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Abstract. In this paper we study a Separation Logic of Relations (SLR) and com-
pare its expressiveness to (Monadic) Second Order Logic [(M)SO]. SLR is based
on the well-known Symbolic Heap fragment of Separation Logic, whose formulæ
are composed of points-to assertions, inductively defined predicates, with the sep-
arating conjunction as the only logical connective. SLR generalizes the Symbolic
Heap fragment by supporting general relational atoms, instead of only points-to
assertions. In this paper, we restrict ourselves to finite relational structures, and
hence only consider Weak (M)SO, where quantification ranges over finite sets.
Our main results are that SLR and MSO are incomparable on structures of un-
bounded treewidth, while SLR can be embedded in SO in general. Furthermore,
MSO becomes a strict subset of SLR, when the treewidth of the models is bounded
by a parameter and all vertices attached to some hyperedge belong to the interpre-
tation of a fixed unary relation symbol. We also discuss the problem of identifying
a fragment of SLR that is equivalent to MSO over models of bounded treewidth.

1 Introduction

The theory of finite (hyper-)graphs is important for many areas of computing, such as
e.g., static program analysis [36], database theory and knowledge representation [1].
Graphs are naturally encoded as logical structures over finite signatures of relation
symbols. Graph properties are traditionally expressed in classical second-order logics,
where quantifiers range over either individuals or relations. The most prominent logics
in this class are the Monadic Second Order Logics, where quantification is over vertices
only (MSO1), or both vertices and edges (MSO2), and sets thereof [22]. These logics
are quite powerful, since properties as e.g., Hamiltonicity, 3-colorability, planarity, etc.
can be expressed.

The MSO1,2 logics have been instrumental in establishing equivalences between
definability and recognizability, which are cornerstones of formal language theory. For
words [13] and ranked trees [26] definability and recognizability coincide, whereas the
situation is more complex for graphs: definable sets are always recognizable, but there
are recognizable sets of graphs that are not definable [19]. The equivalence between
definability and recognizability for graphs can be recovered by considering only those
sets of graphs that are inductively defined by (i.e., are components of the least solu-
tions of) a finite set of recursive equations with set variables, written using an algebra
of hyperedge-replacement operations3 [20,6]. Moreover, these are exactly the sets of

3 A hyperedge replacement substitutes a graph for a hyperedge in another graph.



graphs in which the treewidth (a positive integer that indicates how close the graph is to
a tree) is topped by a fixed constant (see e.g., [22, Theorem 2.83]).

Another way of describing graph properties is to extend first-order logic with a spa-
tial connective that decomposes graphs [16,34,46]. Intuitively, a formula φ∗ψ denotes
graphs that can be decomposed into subgraphs satisfying φ and ψ, respectively, whose
sets of edges are disjoint and the only common vertices are denoted by variables or
constant symbols from the signature.

It is known that first-order logic can only express local properties of graphs [32],
whereas the interplay of spatial and boolean connectives allows to describe certain non-
local properties, such as reachability between vertices [23,10]. A general way of spec-
ifying non-local properties of finite graphs is adding a least fixpoint operator [44] or
inductive definitions [2]. A most prominent example is the Separation Logic (SL) of
Ishtiaq, O’Hearn [34] and Reynolds [46], where inductive definitions are used to define
the shapes of datastructures in the heap memory of a program. For instance, the rules

(1) ls(x,y)← x = y (2) ls(x,y)←∃z . x 7→ z∗ ls(z,y)

define finite singly-linked list segments, that are either (1) empty with equal endpoints,
or (2) consist of a single cell x separated from the rest of the list segment ls(z,y). The
graphs used in the semantics of SL are described as finite partial functions from vertices
to sequences of vertices of a fixed length k, called k-heaps (k = 1 in the example above).

In general, most recursive datastructures (singly- and doubly-linked lists, trees, etc.)
can be defined using only existentially quantified separated (spatial) conjunctions of
atoms, that are either equalities x = y, disequalities x 6= y and points-to propositions
x 7→ (y1, . . . ,yk). This simple subset of SL is referred to as the Symbolic Heap fragment.
The decision problems of model checking [12], satisfiability [11], robustness properties
[35] and entailment4 [18,37,29,30,43] for this fragment have been extensively studied,
yielding a detailed map of decidability and complexity results.

Extending SL beyond heaps to general relational signatures has been first consid-
ered in the context of role logic [38], to describe properties of relational databases and
type systems of object-oriented languages. Another, quite recent, application has been
writing Hoare-style proofs of correctness of dynamically reconfigurable distributed sys-
tems [4,7,9]. In this logic, called Separation Logic of Relations (SLR), the separating
conjunction is understood as splitting the interpretation of each relation symbol from
the signature into disjoint parts. For instance, R(x1, . . . ,xn)∗R(y1, . . . ,yn) means that R
is interpreted as a relation consisting of two distinct tuples i.e., that values of xi and yi
differ for at least some 1≤ i≤ n. Note the interpretation of a relation atom R(x1, . . . ,xn)
as a singleton relations consisting of the tuple of values of x1, . . . ,xn, respectively, that
matches the denotation of a SL points-to atom x 7→ (y1, . . . ,yk) as a singleton heap.

Relation between SLR and SL In general, symbolic heaps with inductive definitions
are at least as expressive for SLR as for SL5. For instance, the previous definition of a
list segment can written in a relational signature having at least a unary relation D and
a binary relation H, as follows:

rel ls(x,y)← x = y rel ls(x,y)←∃z . D(x)∗H(x,z)∗ rel ls(z,y)
4 Since symbolic heaps do not have negation, entailment cannot be reduced to satisfiability.
5 Except for the functionality of the heap, which cannot be expressed without negations.



[[L1]]⊆ [[L2]] [[L1]]
k
D ⊆ [[L2]] SLR MSO SO

SLR X ? × (§4) × (§4) X(§6) X(§8)
MSO × (§5) X(§7) X X(§8) X X(§8)
SO × (§5) ? × (§8) × (§8) X X(§8)

Table 1. A comparison of SLR, MSO and SO in terms of expressiveness, where X means that
the inclusion holds, × means it does not and ? denotes an open problem, with reference to the
sections where (non-trivial) proofs are given.

Note that the D(x) atoms joined by separating conjunction ensure that all the vertices
are pairwise disjoint, except for the last one denoted by y. In contrast, the rules:

fold ls(x,y)← x = y fold ls(x,y)←∃z . H(x,z)∗ fold ls(z,y)

describes “foldable” lists in which any two vertices can be fused into one. Moreover,
SLR can describe graphs of unbounded degree6, such as stars with a central vertex and
outgoing binary edges E to frontier vertices, all belonging to a set N:
star(x)←N(x)∗node(x) node(x)← x= x node(x)←∃y . E(x,y)∗N(y)∗node(x)

Such definitions are typically beyond the reach of standard SL symbolic heaps, because
k-heaps can only represent graphs of (out-)degree bounded by k.

