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ABSTRACT

The generalized Ridge penalty is a powerful tool for dealing with overfitting and for high-dimensional
regressions. The generalized Ridge regression can be derived as the mean of a posterior distribution
with a Normal prior and a given covariance matrix. The covariance matrix controls the structure
of the coefficients, which depends on the particular application. For example, it is appropriate to
assume that the coefficients have a spatial structure in spatial applications. This study proposes an
expectation-maximization algorithm for estimating generalized Ridge parameters whose covariance
structure depends on specific parameters. We focus on three cases: diagonal (when the covariance
matrix is diagonal with constant elements), Matérn, and conditional autoregressive covariances. A
simulation study is conducted to evaluate the performance of the proposed method, and then the
method is applied to predict ocean wave heights using wind conditions.

1 Introduction

Consider an experiment where we have the data {y,X}, of n observations of a continuous variable Y and n× d matrix
of covariates X. Suppose that Y is related to X via a linear model

Y = Xβ + ε, (1)

where β are model coefficients and ε ∼ N (0, σ2) is the model error. We suppose that the intercept is either included
in β (so that the first column of X is a vector of 1) or that Y and X are centered. The least squares estimates are the
best linear unbiased estimates of the parameters β. However, in the case of multicollinearity or high-dimensionality,
penalized linear regression methods, like Ridge regression, are needed to control the variance. Ridge estimator of the
problem (1) is

β̂Ridgeλ = arg min
β
−`(β, σ2) + λ‖β‖2 (2)

where λ is the regularization parameter and `(β, σ2) is the log-likelihood of the model (1). High values of λ permit to
reduce the variance and increase the bias of the model. A good model should have a trade-off between variance and
bias (Hastie, Tibshirani, Friedman and Friedman, 2009). In order to find a trade-off between bias and variance, the
hyperparameter λ needs to be selected.

Boonstra, Mukherjee and Taylor (2015) classified methods for selecting λ into goodness-of-fit-based and likelihood-
based methods. Goodness-of-fit-based methods define a goodness of fit criterion (such as the mean squared error)
and minimize it in terms of λ. The most common goodness-of-fit-based method is the k-fold cross-validation which
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consists of partitioning observations into k groups and estimating β k times for each λ leaving out one group. For each
λ, a goodness of fit score is calculated, and λ with the maximum score value is chosen. The typical choice of k is 5
and 10, while setting k = n leads to leave-one-out cross-validation (LOOCV). LOOCV leads to a better estimation
of λ; however, it is computationally expensive given that it requires fitting the model n times (Patil, Wei, Rinaldo
and Tibshirani, 2021). Generalized cross-validation (GCV) (Golub, Heath and Wahba, 1979) is an approximation of
LOOCV that does not require fitting n models. GCV uses a weighted version of the predicted residual error sum of
squares (PRESS) statistic (Allen, 1974) as a goodness of fit criterion. One of the problems with goodness-of-fit-based
methods is the selection of the grid of λ, which influences the estimation.

Assuming that Y |β ∼ N (Xβ, σ2In), Ridge regression can be derived as the mean of a posterior distribution with the
prior β ∼ N (0d, σ

2λ−1Id) (van Wieringen, 2015) and as in Bayesian hierarchical linear regression, likelihood-based
methods maximize the likelihood with respect to σ2 and λ using for instance an iterative method (Lee and Nelder,
1996). Unlike goodness-of-fit-based methods, the advantage of likelihood-based approaches is, on the one hand, that
they do not require grid selection for the regularization parameters. On the other hand, likelihood-based methods can be
generalized to consider any form of prior for the coefficients β. In some applications, the regression coefficients can be
penalized differently, or a joint penalization of the coefficients is required. For example, in spatial statistics, where
predictors have a spatial structure, it is reasonable to suppose that coefficients have a spatial structure. To do that, the
generalized Ridge (van Wieringen, 2015) can be used. Generalized Ridge extends the equation (2) by replacing the
term λ‖β‖2 to βT∆β, where ∆ is called the penalty matrix. In general, ∆ depends on some regularization parameters
(see, e.g., Goeman (2008) and Hemmerle (1975)); however, when the number of the regularization parameters is greater
than 1, goodness-of-fit-based methods struggle with the problem of combinatorial explosion. Generalized Ridge in the
hierarchical linear model framework, is equivalent to suppose that β ∼ N (0d,Σθ) where Σθ is a covariance matrix that
depends on some parameters θ. Note that Σθ corresponds to the inverse of the penalty matrix ∆. The classical Ridge is
a special case of this model when the covariance matrix Σθ is diagonal, and θ is the usual regularization parameter λ.

