by vectors in
lass ‘‘−1’’ and the last position with a vector in class ‘‘1’’. Else, if the
ffspring mode is B, the first position is occupied by a vector in class

‘−1’’ and the rest by vectors in class ‘‘1’’. Therefore, if the offspring
ode is A, the first 𝑝 positions of the vector array are copied from the
referred_parent. The last position in the array, the vector in class ‘‘1’’
s randomly chosen from the list of vectors in class ‘‘1’’ in the other
arent (the size of this list can be 1 or 𝑝 depending on the mode of
he of this parent). By contrast, if the offspring inherits 𝑚𝑜𝑑𝑒 = 𝐵,
t inherits the vectors in class ‘‘1’’ from the preferred_parent (positions

to 𝑝 + 1) and the vector in class ‘‘−1’’ (position 1 of the array)
rom the list of vectors in class ‘‘−1’’ of the other parent, list which
ould have 1 or 𝑝 vectors (depending on its mode). This procedure is
resented, in pseudocode, in Algorithm 2. The procedure, receives three
rguments, the positions in population 𝑄𝑡 of the two parents to undergo
he crossover: the preferred_parent (p1) and the other parent (p2). The
ast argument is related to the offspring or child generated, c, and is the
osition in population 𝑄𝑡 where the array of vectors of the offspring
ust be generated, 𝑄𝑡[c].vectors.

Algorithm 2: Procedure vectors_crossover(p1, p2, c)
1 if 𝑄𝑡[𝑐].𝑚𝑜𝑑𝑒 == 𝐴 then /* Preferred parent and child

have mode=A */
2 for 𝑘 = 1 to 𝑝 do
3 𝑄𝑡[𝑐].𝑣𝑒𝑐𝑡𝑜𝑟𝑠[𝑘] = 𝑃𝑡[𝑝𝑝].𝑣𝑒𝑐𝑡𝑜𝑟𝑠[𝑘];
4 if 𝑄𝑡[𝑝2].𝑚𝑜𝑑𝑒 == 𝐴 then /* Parents and child have

mode=A */
5 𝑄𝑡[𝑐].𝑣𝑒𝑐𝑡𝑜𝑟𝑠[𝑝 + 1] = 𝑃𝑡[𝑝2].𝑣𝑒𝑐𝑡𝑜𝑟𝑠[𝑝 + 1];
6 else /* Parents have a different mode */
7 𝑄𝑡[𝑐].𝑣𝑒𝑐𝑡𝑜𝑟𝑠[𝑝 + 1] =

𝑠𝑒𝑙𝑒𝑐𝑡_1_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑃𝑡[𝑝2].𝑣𝑒𝑐𝑡𝑜𝑟𝑠, 2, 𝑝 + 1);

8 else /* Preferred parent and child have mode=B */
9 for 𝑘 = 2 to 𝑝 + 1 do
10 𝑄𝑡[𝑐].𝑣𝑒𝑐𝑡𝑜𝑟𝑠[𝑘] = 𝑃𝑡[𝑝1].𝑣𝑒𝑐𝑡𝑜𝑟𝑠[𝑘];
11 if 𝑄𝑡[𝑝2].𝑚𝑜𝑑𝑒 == 𝐵 then /* Both parents have

mode=B */
12 𝑄𝑡[𝑐].𝑣𝑒𝑐𝑡𝑜𝑟𝑠[1] = 𝑃𝑡[𝑝2].𝑣𝑒𝑐𝑡𝑜𝑟𝑠[1];
13 else /* Parents have a different mode */
14 𝑄𝑡[𝑐].𝑣𝑒𝑐𝑡𝑜𝑟𝑠[1] = 𝑠𝑒𝑙𝑒𝑐𝑡_1_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑃𝑡[𝑝2].𝑣𝑒𝑐𝑡𝑜𝑟𝑠, 1, 𝑝);

5.6. Mutation

The mutation is a very important mechanism in the evolution of
the species and this importance is also present in the multi-objective
genetic algorithms. A mutation mechanism not well-designed may force
the algorithm to present a premature converge or even to not converge.
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Table 5
Large datasets: characteristics.