Our contributions We compare the expressiveness of SLR with (monadic) second-
order logic (M)SO. Strictly speaking, by MSO we understand the fragment of MSO1
[22], without cardinality constraints7 (we consider the extension of our results to cardi-
nality constraints an interesting question left for future work). In this paper, we are only
interested in finite relational structures, and hence only consider Weak (M)SO, where
quantification is restricted to finite sets of tuples of vertices (in MSO1 quantification is
over sets of vertices). In the remainder, (M)SO will always refer to Weak (M)SO.

Table 1 summarizes our results. For a set L of logical formulæ written using a finite
set Σ of relation and constant symbols, we denote by [[L ]] the set of sets of graphs that
are models of a formula φ from L . For a unary relation symbol D not in Σ, considered
fixed in the rest of the paper, we say that a graph is guarded if all vertices attached to
some hyperedge belong to the set denoted by D. Then [[L ]]kD denotes the set of sets of
guarded models of treewidth at most k of a formula from L , where the signature of L is
extended with D. With this notation, [[L1]]

k
D⊆ [[L2]] means that the logic L2 is at least as

expressive as L1, when only guarded models of treewidth at most k are considered. Note
that [[L ]]kD ⊆ [[L ]] is not a trivial statement, in general, because it asserts the existence
of a formula of L that defines the set of guarded graphs of treewidth at most k.

The most interesting results of our comparison are that:
1. SLR and MSO are incomparable on unguarded graphs of unbounded treewidth i.e.,

there are formulæ in each of the logics that do not have an equivalent in the other,
2. SO is at least as expressive as SLR, when considering unguarded graphs of un-

bounded treewidth,
3. SLR is strictly more expressive than MSO, when considering guarded graphs of

bounded treewidth; this result is probably the most interesting, as it gives a sense
of the expressive power of SLR, with emphasis on the treewidth parameter.

6 The degree of a graph is the maximum number of hyperedges involving a vertex.
7 The cardinality of a set variable equals p modulo q, where 0≤ p < q are constants.



Note that, when considering SLR-definable sets of bounded treewidth, we systemati-
cally assume these graphs to be guarded. We state as an open problem and conjecture
that every infinite SLR-definable set of graphs is necessarily guarded, in a hope that
the guardedness condition can actually be lifted. Similar conditions have been used to
e.g., obtain decidability of entailments between SL symbolic heaps [33,37] and of in-
variance for assertions written in a fragment of SLR for describing distributed networks
[9]. Moreover, the problem of checking if a given set of inductive definitions defines a
guarded set of graphs is decidable for these logics [35,8].

A further natural question asks for a fragment of SLR with he same expressive
power as MSO, over graphs of bounded treewidth. This is also motivated by the need for
a general fragment of SLR with a decidable entailment8 problem, that is instrumental in
designing automated program analyses. Unfortunately, such a definition is challenging
because the MSO-definability of the sets defined by SLR is an undecidable problem,
whereas treewidth boundedness of such sets remains an open problem.

For space reasons, the proofs of technical results are given in Appendix A.

Related work The problem of comparing the expressiveness of SL [46] with that of
classical logics received a fair amount of attention. For instance, a first proof of un-
decidability of the satisfiability problem for first-order SL [15] is based on a reduc-
tion to Trakhtenbrot’s undecidability result for first-order logic on finite models [27].
This proof relies on 2-heaps to encode arbitrary binary relations as R(x,y) def

= ∃z . z 7→
(x,y)∗true. A more refined proof for 1-heaps was given by Brochenin, Demri and Lozes
[10]. In particular, they show that SO has the same expressivity as SL over 1-heaps. A
related line of work, pioneered by Lozes [40], is the translation of quantifier-free SL
formulæ into boolean combinations of core formulæ, belonging to a small set of very
simple patterns. This enables a straightforward translation of the quantifier-free frag-
ment of SL into first-order logic, over unrestricted signatures with both relation and
function symbols, that was subsequently extended to two quantified variables [24] and
restricted quantifier prefixes [28]. Moreover, a translation of quantifier-free SL into first-
order logic, based on the small model property of the former, has been described in [14].

The above references focus exclusively on fragments of SL without inductive defi-
nitions, but with arbitrary combinations of boolean (conjunction, negation) and spatial
(separating conjunction, magic wand) connectives. A non-trivial attempt of generalizing
the technique of translating SL into boolean combinations of core formulæ to reacha-
bility and list segment predicates is given in [25]. Moreover, an extensive comparison
between the expressiveness of various models of separation i.e., spatial, as in SL, and
contextual (subtree-like), as in Ambient Logic [17], can be found in [42].

An early combination of spatial connective for graph decomposition with (least
fixpoint) recursion is Graph Logic (GL) [16], whose expressiveness is compared to that
of MSO2 [23]. For reasons related to its applications, GL quantifies over the vertices and
edge labels of a graph, unlike MSO2 that quantifies over vertices, edges and sets thereof.
Another fairly subtle difference is that GL can describe graphs with multiple edges that
involve the same vertices and same label, whereas the models of MSO2 are simple
graphs. Without recursion, GL can be translated into MSO2 and it has been showed that

8 The entailment problem φ |=∆ ψ asks if every model of φ is also a model of ψ, when the
inductive predicates in both φ and ψ are interpreted by a given set of definitions ∆.



MSO2 is strictly more expressive than GL without edge label quantification [5]. Little
is known for GL with recursion, besides that it can express PSPACE-complete model
checking problems [23], whereas model checking is PSPACE-complete for MSO [47].

The separating conjunction used in SLR has been first introduced in role logic [38],
a logic designed to reason about properties of record fields in object-oriented programs.
This logic uses separating conjunction in combination with boolean connectives and
first-order quantifier (ranging over vertices) and has no recursive constructs (least fix-
points or inductive definitions). A bothways translation between role logic and SO has
been described in [39]. These translations rely on boolean connectives and first-order
quantifiers, instead of least fixpoint recursion, which is the case in our work.

2 Definitions

For a set A, we denote by pow(A) its powerset and A1 def
= A, Ai+1 def

= Ai×A, for all i≥ 1,
where × is the Cartesian product, and A+ def

=
⋃

i≥1 Ai. The cardinality of a finite set A
is denoted by ||A||. Given integers i and j, we write [i, j] for the set {i, i+1, . . . , j},
assumed to be empty if i > j. For a function f : A→ B and a subset S ⊆ A, we denote
by dom( f ) = A the domain of f and by f �S the restriction of f to S. A function f is
said to be effectively computable if there exists a Turing machine M , such that, for any
a ∈ dom( f ), M computes f (a) in a finite number of steps.

Signatures and Structures Let Σ= {R1, . . . ,RN ,c1, . . . ,cM} be a finite signature, where
Ri are relation symbols of arity #Ri ≥ 1 and c j are constant symbols i.e., function sym-
bols of arity zero. Additionally, we assume the existence of a unary relation symbol D,
not in Σ. Unless stated otherwise, we consider Σ and D to be fixed in the following.