Considering β as a hidden variable, Bishop and Nasrabadi (2006) proposed an expectation-maximization (EM) algorithm
to find the maximum likelihood estimation (MLE) of parameters of a Bayesian linear regression model. The EM
algorithm (Dempster, Laird and Rubin, 1977) is a method for estimating the parameters of a model with hidden
variables. The EM algorithm alternates between two steps: the expectation and maximization steps. The E-step
calculates the conditional expectation of the log-likelihood given the observations and current parameters. In the M-step,
the parameters are estimated by maximizing the conditional expectation of the log-likelihood calculated in the E-step.
In this study, we extend the algorithm in Bishop and Nasrabadi (2006) and propose an EM algorithm to estimate the
parameters of hierarchical linear regression when β ∼ N (0,Σθ). At first, we study the case where Σθ is diagonal with
constant elements, which corresponds to the classical Ridge in equation (2) and the problem studied by (Bishop and
Nasrabadi, 2006). Then, we consider the case where the coefficients β have a spatial structure, especially when Σθ is
the Matérn or the conditional autoregressive (CAR) covariance. A simulation study is done to assess the performance
of the method. Then, the proposed method is applied to oceanographic data where the response variable represents a
wave parameter in a location in the Bay of Biscay, and X represents wind conditions over the North Atlantic (Obakrim,
Ailliot, Monbet and Raillard, 2022).

This paper is organized as follows. The proposed method and its special cases are presented in Section 2. Then, a
simulation study is conducted in Section 3 to assess the performance of the proposed method. In section 4, we apply the
methodology to oceanography data. Finally, this study is concluded in Section 5.

2 Proposed method

As stated in the introduction, Ridge regression can be viewed as a hierarchical linear model where β ∼ N (0d, σ
2λ−1Id).

When there is a structure on the coefficients, it is unreasonable to consider all possible covariance functions as possible
candidates for β. Therefore, we suppose that the covariance of β depends on some parameters θ, so that β ∼ N (0d,Σθ).
This motivates using the EM algorithm to find the maximum likelihood estimation of the parameters, where the model
parameters are then Θ = (σ2, θ). The proposed method is described in this section, and three special cases of the
covariance Σθ (the diagonal, Matérn, and CAR) are studied.

2.1 EM algorithm for generalized Ridge

Consider the linear model (1) and assume that β is a latent variable that follows a normal distribution. We define the
regression model hierarchically as

β ∼ N (0d,Σθ)

Y | β,Θ ∼ N (Xβ, σ2In)
(3)
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where Θ = (σ2, θ). Note that for simplicity, we assume that the mean of β is zero. The EM algorithm for the case
where β has a non-zero mean will be presented in the Appendix.

Given a sample y = (y1, ..., yn), the complete log-likelihood is expressed as

ln p(y, β; Θ) = ln p(y | β;σ2) + ln p(β; θ)

= −1

2

(
d ln(2π) + ln(|Σθ|) + βTΣ−1

θ β + n ln(2π) + n ln(σ2) +
1

σ2
‖y −Xβ‖2

)
(4)

Maximum likelihood estimation consists of maximizing (4) with respect to the parameters Θ. This is usually done
with the Expectation-Maximization algorithm in the latent variable context. The EM algorithm alternates between the
E-step and M-step. In the E-step, the expectation Q(Θ|Θ(t)) of the complete likelihood with respect to the posterior
distribution of the latent variable β and the parameters Θ(t) from the previous iteration t is calculated. In the M-step,
the quantity Q(Θ|Θ(t)) is maximized with respect to the parameters Θ.