Instance #types #vectors #features

Colon 2 62 2000
Leukemia 2 72 5327
DBLCL 2 77 7129
Carcinoma 2 36 7457
Arrythmia 2 420 258
Mfeat 2 2000 649

As we mentioned before, every solution will undergo the mutation
mechanism with a given probability 𝑃𝑀𝑈𝑇 . The mutation mecha-
nism we propose implies, as in the crossover technique, two different
processes, the mutation of features and the mutation of vectors. Both
mechanisms follow the same template: they move through the corre-
sponding array, features or vectors, and each item is exchanged with
another, chosen in a random way among the items not present in the so-
lution, with a given probability, which may be different in each process.
Therefore, each vector in the vector array is exchanged with a different
vector of the same class with a probability of PMUT_VECTORS. In the
same way, each feature in the solution is interchanged with a different
feature, chosen randomly, with a given probability of PMUT_FEAT.
These parameters need to be set in order to run the algorithm to solve
a given instance of the problem.

6. Computational experience

In order to compare the performance of both methods, the exact
approach (AUGMECON2) when solving the SVM linear programming
model and the metaheuristic algorithm (NSGA-II-SVM-f) we have car-
ried out a computational experience, which has been developed on a
PC with 2.33 GHz Intel Xeon dual core processor, 8.5 GB of RAM, and
operating system LINUX Debian 4.0. The exact method has been solved
by CPLEX v11.0 and the evolutionary algorithm in C++.

We have selected different datasets with a big number of features
previously employed in different works (see, for example, Labbé et al.,
2019). The main characteristics of the instances are given in Table 5.
The two last datasets, Arrythmia and Mfeat can be found in the UCI
repository (Asuncion & Newman, 2007) and a description of the re-
maining sets can be found in several works (e.g., Alon et al., 1999;
Carrizosa et al., 2010; Golub et al., 1999; Maldonado et al., 2014;
Notterman et al., 2001; Shipp et al., 2002). Later, these datasets are
considered as instances with a big number of features and, as regard
the sample size, the first four are classified as small and the two last as
big (Labbé et al., 2019).

The aim of this computational experience is to run both methods
solving each instance in order to get the Pareto-optimal front or,
at least, the best approximation. Comparing the frontiers given by
the methods would lead us to a consistent comparison of their effi-
ciency when solving the Support Vector Machine Problem with Feature
Selection.

To compare frontiers given by different multi-objective optimiza-
tion methods is a complex task, given that we can establish different
quality measures. Following Zitler et al. (2000), in general, a good
approximation of the Pareto-optimal front should consider three dif-
ferent aspects: The distance between the approximation frontier and
the Pareto-optimal front in the objective space should be minimized;
A good distribution of the solutions in the approximation front in the
solution space is desirable; A wide range of values, for both objectives,
should be covered by the solutions in the approximation frontier. How-
ever, sometimes, when comparing different approximation methods,
the Pareto-optimal front is not known and some of these measures
cannot be calculated. There are several performance indicators to de-
termine the quality of an approximated front and they can be classified
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in three different categories (Audet et al., 2021), :
• Cardinality: Quantify the number of non-dominated points gener-
ated by an algorithm.

• Convergence: Quantify how close an approximation frontier is
from the Pareto-optimal front in the objective space.

• Distribution: Quantify how well every region of the objective
space is represented, the distance between the points in the
frontier (spread) and the distance between the extreme points of
the front (extent).