A structure is a pair (U,σ), where U is a non-empty set, called universe, and
σ : Σ→ U ∪ pow(U+) is a function that maps each relation symbol R to a relation
σ(R) ⊆ U#R and each constant c to an element σ(c) of the universe. We denote by
Str(Σ) (resp. Str(Σ,D)) the set of structures over the signature Σ (resp. Σ∪{D}). To
give the statements of the results in this paper, we introduce the following notions:

Rel(σ) def
= {uk | 〈u1, . . . ,u#Ri〉 ∈ σ(Ri), i ∈ [1,N], k ∈ [1,#Ri]}

Dom(σ)
def
= Rel(σ)∪{σ(c1), . . . ,σ(cM)}

The structure (U,σ) is locally finite if Dom(σ) is finite (i.e., the interpretation of each
relation symbol from the signature is finite) and finite if U is finite. In this paper, we
consider only locally finite structures but allow the universe U to be infinite. Another
important class are the guarded structures, defined below:

Definition 1. A structure (U,σ)∈ Str(Σ,D) is guarded if and only if Rel(σ�Σ)⊆ σ(D).

The spatial composition (composition for short) of structures is defined below:

Definition 2. Two structures (U1,σ1) and (U2,σ2) are said to be:
1. compatible if and only if U1 =U2 and σ1(c j) = σ2(c j), for all j ∈ [1,M], and
2. disjoint if and only if σ1(Ri)∩σ2(Ri) = /0, for all i ∈ [1,N].



The composition of two compatible and disjoint structures is the structure (U1,σ1 •σ2),
where (σ1 • σ2)(Ri) = σ1(Ri)∪ σ2(Ri) and (σ1 • σ2)(c j) = σ1(c j) = σ2(c j), for all
i∈ [1,N] and j ∈ [1,M], undefined for structures that are not compatible or not disjoint.

In the following, we identify structures that differ by a renaming of elements from
the universe and consider only classes of structures that are closed under isomorphism:

Definition 3. Two structures (U1,σ1) and (U2,σ2) are isomorphic, denoted (U1,σ1)'
(U2,σ2) if and only if there exists a bijection h : U1→U2, such that:
1. for each relation symbol R ∈ Σ and each tuple 〈u1, . . . ,u#Ri〉 ∈U#R

1 , we have:
〈u1, . . . ,u#R〉 ∈ σ1(R) ⇐⇒ 〈h(u1), . . . ,h(u#R)〉 ∈ σ2(R)

2. for each constant symbol c ∈ Σ, we have h(σ1(c)) = σ2(c).

Graphs and Treewidth A (finite) graph is a pair G = (V ,E), such that V is a (finite)
set of vertices and E ⊆V ×V is a set of edges. All graphs considered in this paper are
directed i.e., E is not a symmetric relation. Graphs are naturally encoded as structures:

Definition 4. Each graph G = (V ,E) is encoded by the structure (V ,σG ) over the

signature Γ
def
= {V,E}, where #V= 1 and #E= 2, such that σG (V) =V and σG (E) =E .

A path in G is a sequence of pairwise distinct vertices v1, . . . ,vn, such that (vi,vi+1)∈E ,
for all i∈ [1,n−1]. We say that v1, . . . ,vn is an undirected path if {(vi,vi+1),(vi+1,vi)}∩
E 6= /0 instead, for all i ∈ [1,n−1]. A set of vertices V ⊆ V is connected in G if and
only if there is an undirected path in G between any two vertices in V . A graph G is
connected if and only if V is connected in G . A clique is a graph such that each two
distinct nodes are the endpoints of an edge, the direction of which is not important. We
denote by Kn the set of cliques with n vertices.

Given a set Λ of labels, a Λ-labeled tree is a tuple T = (N ,F ,r,λ), where (N ,F )
is a graph, r ∈ N is a designated vertex called the root, such that there exists a path
in (N ,F ) from r to any other vertex v ∈ N \ {r}, r has no incoming edge (p,r) ∈ F
and no vertex n has two incoming edges (m,n),(p,n) ∈ F , for m 6= p. The mapping
λ : N → Λ associates each vertex of the tree a label from Λ.

Definition 5. A tree decomposition of a structure (U,σ) over the signature Σ is a
pow(U)-labeled tree T = (N ,F ,r,λ), such that the following hold:
1. for each relation symbol R ∈ Σ and each tuple 〈u1, . . . ,u#R〉 ∈ σ(R) there exists

n ∈N , such that {u1, . . . ,u#R} ⊆ λ(n), and
2. for each u ∈ Dom(σ), the set {n ∈N | u ∈ λ(n)} 6= /0 is connected in (N ,F ).

The width of the tree decomposition is tw(T )
def
= maxn∈N ||λ(n)||− 1. The treewidth of

the structure σ is tw(σ)
def
= min{tw(T ) | T is a tree decomposition of σ}.

It is clear that two isomorphic structures have the same treewidth. In the following, we
consider set of structures that are closed under isomorphism. Such a set is treewidth-
bounded if and only if the set of corresponding treewidths is finite and treewidth-
unbounded otherwise. A set is strictly treewidth-unbounded if and only if it is treewidth-
unbounded and any infinite subset is treewidth-unbounded. The following result can be
found in several textbooks (see e.g., [22]) and is restated here for self-containment:

Proposition 1. The set {Kn | n ∈ N} is strictly treewidth-unbounded.



3 Logics

We introduce two logics for reasoning about structures over a (fixed) relational signature
Σ = {R1, . . . ,RN ,c1, . . . ,cM}. The first such logic, called the Separation Logic of Rela-
tions (SLR), uses a set of first-order variables V(1) = {x,y, . . .} and a set of predicates
A = {A,B, . . .} of arities #A, #B, etc. We use the symbols ξ,χ ∈ V(1) ∪{c1, . . . ,cM}
to denote terms i.e., either first-order variables or constants. The formulæ of SLR are
defined by the following syntax:

φ := ξ = χ | ξ 6= χ | R(ξ1, . . . ,ξ#R) | A(ξ1, . . . ,ξ#A) | φ∗φ | ∃x . φ

The formulæ ξ = χ and ξ 6= χ are called equalities and disequalities, R(ξ1, . . . ,ξ#R) and
A(ξ1, . . . ,ξ#A) are called relation and predicate atoms, respectively. By atom we mean
any of the above atomic formulæ. A formula with no occurrences of predicate atoms
(resp. existential quantifiers) is called predicate-free (resp. quantifier-free). A variable is
free if it does not occur within the scope of an existential quantifier and let fv(φ) be the
set of free variables of φ. A sentence is a formula with no free variables. A substitution
φ[x1/ξ1 . . .xn/ξn] replaces simultaneously every occurrence of the free variable xi by
the term ξi in φ, for all i ∈ [1,n].

The predicates from A are interpreted as sets of structures, defined inductively by
a finite set of rules. Before defining the semantics of SLR formulæ, we introduce the
rules that assign meaning to predicates:

Definition 6. A set of inductive definitions (SID) ∆ is a finite set of rules of the form
A(x1, . . . ,x#A)← φ, where x1, . . . ,x#A are pairwise distinct variables, called parameters,
such that fv(φ) ⊆ {x1, . . . ,x#A}. An atom α occurs in a rule A(x1, . . . ,x#A)← φ if and
only if it occurs in φ.

Note that having distinct parameters in a rule is without loss of generality, as e.g., a rule
A(x1,x1)← φ can be equivalently written as A(x1,x2)← x1 = x2 ∗φ. As a convention,
we shall always use the names x1, . . . ,x#A for the parameters of a rule that defines A.