The E-step and M-step are defined as follows

• E-step:

Q(Θ|Θ(t)) = E(ln p(y, β; Θ) | y,Θ(t)). (5)

The posterior distribution of the latent variable β is a normal distribution with mean µβ|y and covariance matrix Σβ|y
such that {

Σβ|y = (Σ−1
θ + 1

σ2X
TX)−1

µβ|y = (XTX + σ2Σ−1
θ )−1XT y.

(6)

Note that µβ|y defined in (6) is a generalized Ridge estimator (see e.g. van Wieringen (2015)) solution of the optimization
problem

µβ|y = arg min
β

‖y −Xβ‖2

σ2
+ βTΣ−1

θ β (7)

Therefore,

Q(Θ|Θ(t)) = −1

2

(
ln(|Σθ|) + Tr(Σ−1

θ E(ββT | y,Θ(t))) + ln(σ2) +
1

σ2
E(‖y −Xβ‖2 | y,Θ(t))

)
+ C (8)

where C is a constant and{
E(ββT |y; Θ(t)) = Σβ|y + µβ|yµ

T
β|y

E(‖y −Xβ‖2|y; Θ(t)) = ‖y‖2 − 2yTXµβ|y + Tr(XTXE(ββT |y; Θ(t)))
(9)

• M-step:

The maximization step computes

Θ(t+1) = arg max
Θ

Q(Θ|Θ(t)) (10)

which leads to the following updates of the parameters σ2 and θ

σ2,(t+1) =
1

n
(‖y‖2 − 2yTXµβ|y + Tr(XTXE(ββT |y; Θ(t))))

θ(t+1) = arg max
θ

ln(|Σ−1
θ |)− Tr(Σ−1

θ E(ββT | y,Θ(t)))
(11)

2.2 Special cases

The M-step in equation (11) requires the maximization of Q(Θ|Θ(t)) over the parameters of the covariance Σθ. In this
study, we will explore three cases. First, we consider the case where Σθ is diagonal. Then, the case where β has a
spatial structure, especially when the parametric covariance is the Matérn covariance function. Finally, we consider the
conditional autoregressive model (CAR).
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2.2.1 Diagonal case

In the classical Ridge, the covariance matrix of the coefficients β is supposed to be diagonal such that

Σθ = σ2
βId. (12)

The M-step of the covariance in (11) becomes

σ
2,(t+1)
β = arg max

σ2
β

−d ln(σ2
β)− 1

σ2
β

Tr(E(ββT | y,Θ(t))). (13)

Setting the derivatives with respect to σ2
β to zero, we obtain the M-step

σ
2,(t+1)
β =

Tr(E(ββT | y,Θ(t)))

d
. (14)

Note that 1
σ2
β

corresponds to the regularization parameter λ in equation (1). As stated in the introduction, Ridge
regression requires the selection of the regularization parameter. Therefore, the EM algorithm can be an alternative to
cross-validation for estimating Ridge coefficients along with the regularization parameter. A comparison of the two
methods (cross-validation and EM algorithm) is given in the Appendix.

2.2.2 Spatial covariance functions

In spatial statistics applications, one may assume that β has a spatial structure. One way to do that is to assume that β
has a parametric covariance function. There are many choices of covariance functions that are widely used for Gaussian
processes and kriging (Schulz, Speekenbrink and Krause, 2018). In this study, we focus on the stationary Matérn
covariance, which has the form

K(h;φ, κ) =
σ2
β

2κ−1Γ(κ)

(
h

φ

)κ
Kκ

(
h

φ

)
(15)

where h is the distance between two points, Γ is the Gamma function, and Kκ is the modified Bessel function
(Abramowitz, Stegun and Romer, 1988). The Matérn function is parameterized by the variance parameter σ2

β , the
range parameter φ, and the smoothness parameter κ. The range parameter φ controls the decay rate with distance, with
larger values of φ corresponding to more strongly correlated variables, and the smoothness parameter κ controls the
mean-square differentiability of the spatial process.