There are also some indicators which combine convergence and
distribution characteristics. All the datasets have been solved by both
methods setting the number of selected features 𝑝 = 5. The experience
has not been repeated for other values of 𝑝 because the objective is not
to see how the objective value varies when 𝑝 varies but to analyze the
properties of the boundary in terms of certain metrics. The time limit
imposed to the exact method to solve each instance has been fixed in
7 h. First, two hours are employed in a pre-processing procedure in or-
der to get the bounds 𝐿𝐵2 and 𝑈𝐵2 (𝑈𝐵2 goes straightforward but 𝐿𝐵2
not). Then, the range is divided into five intervals and AUGMECON2 is
run for one hour to find a point in the frontier in that interval. When
the time limit of one hour is reached, the best feasible solution found
so far is retrieved if there is any. Therefore, AUGMECON2 provides
a frontier of a maximum of 5 points, and some of these points could
be dominated by some others (when the solver is stopped because of
the time limit the solution might not be in the Pareto frontier). On
the other hand, the time limit imposed to the metaheuristic is of one
hour per instance. Within this time limit, the metaheuristic obtains
an approximation of the Pareto-optimal front, with a maximum of
𝑁 solutions, being 𝑁 the population size, which is a parameter to
be established before running the algorithm. The metaheuristic gives,
as a result, all the non-dominated solutions which are present in the
final population, which form the frontier required. Therefore, this
frontier will be built with a maximum of 𝑁 individuals. Given that
he metaheuristic is a randomized technique and running it different
imes may lead to different results, we have run the metaheuristic three
eparate times per instance and we have calculated the average in all
he metrics computed. In order to establish a fixed configuration for the
etaheuristic to run all the datasets we have carried out several prelim-

nary experiments. Based on that we have decided to use the following
onfiguration in all the instances: 𝑁 = 500; 𝑃𝐶𝑅𝑂𝑆𝑆_𝐵𝐸𝑆𝑇 = 0.8;
𝑃𝑀𝑈𝑇 = 0.7; 𝑃𝑀𝑈𝑇 _𝐹𝐸𝐴𝑇 = 𝑃𝑀𝑈𝑇 _𝑉 𝐸𝐶𝑇𝑂𝑅𝑆 = 0.4. However,
these preliminary studies indicated that slightly varying the above
parameters, except the population size, does not have a great influence
in the final results.

Given that we are employing the exact method (AUGMECON2) with
a time limit, the outcome, i.e. the frontier given by this method be-
comes an approximation frontier. Therefore, we do not have a Pareto-
optimal front to compare with and both methods give approximation
frontiers that we want to compare.

We have calculated four different indicators in order to compare
both approximation frontiers: two cardinality indicators and two distri-
bution indicators. As regard the last, one is to compare the extent and
the other to compare the spread. All these measures do not depend on
external parameters and therefore the comparison is much more robust.
The first indicator is the so-called Overall non-dominated Vector Gener-
ation (OVNG), proposed by Veldhuizen and David (1999) that returns
the number of non-dominated points in the approximation frontier. The
second indicator is the C-metric proposed by Zitler and Thiele (1998)
and used later in several studies (e.g., Zitler et al., 2000) and gives, for
two frontiers, 𝐹1, 𝐹2 the fraction of solutions in 𝐹2 that are dominated
by one or more solutions in 𝐹1, 𝐶(𝐹1, 𝐹2). In order to compare the
maximum extent in which the front spreads out we calculate the Zitler’s
metric 𝑀3 (Zitler et al., 2000) which, in the case of two objectives,
this equals the distance of the two outer solutions, and consequently,
a higher distance is desired. The last considered indicator to compare

both approximation frontiers is the one proposed by Custòdio et al.
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Table 6
AUGMECON2 vs. NSGA-II. Comparison of frontiers for large instances.
Instance AUGMECON2 (7 h) NSGA-II-SVM-f (1 h)

OVNG C 𝑀3 𝛤 OVNG C 𝑀3 𝛤

Colon 3 66.70% 58.12 45.32 500.00 3.00% 91.25 1.54
Leukemia 5 60.00% 253.36 163.55 299.33 2.25% 109.70 5.80
DBLCL 5 33.33% 60.11 35.31 306.33 11.72% 79.01 1.11
Carcinoma 4 41.67% 152.18 108.22 94.67 0.00% 46.08 4.62
Arrythmia 5 40.00% 494.31 777.78 500.00 2.27% 597.40 9.85
Mfeat 5 26.67% 653.05 336.23 500.00 9.13% 1283.83 201.01

Average 4.50 44.72% 366.72 4.73%
(2011), 𝛤 , that, when considering a bi-objective problem, reduces to
consider the maximum distance between two consecutive points in the
Pareto front approximation, therefore, a lower value of 𝛤 is desirable.