The semantics of SLR formulæ is given by the satisfaction relation (U,σ) |=ν

∆
φ

between structures and formulæ. This relation is parameterized by a store ν : V(1)→U
mapping the free variables of a formula into elements of the universe and an SID ∆. We
write ν[x← u] for the store that maps x into u and agrees with ν on all variables other
than x. For a term ξ, we denote by (σ,ν)(ξ) the value σ(ξ) if ξ is a constant, or ν(ξ) if
ξ is a first-order variable. The satisfaction relation is the least relation that satisfies the
following conditions:

(U,σ) |=ν

∆
ξ ./ χ ⇐⇒ σ(R) = /0, for all R ∈ Σ and

(σ,ν)(ξ) ./ (σ,ν)(χ), for all ./∈{=, 6=}
(U,σ) |=ν

∆
R(ξ1, . . . ,ξ#R) ⇐⇒ σ(R) = {〈(σ,ν)(ξ1), . . . ,(σ,ν)(ξ#R)〉}

and σ(R′) = /0, for all R′ ∈ Σ\{R}
(U,σ) |=ν

∆
A(ξ1, . . . ,ξ#A) ⇐⇒ (U,σ) |=ν

∆
φ[x1/ξ1, . . . ,x#A/ξ#A], for some rule

A(x1, . . . ,x#A)← φ from ∆

(U,σ) |=ν

∆
φ1 ∗φ2 ⇐⇒ there exist structures (U,σ1) and (U,σ2), such that

σ = σ1 •σ2 and (U,σi) |=ν

∆
φi, for all i = 1,2

(U,σ) |=ν

∆
∃x . φ ⇐⇒ (U,σ) |=ν[x←u]

∆
φ, for some u ∈U



Equivalently, the satisfaction relation can be defined by considering all finite unfold-
ings of the above rules, until no predicate atom is left. Note that this means that every
structure (U,σ), such that (U,σ) |=ν

∆
φ, for some formula φ, is locally finite, since it is

defined by a least fixpoint iteration over the rules in ∆.
If φ is a sentence, the satisfaction relation does not depend on the store, in which case

(U,σ) is a ∆-model of φ, written (U,σ) |=∆ φ. We define [[φ|∆]] def= {(U,σ) | (U,σ) |=∆ φ}
the set of ∆-models of φ. By [[φ|∆]]kD we denote the set of guarded structures of treewidth
at most k from [[φ|∆]]. We write [[SLR]]

def
= {[[φ|∆]] | φ is a SLR formula,∆ is a SID} and

[[SLR]]kD
def
= {[[φ|∆]]kD | φ is a formula of SLR,∆ is a SID}. A set is SLR-defined if it is of

the form [[φ|∆]], for a formula φ and a SID ∆. By the result below, every set of SLR-
defined structures is a union of equivalence classes of isomorphism (Def. 3):

Proposition 2. Given structures (U,σ) ' (U ′,σ′), for any sentence φ of SLR and any
SID ∆, we have (U,σ) |=∆ φ ⇐⇒ (U ′,σ′) |=∆ φ.

The other logic considered in this paper is Weak Second Order Logic (SO) defined
using a set of second-order variables V(2) = {X ,Y, . . .}, in addition to first-order vari-
ables. As usual, we denote by #X the arity of a second-order variable X . Terms and
atoms are defined in the same way as in SLR. The formulæ of SO are defined by the
following syntax:

ψ := ξ = χ | R(ξ1, . . . ,ξ#R) | X(ξ1, . . . ,ξ#X ) | ¬ψ | ψ∧ψ | ∃x . ψ | ∃X . ψ

As usual, we write ξ 6= χ
def
= ¬ξ = χ, ψ1∨ψ2

def
= ¬(¬ψ1∧¬ψ2), ψ1→ ψ2

def
= ¬ψ1∨ψ2,

∀x . ψ
def
= ¬∃x . ¬ψ and ∀X . ψ

def
= ¬∃X . ¬ψ. The Weak Monadic Second Order Logic

(MSO) is the fragment of SO restricted to second-order variables of arity one only.
The semantics of SO is given by a relation (U,σ) 
ν ψ, where the store ν : V(1) ∪

V(2)→U ∪pow(U+) maps each first-order variable x ∈ V(1) to an element of the uni-
verse ν(x)∈U and each second-order variable X ∈V(2) to a finite relation ν(X)⊆U#X .
The satisfaction relation of SO is defined inductively on the structure of formulæ:

(U,σ) 
ν ξ = χ ⇐⇒ (σ,ν)(ξ) = (σ,ν)(χ)
(U,σ) 
ν R(ξ1, . . . ,ξ#R) ⇐⇒ 〈(σ,ν)(ξ1), . . . ,(σ,ν)(ξ#R)〉 ∈ σ(R)
(U,σ) 
ν X(ξ1, . . . ,ξ#X ) ⇐⇒ 〈(σ,ν)(ξ1), . . . ,(σ,ν)(ξ#X )〉 ∈ ν(X)

(U,σ) 
ν ∃X . ψ ⇐⇒ (U,σ) 
ν[X←V ] ψ, for some finite set V ⊆U#X

The semantics of negation, conjunction and first-order quantification is standard and
omitted for brevity. Note the difference between (dis-)equalities and relation atoms in
SLR and SO; in the former, (dis-)equality (relation) atoms hold in an empty (singleton)
structure, whereas no cardinality upper bounds occur in SO, in these particular cases.

If φ is a sentence, we write (U,σ) 
 φ instead of (U,σ) 
ν φ and define [[φ]]
def
=

{(U,σ) | (U,σ)
 φ} and [[φ]]kD for the restriction of [[φ]] to guarded structures of treewidth
at most k. We write [[(M)SO]]

def
= {[[φ]] | φ is a (M)SO formula} and [[(M)SO]]kD

def
= {[[φ]]kD |

φ is a (M)SO formula}. A set is (M)SO-defined if it is of the form [[φ]], for a formula φ of
(M)SO. It is well-known (see e.g., [27]) that SO sentences cannot distinguish between
isomorphic structures (Def. 3).



The aim of this paper is comparing the expressive powers of SLR, MSO and SO,
with respect to the properties that can be defined in these logics. To ease the upcoming
technical developments, we consider only locally finite structures over a fixed infinite
universe U. This is because, in general, MSO and SO can express statements related
to an upper bound on the cardinality of the universe (i.e., there are most n elements
in the universe), whereas SLR can only express lower bounds. To avoid such technical
discrepancies, from now on we consider that the universe is fixed and infinite, in close
analogy with SL, where the set of memory locations is typically infinite9. Further, from
now on, the notation is simplified by writing σ instead of (U,σ).

In this paper, we are concerned with the problems [[L1]]⊆ [[L2]] and [[L1]]
k
D ⊆ [[L2]],

where L1 and L2 are any of the logics SLR, MSO and SO, respectively. In particular,
for [[L1]]

k
D ⊆ [[L2]], we implicitly assume that L1 and L2 are sets of formulæ over the

relational signature Σ∪ {D}. Table 1 summarizes our results, with references to the
sections in the paper where the proofs (for the non-trivial ones) can be found, and the
remaining open problems.