The M-step of the covariance of β in (12) becomes

(σ
2,(t+1)
β , θ(t+1)) = arg max

σ2
β ,θ

ln(|R−1
θ |)− d ln(σ2

β)− 1

σ2
β

Tr(R−1
θ E(ββT | y,Φ(t))) (16)

where Rθ is the Matérn correlation and θ = (φ, κ). Since the variance parameter is constant and following Bachoc
(2013), the optimization of the variance parameter σ2

β can be carried out separately with the correlation parameters φ
and κ. Therefore,

σ
2,(t+1)
β =

Tr(R−1
θ E(ββT | y,Φ(t)))

d

θ(t+1) = arg max
θ

ln(|R−1
θ |)− d ln(Tr(R−1

θ E(ββT | y,Φ(t)))).
(17)

The solution to the optimization problem in equation (17) cannot be done analytically; therefore, numerical optimization
algorithms are used. This study uses the quasi-Newton method L-BFGS-B to optimize the parameters. Given the
difficulties in estimating Matérn parameters (Kaufman and Shaby, 2013), we a priori fix the smoothness parameter as 3

2 ,
which gives the classical 3

2 -Matérn covariance function.

2.2.3 Conditional autoregressive model

The M-step in equation (10) requires the inversion of the covariance matrix, which can be challenging for large matrices.
This problem is wildly discussed in Gaussian processes literature (Ambikasaran, Foreman-Mackey, Greengard, Hogg
and O’Neil, 2015; Storkey, 1999). Therefore, it can be numerically advantageous to parameterize the precision matrix
(inverse of the covariance matrix) instead of the covariance matrix. This is motivated by the fact that the precision
matrix Pθ = Σ−1

θ can be approximated by a sparse matrix (Tajbakhsh, Aybat and Del Castillo, 2020). In fact, the
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off-diagonal elements of the precision matrix correspond to the conditional covariance between two variables given the
remaining variables. Therefore, conditionally independent variables have zero values in the precision matrix.

Gaussian Markov random fields (GMFs) are wildly used in spatial statistics (Cressie and Wikle, 2015). GMFs models
have a Markov property making them computationally and theoretically suitable (Rue, 2001). Furthermore, (Rue
and Tjelmeland, 2002) demonstrated that a GMF model can approximate a Gaussian field with a Matérn correlation
function and other families of correlation functions. Conditional autoregressive (CAR) models are classes of GMFs
with well-defined joint Gaussian distribution (Cressie and Kapat, 2008). This subsection will study cases where the
coefficients β have the CAR model property. The joint distribution of a CAR is expressed as

β ∼ N (0, τ2(Id − αH)−1Φ). (18)

The distribution of β depends on unknown parameters α and τ2, and many types of CAR models depend on the choice
of the matrix H and Φ. Following (Besag, York and Mollié, 1991), in this study, we consider the Weighted CAR
(WCAR) model where

Φ = diag(|N1|−1, ..., |Nd|−1) (19)

where |Ni| is the number of neighbors of location i and H =
(
aij
|Ni|

)
d×d

; i, j = 1, ..., d, where aij is the (i, j) element

of the adjacency matrix A = (aij)d×d, where aij = aji = 1 if and only if location i and j are neighbors and otherwise
aij = 0. Putting Pθ = τ−2(Id − αH)Φ−1, the second part of the M-step in the equation (11) becomes

θ(t+1) = arg max
θ

ln(|Pθ|)− Tr(PθE(ββT | y,Φ(t))) (20)

where θ = (τ2, α).

As for the Matérn covariance, the solution to the optimization problem (20) cannot be done analytically, and the
numerical optimization algorithm L-BFGS-B is used. Note that the optimization of the variance parameter τ2 can also
be carried out separately with the parameter α.

Remark that this leads to a spatial extension of the fused Ridge method proposed in (Goeman, 2008). When α = 1, we
obtain

1

τ2
βTΦ−1(Id − αH)β =

1

2τ2

∑
(i,j)|aij=1

(βi − βj)2. (21)

This shows that any spatial coefficient variations will be penalized when solving (7). In this case, replacing the L2 norm
with the L1 norm leads to the fused LASSO method proposed in (Tibshirani, Saunders, Rosset, Zhu and Knight, 2005).
However, the matrix (Ip − αH) is semi-positive definite when α = 1 and thus Σθ is degenerate. Hereafter we impose
the constraints |α| < 1 to ensure that the precision matrix is positive definite. Another strategy would consist of adding
a regular Ridge penalty (e.g., the discussion in van Wieringen (2015)).