In Table 6 we show the metrics calculated for both methods when
olving the datasets presented in Table 5. The time limit for AUGME-
ON2 is 7 h and for the metaheuristic of 1 h. For each method, 𝑂𝑉𝑁𝐺

ndicates the number of non-dominated points in the approximation
rontier obtained as outcome, 𝐶, the percentage of solutions in the
rontier given by the corresponding method which are dominated by
oints of the frontier generated by the other method, 𝑀3 measures the

extent of the frontier and 𝛤 the size of holes in the front.
If we look first to the cardinality indicators we can deduce that

he metaheuristic obtains in 1 h of computation time better frontiers
than the exact approximation in 7 h. OVNG indicates that AUGMECON2
gives frontiers with 4 non-dominated points, on average, compared to
the 366 non-dominated solutions, on average, of the metaheuristic fron-
tiers. The number of points varies between 3 and 5 with AUGMECON2
and between around 34 and 500 in the case of NSGA-II. However, it
is interesting to study how many points in a frontier are dominated by
points on the other frontier. The C-metric indicates that, in most of the
instances solved there are points in the approximation frontier given by
one method that are dominated by points in the other frontier. In the
case of AUGMECON2, the 44.72%, on average, of the frontiers given
by the method are dominated by points in the NSGA-II frontier. On
the other hand, only a 4.73% of the NSGA-II frontier, on average, are
dominated by points of the approximation given by the exact method.
In the Carcinoma dataset, for instance, none of the points in the frontier
found by the metaheuristic is dominated by points of the AUGMECON
frontier. Therefore, the two cardinality metrics are much better, by far,
for the metaheuristic frontiers.

Let us analyze now the distribution indicators, that in this case,
measure the extent and the distance between consecutive points in the
frontiers. As 𝑀3 calculates the extent of the frontier, a higher value
indicates a better performance. AUGMECON2 gives frontiers with a
better extent in only two (Leukemia and Carcinoma) of the six datasets,
showing a better performance of the metaheuristic in the other four.
The last indicator, 𝛤 , which evaluates the maximum distance between
wo adjacent points in a frontier shows that the frontiers given by the
etaheuristic approach are better in all the datasets solved. High values

f this indicator for a method show that the generated frontiers present
ig holes and this is not a desirable fact. In all the datasets of our study,
he 𝛤 values are much higher for AUGMECON2 that for the NSGA-II
pproach, and in most cases is more than 30 times higher, indicating

that in the metaheuristic approximations the points are much closer
and therefore the frontier shows a better spread. As the four indicators
show different aspects of the frontiers and one frontier could be better
than the other in one indicator but worse in another and in order to
determine the best approximation for each dataset, we have determined
the number of indicators, for each dataset, in which one approach is
better than the other. The conclusion is that the frontiers given by
the metaheuristic are better than those given by the exact approach
in all the datasets: NSGA-II gives better results in all the indicators
in 4 datasets (Colon, DBLCL, Arrythmia and Mfeat) and in 3 of the 4
11

indicators for the rest of the datasets (Leukemia and Carcinoma).
As an example, we graphically present the comparison of frontiers
for the Colon dataset in Fig. 5. The graph shows the results for one of
the three runs of the metaheuristic. It is interesting to point out that the
computation time employed by AUGMECON2 to generate the frontier is
of seven hours and the employed by the metaheuristic of only one hour.
We can clearly observe that the frontier obtained by AUGMECON2 is
formed with only three non-dominated points (OVNG) compared to
the 500 points given by NSGA-II. Moreover, two of these three points
(𝐶 = 66.7%) are dominated by points in the metaheuristic frontier.
By contrast, only a few points in the NSGA-II frontier are dominated
by those in the AUGMECON2 frontier. Concerning the extent, the
range of values covered by the metaheuristic frontier is larger than the
one corresponding to the AUGMECON2 frontier and this one presents
larger holes, i.e. the maximal distance between adjacent points is much
higher.