4 [[SLR]]kD 6⊆ [[MSO]]

We exhibit an SLR-definable set of structures of treewidth one that is not MSO-definable,
implying also that [[SLR]] 6⊆ [[MSO]]. The idea is to encode words over a binary alphabet
A = {a,b} by lists whose vertices are labeled with symbols from A . A list is connected
acyclic graph, in which each vertex has at most one incoming and at most one out-
going edge. A word w = a1 . . .an is encoded by the guarded structure σw ∈ Str(Σ,D),
where Σ = {E,Pa,Pb,b,e}, σw(D) = {v1, . . . ,vn}, σw(E) = {(vi,vi+1) | i ∈ [1,n−1]},
σw(Pα) = {vi | i ∈ [1,n], ai = α}, for all α ∈ A , σw(b) = v1 and σw(e) = vn. Note that
tw(σw) = 1, for any word w ∈ A∗.

A context-free grammar G = (N,X ,∆) consists of a finite set N of nonterminals,
a start symbol X ∈ N and a finite set ∆ of productions of the form Y → w, where
Y ∈ N and w ∈ (N ∪A)∗. Given finite strings u,v ∈ (N ∪A)∗, the relation uB v re-
places a nonterminal Y of u by the right-hand side w of a production Y → w and
B∗ denotes the reflexive and transitive closure of B. The language of G is the set
L(G)

def
= {w ∈ A∗ | X B∗w}. A language L is context-free if and only if there exists

a context-free grammar G, such that L = L(G).
A language L is recognizable if and only if the equivalence relation u 'L v, de-

fined as uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ A∗, has finitely many equivalence classes.
A language is recognizable if and only if it is definable by an MSO formula over the
signature {pa,pb,s}, where pα is the set of positions from [1,n] labeled by α ∈ A and
s(x,y) ⇐⇒ y = (x mod n)+ 1 [13]. Every recognizable language is context-free but
not viceversa e.g., {anbn | n ∈ N} is context-free but not recognizable.

Proposition 3. Given a context-free grammar G = (N,X ,∆), there exists an SID ∆G
and a binary predicate symbol AX ∈ def(∆G), such that w ∈ L(G) ⇐⇒ σw |=∆G
AX (b,e), for all w ∈ A∗.

9 An exception is the finite version of SL with universal quantification and magic wand, but
without inductive definitions from [28].



Let L be a non-recognizable context-free language and suppose that there exists
an MSO formula φL, over the signature {E,Pa,Pb,b,e,D}, that defines the set SL

def
=

{σw | w ∈ L}. Then there exists also an MSO formula ψL over the signature {pa,pb,s},
interpreted over finite words, that defines L. Note that ψL can be obtained directly from
φL, by replacing each atom E(ξ,χ) by s(ξ) = χ and each atom Pα(ξ) by pα(ξ). Then
the language L is recognizable, which contradicts with the choice of L. Moreover, we
have {tw(σ) | σ ∈ SL}= {1}, proving that [[SLR]]kD 6⊆ [[MSO]], for any given k ≥ 1.

5 [[MSO]] 6⊆ [[SLR]]

We prove that the MSO-definable set of cliques {Kn | n ∈ N} is not SLR-definable. Be-
cause MSO is a syntactic fragment of SO, this also implies [[SO]] 6⊆ [[SLR]]. First, ob-
serve that the set {Kn | n ∈ N} ⊆ Str({V,E}) is defined by the formula:

∀x∀y . V(x)∧V(y)∧ x 6= y→ E(x,y)∨E(y,x)

Note that the quantifiers range over finite (singleton) sets, hence the above is a formula
of Weak MSO. As shown in Proposition 1, the set {Kn | n ∈ N} is strictly treewidth-
unbounded. It is then sufficient to prove that SLR cannot define strictly treewidth-
unbounded sets. More precisely, for each SLR sentence φ and SID ∆, we prove the
existence of an integer W ≥ 1, such that, for each structure σ ∈ [[φ|∆]] there exists an-
other structure σ ∈ [[φ|∆]], with tw(σ)≤W . Then each infinite set [[φ|∆]] has an infinite
treewidth-bounded subset i.e., it is not strictly treewidth-unbounded (Proposition 4).

A first ingredient of the proof is that each SID can be transformed into an equivalent
SID in which the variables that occur existentially quantified in the rules of ∆ are not
constrained by equalities.

Definition 7. A rule A(x1, . . . ,x#A)← ∃y1 . . .∃yn . ψ, where ψ is a quantifier-free for-
mula, is normalized if and only if no equality atom x = y occurs in ψ, for distinct vari-
ables x,y ∈ {x1, . . . ,x#A}∪{y1, . . . ,yn}. An SID is normalized if and only if it consists
of normalized rules.

Lemma 1. Given an SID ∆, one can build a normalized SID ∆′ such that def(∆) ⊆
def(∆′) and for each structure σ and each predicate atom A(ξ1, . . . ,ξ#A), we have σ |=∆

∃ξi1 . . .∃ξin .A(ξ1, . . . ,ξ#A) ⇐⇒ σ |=∆′ ∃ξi1 . . .∃ξin .A(ξ1, . . . ,ξ#A), where {ξi1 , . . . ,ξin}=
{ξ1, . . . ,ξ#A}∩V(1).

A consequence of the above result is that, in the absence of equality constraints in
a normalized SID, each existentially quantified variable instantiated by the inductive
definition of the satisfaction relation can be assigned a distinct element of the universe.
For instance, the fold ls(x,y) formula (§1) defines an infinite set of graphs whose edges
are given by the interpretation of a relation symbol H, such that there exists an Eulerian
path visiting all edges exactly once, and all vertices possibly more than once. Since
there are no equality constraints (except for the case of empty graphs), each model of
fold ls(x,y) can be expanded into an acyclic list from x to y, that never visits the same



vertex twice, except at the endpoints. This latter graph has treewidth two, if the vertices
denoted by x and y coincide, and one otherwise.

Formally, we write σ |=ν⇓U
∆

φ if and only if the satisfaction relation σ |=ν

∆
φ can

be established by considering stores that are injective over the interpretation of exis-
tentially quantified variables and map these variables into elements from an infinite set
U ⊆ U. More precisely, the inductive definition of |=ν⇓U

∆
is the same as the definition

of |=∆ (§3), except for the following cases:

σ |=ν⇓U
∆

φ1 ∗φ2 ⇐⇒ there exist structures σ1 •σ2 = σ and infinite sets U1 and U2,
U1∩U2 = /0, U1∪U2 ⊆U, such that σi |=ν⇓Ui

∆
φi, i = 1,2

σ |=ν⇓U
∆
∃x . φ ⇐⇒ σ |=ν[x←u]⇓U

∆
φ, for some u ∈U \ν(fv(φ)\{x})

Lemma 2. Given a normalized SID ∆, a predicate atom A(ξ1, . . . ,ξ#A) and an infinite
set U ⊆ U, for each structure σ and a store ν, such that σ |=ν

∆
A(ξ1, . . . ,ξ#A), there

exists a structure σ′, such that σ′ |=ν⇓U
∆

A(ξ1, . . . ,ξ#A) and ||Dom(σ)|| ≤ ||Dom(σ′)||.