3 Simulation study

In this section, a simulation study is conducted to assess the performance of the proposed method for estimating model
parameters for the three cases: diagonal, Matérn, and CAR.

3.1 Setup

This study focuses on using the proposed method for spatial applications. Therefore, we consider a 15× 15 regular
spatial grid in a square domain [1, 15]2 where each location j has a covariate xj . We generate X = (xij)n×d of
n independent and identically distributed observations from a multivariate normal distribution with zero mean and
a Matérn covariance with some arbitrary parameters (σ2

x, φx, κx) = (6, 2, 3/2). Then, the coefficients β, kept the
same for all observations, are simulated using either the diagonal, Matèrn, or CAR case. Finally, for a given σ2, Y is
simulated from the normal distribution according to equation (3).

The parameters chosen for each case are:

• Diagonal: σ2 = 36 and σ2
β = 7

• Matérn: σ2 = 36, σ2
β = 0.1 and φ = 4

• CAR: σ2 = 36, τ2 = 1 and α = 0.9
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The parameters are chosen so that the results of the three methods are comparable. For the CAR model, we consider
four neighbors to construct the adjacency matrix, and we chose α = 0.9 to sufficiently smooth the resulting coefficients.

The EM algorithm is initialized with an arbitrary set of parameters, and the E-step and M-step are repeated until no
further improvement can be made to the likelihood value or to limit the computational cost until a maximum number of
iterations is reached. The computation time for one iteration on an i5-7500 CPU and 16Go computer is 0.16, 3, and 1.8
seconds for diagonal, Matérn, and CAR, respectively.

3.2 Results

At first, one simulation is done for each case (diagonal, Matérn, and CAR) with n = 800. The parameters are estimated
using the EM algorithm presented in the previous section. Figure 1 shows the first simulation results. Left panels
correspond to the true β, and right panels correspond to the estimated β using the EM algorithm. For all the cases, the
EM algorithm does well in estimating the parameters, especially the variance σ2.

To assess the influence of the sample size on the estimations, for each case, we perform 100 independent random
simulations for each sample size varying from 50 to 850. For each simulation, the EM algorithm is used to estimate
the parameters. Figure 2 shows the normalized root mean square error NRMSEβ and NRMSEy for the three cases
where

NRMSEβ =

√
1
d

∑d
j (βj − β̂j)2

σ̂β

NRMSEy =

√
1
n′
∑n′
i (yi − ŷi)2

σ̂y

(22)

where β̂j and ŷi are the estimated βj and yi and σ̂β and σ̂y are the sample standard deviation of β and y, respectively.
NRMSEy is calculated in a test set (which is not used in the estimation) of size n′ = n

2 . For the three cases,
NRMSEβ and NRMSEy decrease as the sample size increases.

To evaluate the parameter estimates, we compare the EM estimates with the maximum likelihood estimates of the
parameters, hereafter referred to as MLE, knowing the true β. More precisely, the MLE estimates are defined as

ΘMLE = arg max
Θ
−1

2

(
ln(|Σθ|) + βTtrueΣ

−1
θ βtrue + n ln(σ2) +

1

σ2
‖y −Xβtrue‖2

)
+ C (23)

where βtrue is the true β simulated for each case with the parameters given in section 3.1. Along with the sample size,
we are also interested in how the estimates behave when varying the dimension of X , d, and the variance parameter σ2.
Note that in practice, ΘMLE cannot be found directly, given that the true β is not observed (latent variable). Therefore,
we expect the EM algorithm to provide less accurate estimates than MLE. However, we expect that by varying the
sample size, the dimension, and the variance σ2, the estimations asymptotically will be close to MLE estimates.