The previous computational experiments show that the metaheuris-
tic is a good alternative to the exact method in those datasets in
which the last cannot obtain the Pareto-optimal front due to the com-
putational effort required. However, we also want to show that the
evolutionary algorithm performs well in different datasets in which
the exact approach can obtain the optimal front. We have also solved
4 different datasets, which have been also obtained from the UCI
repository (Asuncion & Newman, 2007). The characteristics of these
datasets are presented in Table 7. All the datasets have been solved
by both methods with a selection of 5 features. AUGMECON2 has been
running for one hour, and the non-dominated points which are obtained
represent our Pareto-Optimal front. We have run the metaheuristic
approach three separate times, imposing a time limit of one seventh
of an hour and then we have calculated the average for all the metrics
considered. In the previous experiments the metaheuristic also used one
seventh of the time employed by the exact approach. We have also
computed the measures used in the previous experiments and we have
added two metrics, which combine convergence and distribution ideas,
given that now, we have the optimal front to compare with. The first
new metric, named modified inverted generational distance, 𝐼𝐺𝐷+,
was proposed by Ishibuchi et al. (2015) and overcomes the drawbacks
presented by 𝐺𝐷 (Veldhuizen & David, 1999) and 𝐼𝐺𝐷 (Coello &
Cortés, 2005). Following Audet et al. (2021) this measure takes into
account the dominance relation between the points of the frontiers to
be compared when computing the Euclidean distance and it is weakly
Pareto compliant. As it represents a distance between the frontiers, a
lower value is considered to be better. The second metric that permits
to evaluate the quality of the approximation frontier compared with the
Pareto-optimal front is the hyper volume ratio 𝐻𝑉 𝑅 or S-metric, which
was proposed by Zitzler (1999). The hyper volume indicator, 𝐻𝑉
determines the volume of the space in the objective space dominated
by the front generated by a given method. Therefore, the 𝐻𝑉 𝑅 metric
computes the proportion of the space dominated by the Pareto-optimal
front which is dominated by the approximation method.

The results are shown in Table 8. First of all, if e look at the
OVNG metric, we can observe that the metaheuristic always gives a
frontier with 500 solutions in contrast to the exact method, which gives
the exact frontier with a variable number of points and it is always
much less. Logically, none of the points in the AUGMECON2 frontier is
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Fig. 5. Graphic comparison of the approximations given by AUGMECON2 (7 h) and NSGA-II (1 h) for the Colon dataset.
Table 7
Small datasets: characteristics.

Instance #types #vectors #features

Housing 2 506 13
GC 2 1000 24
WBC 2 569 30
Iono 2 351 33

dominated by points of the approximation frontier and therefore, the C
metric equals 0 in all the datasets. The percentage of approximation
frontier dominated by the corresponding exact frontier varies from
2.87% in the GC dataset to more than 50% for the WBC instance.
It means that some of the points of the approximation frontier are
not dominated by points in the exact frontier. As regard the extent
given my the 𝑀3 metric, it is always higher in the frontiers given
by the metaheuristic, except for the last dataset, Iono, in which they
are rather similar. The 𝛤 metric indicates a better performance for
AUGMECON2 in 3 of the 4 the datasets, that is, the larger hole between
adjacent points, is nearly always present in the approximation frontier,
but in most cases, the differences are not very large. Looking at the
new metrics 𝐼𝐺𝐷+ does not permit us to compare results, given that
it measures the distance from exact and metaheuristic frontiers and
we have only one metaheuristic method in our analysis. However,
we can observe that the distance is rather low in all the instances,
which indicates that the approximation frontier is quite near of the
Pareto-optimal front. These values permit other researchers to compare
new methods with our proposal in future research. Finally, the 𝐻𝑉 𝑅
metric indicates that the portion of Pareto-optimal front covered by the
approximation frontier is always higher than 50% and in two of the four
datasets, more than 85%. On the other hand, the number of support
vectors is different for each Pareto front solution and it is usually large.
The smallest dataset in terms of # vectors is the Iono instance, having
225 vectors in the positive class and 126 in the negative class. For this
small instance, the number of positive class support vectors is in the
interval [99, 178] and the number of negative class support vectors is in
the interval [0, 99].