We show that the models defined on injective stores have bounded treewidth:

Lemma 3. Given a normalized SID ∆ and a predicate atom A(ξ1, . . . ,ξ#A), we have
tw(σ) ≤W, for each structure σ and store ν, such that σ |=ν⇓U

∆
A(ξ1, . . . ,ξ#A), for

some infinite set U ⊆ U, where W ≥ 1 is a constant depending only on ∆.

The proof of [[MSO]] 6⊆ [[SLR]] relies on the following result:

Proposition 4. Given a SLR sentence φ and an SID ∆, the set [[φ|∆]] is either finite or
it has an infinite subset of bounded treewidth.

6 [[SLR]]⊆ [[SO]]

Since SLR and MSO define incomparable treewidth-unbounded sets of structures, it is
natural to ask for a logic that subsumes them both. In this section, we prove that SO is
such a logic. Since MSO is a syntactic subset of SO, we have [[MSO]]⊆ [[SO]] trivially.

In the rest of this section, we show that [[SLR]] ⊆ [[SO]] using the fact that each
model of a predicate atom in SLR is built according to a finite unfolding tree indicat-
ing the partial order in which the rules of the SID are used in the inductive definition
of the satisfaction relation10. More precisely, the model can be decomposed into pair-
wise disjoint substructures, each being the model of the quantifier- and predicate-free
subformula of a rule in the SID, such that there is a one-to-one mapping between the
nodes of the tree and the decomposition of the model. We use second-order variables,
interpreted as finite relations, to define the unfolding tree and the mapping between the
nodes of the unfolding tree and the tuples in the interpretation of the relation symbols
from the model. These second-order variables are existentially quantified and the re-
sulting SO formula describes the model alone, without the unfolding tree that witnesses
its decomposition according to the rules of the SID.

10 Unfolding trees are for SIDs what derivation trees are for context-free grammars.



In the following, let Σ
def
= {R1, . . . ,RN ,c1, . . . ,cM} be the signature of SLR and let

∆
def
= {r1, . . . , rR} be a given SID. Without loss of generality, for each relation symbol

Ri ∈ Σ, we assume that there is at most one occurrence of an atom Ri(y1, . . . ,y#Ri) in
each rule from ∆. If this is not the case, we split the rule by introducing a new predicate
symbol for each relation atom with relation symbol Ri, until the condition is satisfied.

We define unfolding trees formally. For a tree T = (N ,F ,r,λ) and a vertex n ∈N ,
we denote by T [n] the subtree of T whose root is n. For a quantifier- and predicate-free
formula φ, we denote by φn the formula in which every relation atom R(x1, . . . ,x#R)
is annotated as Rn(x1, . . . ,x#R). Atoms Rn(x1, . . . ,x#R) (and consequently formulas φn)
have the same semantics as atoms R(x1, . . . ,x#R) (resp. formulas φ); these annotations
serve purely as explanatory devices in our construction (Proposition 5) that keep track
of the node of the unfolding tree where a relation atom was introduced.

Definition 8. An unfolding tree for a predicate atom A(ξ1, . . . ,ξ#A) is a ∆-labeled tree
T =(N ,F ,r,λ), such that λ(r)∈ def∆(A) and, for each vertex n∈N , if B1(z1,1, . . . ,z1,#B1),
. . ., Bh(zh,1, . . . ,zh,#Bh) are the predicate atoms that occur in λ(n), then p1, . . . , ph are
the children of n in T , such that λ(p`) ∈ def∆(B`), for all ` ∈ [1,h]. An unfolding tree
T = (N ,F ,r,λ) for a predicate atom A(ξ1, . . . ,ξ#A) gives rise to a predicate-free for-
mula defined inductively as follows:

Θ(T ,A(ξ1, . . . ,ξ#A))
def
=(

∃y1 . . .∃ym . ψ
r ∗∗ h

`=1Θ(T [p`],B`(z`,1, . . . ,z`,#B`
))
)
[x1/ξ1, . . . ,x#A/ξ#A],

where λ(r)=A(x1, . . . ,x#A)←∃y1 . . .∃ym . ψ∗∗ h
`=1B`(z`,1, . . . ,z`,#B`

), for a quantifier-
and predicate-free formula ψ, p1, . . . , ph are the children of the root r in T , correspond-
ing to the predicate atoms B1(z1,1, . . . ,z1,#B1), . . . ,Bh(zh,1, . . . ,zh,#Bh), respectively.

The unfolding trees of a predicate atom describe the set of models of that predicate
atom. The following lemma is standard and we include it for self-containment reasons:

Lemma 4. For any structure σ and store ν, σ |=ν

∆
A(ξ1, . . . ,ξ#A) iff there exists an un-

folding tree T = (N ,F ,r,λ) for A(ξ1, . . . ,ξ#A), such that σ |=ν Θ(T ,A(ξ1, . . . ,ξ#A)).

Without loss of generality, we build a SO formula that defines the models of a rela-
tion atom A(ξ1, . . . ,ξ#A). This is because, for any formula φ with fv(φ) = {x1, . . . ,xn},
one can add a new rule Aφ(x1, . . . ,xn)← φ, for a predicate symbol Aφ not occurring
in ∆. Let P be the maximum number of occurrences of predicate atoms in a rule from
∆φ. We use second-order variables Y1, . . . ,YP of arity 2, for the edges of the tree and
X0, . . . ,XR of arity 1, for the labels of the nodes in the tree i.e., the rules of ∆. Then
the SO formula T(x,{Xi}R

i=1,{Yj}P
j=1) is defined as the conjunction of SO formulæ that

describe the following facts:
1. the root x belongs to Xi, for some ri ∈ def∆(A),
2. the sets X1, . . . ,XR are pairwise disjoint,
3. each vertex in X1∪ . . .∪XR is reachable from x by a path with edges Y1, . . . ,YP,
4. each vertex in X1∪ . . .∪XR, except for x, has exactly one incoming edge,
5. x has no incoming edge,



6. each vertex from Xi has exactly h outgoing edges Y1, . . . ,Yh, each to a vertex from
X j` , respectively, such that r j` ∈ def∆(B`), for all `∈ [1,h], where B1(z1,1, . . . ,z1,#B1),
. . ., Bh(zh,1, . . . ,zh,#Bh) are the predicate atoms that occur in ri.