Figures 3, 4 and 5 show boxplots of EM (red) and MLE (blue) estimates for the diagonal, Matérn and CAR cases as a
function of sample size, dimension d, and variance σ2. For the diagonal case, the estimate of σ2 seems to converge to the
true value of the parameter (blue line) when the sample size n increases as it does in the usual linear regression model.
Note that the estimate of the spatial variance sigma2

β does not seem to converge to the true value of the parameter as the
sample size increases, but when n is large enough, EM and MLE seem to provide similar results. This is not unexpected
since both methods are based on a single sample of the d-dimensional field β. As expected, the dimension d also affects
the estimate of the parameter σ2

β , which converges towards the true value as d increases; however, no significant change
is observed for σ2 when d increases. The effect of the variance σ2 on the estimation of σ2

β is small, and we observe that
for σ2 larger than 100, the EM and MLE tend to underestimate σ2

β . Similar behavior can be observed for the Matérn
case: the variance parameter σ2 seems to converge towards the actual value with increasing sample size. However, there
is no significant change in the other parameters (the variance σβ and the range φ). The dimension d mainly influences
the parameters σβ and φ, which describe the spatial structure of the d-dimensional field β, and as d increases, the
estimates converge to the actual values. As for the diagonal case, the EM algorithm underestimates the parameters σβ
and φ when the variance σ2 increases. Finally, for the CAR case, the sample size influences the parameters σ2 and τ2,
but only slightly the correlation parameter α, which is mainly influenced by the dimension d. The variance σ2 has a
significant influence on τ2, but only a small one on α. To summarize:

• The sample size n mainly influences the estimation of the variance of the residuals σ2
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Figure 1: Simulation results for the three cases (diagonal, CAR, and Matérn). The left panels correspond to the true β
coefficients with the true parameters given in section 3.1, and the right panels correspond to the β estimated when the
sample size n = 800.
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dimension of X , d, and the variance σ2. Red boxes correspond to EM estimates and the blue ones to MLE estimates.
The blue line corresponds to the true value of the parameter σ2, σ2

β , and φ, which are equal to 36, 0.1, and 4, respectively.

• The parameters which describe the spatial structure of β are mainly influenced by the dimension d

• As the variance σ2 increases, EM underestimates the parameter σ2
β of the diagonal and Matérn case, and the

range parameter φ

• EM estimates are close to MLE estimates in most cases when the sample size and the dimension d are large
enough and the variance σ2 is small

Another interesting aspect that needs to be studied is when the coefficients β are simulated using one covariance and
estimated using another covariance model. To do that, we perform 100 independent simulations of β using the Matérn
covariance function, and we estimate the parameters using the three cases: diagonal, CAR, and Matérn. Figure 6
shows the results of NRMSEβ and NRMSEy of the experiment. It is clear that using the Matérn covariance for
the estimation gives better results in terms of NRMSEβ . Not surprisingly, the diagonal case is the worst model for
estimating the coefficients. However, in terms of NRMSEy , there is a small difference between the three methods.
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Figure 5: Estimated parameters in the case where the covariance of β is the CAR as a function of the sample size, the
dimension of X , d, and the variance σ2. Red boxes correspond to EM estimates and the blue ones to MLE estimates.
The blue line corresponds to the true value of the parameter σ2, σ2

β , and α, which are equal to 36, 1, and 0.9, respectively.

4 Application

The proposed method is applied to the problem of predicting the significant wave height (Hs) at a location in the Bay of
Biscay using wind conditions over the North Atlantic (figure 7), where the significant wave height is the average height
of the highest third of the waves, a key measure of wave height that provides information about wave energy. The data
used for Hs comes from the Homere hindcast database (Boudière, Maisondieu, Ardhuin, Accensi, Pineau-Guillou and
Lepesqueur, 2013), and the wind data comes from Climate Forecast System Reanalysis (CFSR) (Saha, Moorthi, Pan,
Wu, Wang, Nadiga, Tripp, Kistler, Woollen, Behringer et al., 2010). The wind data are pre-processed before being used
as a predictor (see (Obakrim et al., 2022) for the pre-processing procedure). We consider 23 years of Hs and wind data
from 1994 to 2016 with a temporal resolution of 3 hours.

The regression problem is of the form

Hs(t) =

d∑
j=1

Xj(t)βj + ε(t) t = 1, ..., n (24)
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β = 0.1

and φ = 4 and sample size n = 800. The left panel correspond to NRMSEβ and the right one for NRMSEy .