From these results we can conclude that, although the metaheuristic
has been designed with the aim of being used to solve large instances
in which the exact method cannot obtain the Pareto-optimal front, it
has also demonstrated a good performance in small instances, here the
exact method is capable of generating the optimal front.
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Fig. 6 shows, as example, the frontiers given by both methods,
AUGMECON2 with 1 h of computation time and NSGA-II with 1/7 h
(in one of the three runs) when solving the WBC dataset. Now, none
of the points given by the exact method is dominated by a point of
the heuristic frontier. However, we can observe that the metaheuristic
frontier presents larger holes (𝛤 = 50.46) than the exact frontier (𝛤 =
10.89). Moreover, both frontiers are rather near (𝐼𝐺𝐷+ = 0.1026) and
most of the region covered by the exact frontier is also covered by
the metaheuristic frontier (𝐻𝑉 𝑅 = 91.97%). Let us recall that we are
comparing the frontier given by the exact method in 3600 s. in contrast
to the 514 s. employed by the metaheuristic.

7. Conclusions

In this paper, we deal with the classical soft margin Support Vector
Machine problem with feature selection, where two objectives are
considered, from a multi-objective perspective. The solution to multi-
objective problems is a set of non-dominated solutions instead of
a unique solution. From a mathematical point of view, getting the
Pareto-optimal frontier in some real problems, or at least a good
approximation, is a challenging task and represents the objective of this
paper. However, it is not only interesting from a theoretical perspective.
In practice, this frontier provides the decision maker with a rich set
of alternative solutions from which a better decision can certainly be
made. The exact methods require an excessive computational effort to
compute each one of the points in the frontier, even in small instances.
We have demonstrated how exact methods fail in the task of getting
the Pareto-optimal front or even an approximation when the size of
the instances increases. We propose a metaheuristic technique to solve
the problem and obtain a good description of the Pareto frontier. To
demonstrate the efficiency of the proposed method, we have carried out
a computational experiment solving some well-known instances with
an exact method and our algorithm. The quality of a frontier cannot
be measured in terms of only one metric but rather a set of them.
The results show that the metaheuristic obtains good descriptions of
the frontiers in small instances, where the exact method is capable of
finding a frontier although with a considerable computation time. In
large instances, in which the exact method obtains only some few points
of the frontier (which are sometimes dominated), the proposed algo-
rithm returns frontiers of quality in terms of cardinality, distribution
and convergence.
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Table 8
AUGMECON2 vs. NSGA-II. Comparison of frontiers for small instances.
Instance AUGMECON2 (1 h) NSGA-II-SVM-f (1/7 h)

time (s) OVNG C 𝑀3 𝛤 Time (s) OVNG C 𝑀3 𝛤 𝐼𝐺𝐷+ 𝐻𝑉 𝑅

Housing 3600 30 0.00% 496.09 22.17 514 500.00 9.73% 573.36 19.08 0.1642 58.75%
GC 3600 13 0.00% 135.88 13.74 514 500.00 2.87% 1285.35 207.85 0.0095 97.75%
WBC 3600 74 0.00% 480.21 10.88 514 500.00 51.27% 553.04 41.90 0.0882 86.70%
Iono 3600 93 0.00% 378.69 6.43 514 500.00 39.67% 358.27 10.03 0.3106 52.97%
Fig. 6. Graphic comparison of the frontiers given by AUGMECON2 (1 h) and NSGA-II (1/7 h) for the WBC dataset.
Having the Pareto-optimal front or a good approximation, with a
considerable number of points is important in practice since it provides
a wide variety of classifiers. Later, the selection of one or another
could be done through ROC analysis, for example, being this one of the
future lines of research of this paper. It would be interesting to know
whether the points furthest to the right of the Pareto-optimal front are
the best in terms of metrics such as AUC or F-score, or if the best
in terms of these metrics are uniformly distributed along the frontier.
Another interesting future line could consist of analyzing the relation
of the objectives considered in this paper with the classification quality
metrics commonly used to analyze the classification performance.
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