We build a SO formula F(ξ1, . . . ,ξ#A,x,{Xi}R
i=1,{Yj}P

j=1,{{Zk,`}#Rk
`=1}N

k=1) expressing
the relationship between the unfolding tree T and the relations σ(Ri). We recall that,
for every node n of T and every relation atom R, there is at most one annotated relation
atom Rn

k(ξ1, . . . ,ξ#Ri) in Θ(T ,A(ξ1, . . . ,ξ#A)). The formula F now uses second-order
variables Zk,`, of arity two that encode (partial) functions mapping a tree vertex n to
the value of ξ` for the (unique) annotated atom Rn

k(ξ1, . . . ,ξ#Ri) (in case such an atom
exists). The formula F is the conjunction of following SO-definable facts:

(i) each second-order variable Zk,` denotes a functional binary relation,
(ii) for each tree node labeled by a rule ri and each atom Rk(ξ1, . . . ,ξ#Rk) occurring at

that node, the interpretation of Rk contains a tuple, whose elements are related to
the node via Zk,1, . . . ,Zk,#Rk :∧

i∈[1,R]
∧

Rk occurs in ri
∀y . Xi(y)→∃z1 . . .∃z#Rk . Rk(z1, . . . ,z#Rk)∧

∧
`∈[1,#Rk]

Zk,`(y,z`)

(iii) for any (not necessarily distinct) rules ri and r j such that an atom with relation
symbol Rk occurs in both, the tuples (from the interpretation of Rk) are distinct:∧

i, j∈[1,R]
∧

Rk occurs in ri,r j
∀y∀y′∀z1∀z′1 . . .∀z#Rk∀z′#Rk

.(
Xi(y)∧X j(y′)∧

∧
`∈[1,#Rk]

(Zk,`(y,z`)∧Zk,`(y′,z′`))
)
→

∨
`∈[1,#Rk]

z` 6= z′`

(iv) each tuple from a the interpretation of Rk must have been introduced by a relation
atom with relation symbol Rk that occurs in a rule ri:∧

k∈[1,N]

∀z1 . . .∀z#Rk . Rk(z1, . . . ,z#Rk)→∃y .
∨

Rk occurs in ri

(
Xi(y) ∧

∧
`∈[1,#Rk]

Zk,`(y,z`)
)

(v) two terms ξm and χn that occur in two relation atoms Rk(ξ1, . . . ,ξ#Rk) and R`(χ1, . . . ,χ#R`
)

within rules ri and r j, respectively, and are constrained to be equal (i.e., via equal-
ities and parameter passing), must be equated:∧

k,`∈[1,N]

∧
Rk occurs in ri
R` occurs in r j

∧
m∈[1,#Rk]

∧
n∈[1,#R`]

∀y∀y′∀z′∀z′ .(
Xi(y)∧X j(y′)∧ isEqk,`,m,n(y,y

′,{Xi}R
i=1,{Yj}P

j=1)∧Zk,m(y,z)∧Z`,n(y′,z′)
)
→ z = z′

The formula isEqk,`,m,n(y,y
′,{Xi}R

i=1,{Yj}P
j=1) asserts that there is a path in the

unfolding tree between the store values (i.e., vertices of the tree) of y and y′,
such that the m-th and n-th variables of the relation atoms Rk(z1, . . . ,z#Rk) and
R`(z′1, . . . ,z

′
#R`

) are bound to the same value.
(vi) a disequality ξ 6= χ that occurs in a rule ri is propagated throughout the tree to

each pair of variables that occur within two relation atoms Rk(ξ1, . . . ,ξ#Rk) and
R`(χ1, . . . ,χ#R`

) in rules r jk and r j` , respectively, such that ξ is bound ξr and χ to
χs by equality atoms and parameter passing:∧

ξ6=χ occurs in ri

∧
k,`∈[1,N]

∧
Rk occurs in r jk
R` occurs in r j`

∧
r∈[1,#Rk]

∧
s∈[1,#R`]

∀y∀y′∀y′′∀z′∀z′′ .(
Xi(y)∧X jk(y

′)∧X j`(y
′′)∧Zk,r(y′,z′)∧Z`,s(y′′,z′′) ∧

varEqξ,k,r(y,y
′,{Xi}N

i=1,{Yj}M
j=1)∧ varEqχ,`,s(y,y

′′,{Xi}N
i=1)

)
→ z′ 6= z′′



The formula varEqξ,k,r(x,y,{Xi}R
i=1,{Yj}P

j=1) states that the variable ξ occuring in
the label of the unfolding tree vertex x is bound to the variable zr that occurs in a
relation atom Rk(z1, . . . ,z#Ri) in the label of the vertex y.

(vii) each term in A(ξ1, . . . ,ξ#A) that is bound to a variable from a relation atom Rk(z1, . . . ,z#Rk)
in the unfolding, must be equated to that variable:∧
ri∈def∆(A)

∧
j∈[1,#A]

∀y∀z .
(
Xi(x)∧varEqξ j ,k,r(x,y,{Xi}R

i=1,{Yj}P
j=1)∧Zk,r(y,z)

)
→ ξ j = z

The formulæ isEqk,`,m,n(x,y,{Xi}R
i=1,{Yj}P

j=1) and varEqξ,k,r(x,y,{Xi}R
i=1,{Yj}P

j=1) above
are definable in MSO, using standard tree automata construction techniques, similar to
the definition of MSO formulæ that track parameters in an unfolding tree for SL, with
edges definable by MSO formulæ over the signature of SL [33]. To avoid clutter, we
defer such definitions to a long version of this paper.

Summing up, the SO formula defining the models of the predicate atom A(ξ1, . . . ,ξ#A)
with respect to the SID ∆ is the following:

AA
∆(ξ1, . . . ,ξ#A)

def
= ∃x∃{Xi}R

i=1∃{Yj}P
j=1∃{Z1,`}#R1

`=1 . . .∃{ZK,`}#RK
`=1 .

T(x,{Xi}R
i=1,{Yj}P

j=1)∧F(ξ1, . . . ,ξ#A,x,{Xi}R
i=1,{Yj}P

j=1,{{Zk,`}#Rk
`=1}

N
k=1)

The correctness of the above construction is proved in the following proposition, that
also shows [[SLR]]⊆ [[SO]]:

Proposition 5. Given an SID ∆ and a predicate atom A(ξ1, . . . ,ξ#A), for each structure
σ and store ν, we have σ |=ν

∆
A(ξ1, . . . ,ξ#A) ⇐⇒ σ 
ν AA

∆
(ξ1, . . . ,ξ#A).

7 [[MSO]]kD ⊆ [[SLR]]

We prove that, for any MSO sentence φ and any integer k≥ 1, there exists an SID ∆(k,φ)
that defines a predicate Ak,φ of arity zero, such that [[Ak,φ()|∆(k,φ)]] = [[φ]]kD i.e., the set
of guarded models of φ of treewidth at most k corresponds to the set of structures SLR-
defined by the predicate atom Ak,φ() interpreted in the SID ∆(k,φ). Our proof leverages
from a result of Courcelle [21], stating that the set of models of bounded treewidth of
a given MSO sentence can be described by a set of recursive equations, written using
an algebra of operations on structures. This result follows up in a long-standing line
of work (known as Feferman-Vaught theorems [41]) that reduces the evaluation of an
MSO sentence on the result of an algebraic operation to the evaluation of several related
sentences in the arguments of the respective operation.

7.1 Courcelle’s Theorem

In order to explain our construction (given in §7.2), we recall first a result of Courcelle.
Because this result applies to general structures (U,σ), we do not assume the usual
U = U in this section. Courcelle gives a characterization of the structures of bounded
treewidth that satisfy a given MSO formula φ by an effectively constructible set of re-
cursive equations. This set of equations uses two operations on structures, namely glue
and fgcst j, that are lifted to sets of structures, as usual. The result is developed in two



steps. The first step builds a generic set of equations, that characterizes all structures of
bounded treewidth. This set of equations is then refined, in the second step, to describe
only models of φ.