Figure 7: CFSR projected wind in the North Atlantic in 1994-01-01 00h:00. The black point represents the target point.

where Xj(t) is the predictor at time t and location j defined as

Xj(t; tj , αj) = 1
2αj+1

∑t−tj+αj
i=t−tj−αj W

2
j (i), (25)

tj + αj + 1 ≤ t ≤ tj − αj + n

where Wj is the projected wind (figure 7) defined as

Wj = Uj cos

(
1

2
(bj − θj)

)
(26)

Uj is the wind speed, bj is the great circle bearing, and θj is the wind direction at location j. αj controls the length of
the time window, and tj is the mean travel time of waves which are estimated using the maximum correlation between
Hs and the predictor

(t̂j , α̂j) = argmax
tj ,αj

(
corr(Hs, X

g
j (tj , αj))

)
. (27)

Let X = X1, ..., Xd be the predictor which has the size 67088× 5651. Since the predictor has a spatial structure. It is
reasonable to assume that the coefficients β also have a spatial structure so that nearby locations have close contributions
to the waves at the target point. This assumption is equivalent to suppose that β ∼ N (0,Σθ). For the covariance Σθ,
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Method r RMSE(m) bias(m)
Diagonal 0.941 0.414 -0.0004
Matérn 0.956 0.354 -0.04
CAR 0.957 0.352 -0.06

Table 1: Quantitative comparison of the diagonal, Matérn, and CAR methods in the validation set using the correlation
(r), root mean square error (RMSE), and bias.

we will consider the cases of Matérn and CAR. For comparison, we also consider the diagonal case even though it does
not consider any structure between coefficients.

The model’s parameters (equation 24) are estimated using data from 1994 to 2013, and the model is evaluated in terms
of correlation, RMSE, and bias, using a validation set from 2014 to 2016. Figure 8 shows the results of estimating
β and the covariance parameters using the EM algorithm when the covariance structure is assumed to be diagonal,
Matérn and CAR. Not surprisingly, the coefficients estimated with the diagonal covariance show no physical spatial
structure. Therefore, the assumption that close locations have close coefficients cannot be taken into account using
the diagonal case. This motivates using the Matérn and CAR covariances. The Matérn and CAR covariances give
the smoothest coefficients with a clear spatial structure. In addition, locations close to the target point have larger
coefficients. Therefore, the obtained coefficients are more physically interpretable and take into account our assumption
about the covariance. Note that the CAR method is less expensive numerically than the Matérn, which involves inverting
the covariance matrix at each iteration of the optimization algorithm used in the M-step.

Table 1 shows the results of the quantitative comparison between the three methods for predicting significant wave
height in the validation set using correlation (r), root mean square error (RMSE), and bias. In terms of correlation and
RMSE, the diagonal method is the less accurate method. Therefore, adding the spatial structure in the covariance is
advantageous in predicting the significant wave height. The CAR and Matérn methods lead to close results regarding r,
RMSE, and bias.

5 Conclusions

This study proposed an EM algorithm for estimating generalized Ridge regression with spatial covariates. We have
studied three cases: the diagonal, Matérn, and the CAR case. A simulation study is carried out to evaluate the
performance of the algorithms, and the EM algorithm successfully estimates the parameters in all cases. We have
studied the influence of the sample size, dimension of X , and the variance σ2 on the estimation. The sample size mainly
influences the variance parameter σ2. The range parameter of the Matérn and correlation parameter of the CAR are
mainly influenced by dimension d.

The proposed method is applied to the problem of downscaling the significant wave height in the Bay of Biscay using
wind conditions over the North Atlantic. The Matérn method gives smooth coefficients with a clear spatial structure;
however, the CAR method slightly outperforms the Matérn method in terms of RMSE. The Matérn covariance is clearly
a better choice for spatial applications. However, estimating the parameters requires the inversion of the covariance
matrix at each iteration of the optimization method in the M-step, which may be a computational bottleneck in many
applications. To address this issue, instead of parameterizing the covariance matrix, one can parameterize the precision
matrix directly as we did with the CAR method.

Appendices
A Comparison between cross-validation and EM

As stated in section 2, the EM algorithm can be used as an alternative for cross-validation for estimating Ridge regression.
In this section, we perform a simulation study to compare the two approaches and use the same simulation procedure
discussed in section 3.1. Given the same covariates X (presented in section 3.1) we perform 50 independent random
samples of coefficients β using the diagonal method (with parameters σ2 = 36 and σ2

β = 7). For each simulation,
we estimate the coefficients using the EM algorithm and the cross-validation method. Figure 9 shows the box plot
of NRMSEβ and NRMSEy. The EM algorithm outperforms cross-validation in estimating the coefficients β and
predicting y.

14



NRMSEβ NRMSEy

0.04

0.08

0.12

0.16

0.2

0.3

0.4

0.5

0.6

method

CV

diagonal

Figure 9: Results of estimating Ridge regression with the EM algorithm and 10-fold cross-validation in the Gaussian
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Figure 10: Results of estimating Ridge regression with the EM algorithm and 10-fold cross-validation in the non-
Gaussian case.

The comparison we performed here is for the Gaussian case; therefore, it is straightforward that the EM algorithm will
outperform cross-validation. To see how the two approaches behave in the non-Gaussian case, we simulate the response
variable Y using the model

Y = Xβ + ε, where ε ∼ U(2, 30) (A.1)
Where U(2, 30) is the uniform distribution on the interval [2, 30]. Figure 10 shows the estimation results using the
EM algorithm and cross-validation. The EM algorithm still outperforms cross-validation in both NRMSEβ and
NRMSEy; however, the difference between the two methods here is small than in the Gaussian case.

B The case where β has a non-zero mean

In this section, we consider the case where β has a non-zero mean as defined by the hierarchically model

β ∼ N (µξ,Σθ)

Y | β,Θ ∼ N (Xβ, σ2In)
(B.1)

where Θ = (σ2, µξ, θ).
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The complete log-likelihood is expressed as

ln p(y, β; Θ) = ln p(y | β;σ2) + ln p(β; θ)

= −1

2

(
ln(|Σθ|) + βTΣ−1

θ β − 2βTΣ−1
θ µξ + µTξ Σ−1

θ µξ + n ln(σ2) +
1

σ2
‖y +Xβ‖2

)
+ C

(B.2)

Where C is a constant. In the M-step, the quantity Q(Θ|Θ(t)) is maximized with respect to the parameters Θ.

• E-step:

Q(Θ|Θ(t)) = E(ln p(y, β; Θ) | y,Θ(t)). (B.3)

The posterior distribution of the latent variable β is a normal distribution with mean µβ|y and covariance matrix Σβ|y
such that {

Σβ|y = (Σ−1
θ + 1

σ2X
TX)−1

µβ|y = Σβ|y(Σ−1
θ µξ + 1

σ2X
T y).

(B.4)

Therefore,

Q(Θ|Θ(t)) = −1

2

(
ln(|Σθ|) + Tr(Σ−1

θ E(ββT | y,Θ(t)))− 2µTβ|yΣ−1
θ µξ + µTξ Σ−1

θ µξ + n ln(σ2) +
1

σ2
E(‖y −Xβ‖2 | y,Θ(t))

)
+C

(B.5)
where {

E(ββT |y; Θ(t)) = Σβ|y + µβ|yµ
T
β|y

E(‖y −Xβ‖2|y; Θ(t)) = ‖y‖2 − 2yTXµβ|y + Tr(XTXE(ββT |y; Θ(t)))
(B.6)

• M-step:

The maximization step computes
Θ(t+1) = arg max

Θ
Q(Θ|Θ(t)) (B.7)

which leads to the following updates of the parameters

σ2,(t+1) =
1

n
(‖y‖2 − 2yTXµβ|y + Tr(XTXE(ββT |y; Θ(t))))

(ξ(t+1), θ(t+1)) = arg max
ξ,θ

ln(|Σ−1
θ |)− Tr(Σ−1

θ E(ββT | y,Θ(t))) + 2µTβ|yΣ−1
θ µ

(t)
ξ − µ

T
ξ(t)Σ

−1
θ µ

(t)
ξ

(B.8)
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