Operations on Structures Let Σ1 and Σ2 be two (possibly overlapping) signatures.
The glueing operation glue : Str(Σ1)× Str(Σ2)→ Str(Σ1∪Σ2) is the union of struc-
tures with disjoint universes, followed by fusion of the elements denoted by constants.
Formally, given Si = (Ui,σi), for i = 1,2, such that U1 ∩U2 = /0, let ∼ be the least
equivalence relation on U1∪U2 such that σ1(c)∼ σ2(c), for all c∈ Σ∩Σ′. Let [u] be the
equivalence class of u ∈U1∪U2 with respect to ∼. Then glue(S1,S2)

def
= (U,σ), where

U def
= {[u] | u ∈U1∪U2} and σ is defined as follows:

σ(R)
def
=

{〈[u1], . . . [u#R]〉 | 〈u1, . . . ,u#R〉 ∈ σ1(R)}, if R ∈ Σ1 \Σ2
{〈[u1], . . . [u#R]〉 | 〈u1, . . . ,u#R〉 ∈ σ2(R)}, if R ∈ Σ2 \Σ1
{〈[u1], . . . [u#R]〉 | 〈u1, . . . ,u#R〉 ∈ σ1(R)∪σ2(R)}, if R ∈ Σ1∩Σ2

σ(c)
def
=

{
[σ1(c)], if c ∈ Σ1
[σ2(c)], if c ∈ Σ2 \Σ1

Since we match isomorphic structures, the nature of the elements of U (i.e., equivalence
classes) is not important. The forget operation fgcst j : Str(Σ)→ Str(Σ\{c j}) simply
drops the constant c j from the domain of its argument.

Structures of Bounded Treewidth Let k≥ 1 be an integer, Σ= {R1, . . . ,RN ,c1, . . . ,cM}
be a signature and Π = {cM+1, . . . ,cM+k+1} be a set of constants disjoint from Σ, called
ports. We consider variables Yi, for all subsets Πi ⊆Π, denoting sets of structures over
the signature Σ∪Πi. The equation system now consists of recursive equations of the
form Y0 ⊇ f (Y1, . . . ,Yn), where each f is either glue, fgcstM+ j, for any j ∈ [1,k+1], or
a singleton relation of type Ri, of type Ri, consisting of a tuple with at most k+1 distinct
elements, for any i ∈ [1,N]. We denote this set of equations by Tw(k). The structures
of treewidth at most k correspond to a component of the least solution of Tw(k), in the
domain of tuples of sets ordered by pointwise inclusion, see e.g., [22, Theorem 2.83].

Models of MSO Formulæ We recall that the quantifier rank qr(φ) of an MSO formula
φ is the maximal depth of nested quantifiers i.e., qr(φ) def

= 0 if φ is an atom, qr(¬φ1)
def
=

qr(φ1), qr(φ1∧φ2)
def
= max(qr(φ1),qr(φ2)) and qr(∃x . φ1) = qr(∃X . φ1)

def
= qr(φ1)+1.

We denote by Fr
MSO the set of MSO sentences of quantifier rank at most r. This set

is finite, up to logical equivalence. For a structure S = (U,σ), we define its r-type as
typer(S) def

= {φ ∈ Fr
MSO | S 
 φ}. We assume the sentences in typer(S) to use the signature

over which S is defined; this signature will be clear from the context in the following.

Definition 9. An operation f : Str(Σ1)×. . .×Str(Σn)→ Str(Σn+1) is (effectively) MSO-
compatible11 iff typer( f (S1, . . . ,Sn)) depends only on (and can be effectively computed
from) typer(S1), . . . , typer(Sn) by an abstract operation f ] : (pow(Fr

MSO))
n→ pow(Fr

MSO).

Courcelle establishes that glueing and forgetting of constants are effectively MSO-
compatible, with effectively computable abstract operations glue] and fgcst]M+i, for

11 Also referred to as smooth operations in [41].



i∈ [1,k+1], see e.g., [21, Lemmas 3.2 and 3.3]. Then one can build from Tw(k) a set of
recursive equations Tw](k) of the form Y τ0

0 = f (Y τ1
1 , . . . ,Y τn

n ), where Y0 = f (Y1, . . . ,Yn)

is an equation from Tw(k) and τ0, . . . ,τn are qr(φ)-types such that τ0 = f ](τ1, . . . ,τn).
Intuitively, each annotated variable Y τ denotes the set of structures whose qr(φ)-type
is τ, from the Y -component of the least solution of Tw(k). The set of models of φ of
treewidth at most k is the union of the Y τ-components of the least solution of Tw](k),
such that φ ∈ τ, see e.g., [21, Theorem 3.6].

7.2 Encoding Types in SLR

We explain the proof for [[MSO]]kD ⊆ [[SLR]]. Instead of using the set of recursive equa-
tions Tw(k) from the previous subsection, we give an SID ∆(k) that characterizes the
guarded structures of bounded treewidth (Figure 1a). The idea is to use the separating
conjunction for simulating the glueing operation. However, the separating conjunction
is interpreted as composition of compatible structures, so that the universes cannot be
disjoint, as required by the glueing operation. Note that this condition is stronger than
the disjointness of structures i.e., the disjointness of the interpretations of each relation
symbol from the signature (Def. 2).

This is also the place where we make use of the assumption that we only consider
guarded structures i.e., we use the unary relation symbol D to enforce disjointness, by
means of composition. Intuitively, in the SID ∆(k), D “collects” the values assigned to
the existentially quantified variables created by rule (2) and the top-level rule (4) during
the unraveling. In particular, the relation symbol D ensures that (i) the variables of a
predicate atom are mapped to pairwise distinct values and (ii) the composition of two
guarded structures is the same as glueing them.

To alleviate the presentation, the SID ∆(k) defines only structures (U,σ)∈ Str(Σ,D)
with at least k+1 distinct elements in σ(D) (rule 4) and σ(R) 6= /0 for at least one rela-
tion symbol R∈Σ (rule 3). The cases of structures such that ||σ(D)|| ≤ k or

⋃
R∈Σ σ(R)=

/0 can be dealt with easily, by adding more rules to ∆(k). We show below that ∆(k) de-
fines all structures of k-bounded treewidth (except for the aforementioned corner cases):

Lemma 5. For any guarded structure (U,σ)∈ Str(Σ,D), such that ||σ(D)|| ≥ k+1 and
σ(R) 6= /0, for at least some R ∈ Σ, we have tw(σ)≤ k if and only if (U,σ) |=∆(k) Ak().

The second step of our construction is the annotation of the rules in ∆(k) with qr(φ)-
types, in order to obtain an SID ∆(k,φ) describing the models of an MSO sentence φ,
of treewidth at most k. For this, we consider the set of ports Π = {cM+1, . . . ,cM+k+1}
disjoint from Σ, which we use to encode the values of the variables x1, . . . ,xk+1:

Definition 10. Let Σ= {R1, . . . ,RN ,c1, . . . ,cM} be a signature, Π= {cM+1, . . . ,cM+k+1}
be a set of constants not in Σ, and ν be a store mapping x1, . . . ,xk+1 to elements
of U. For a structure (U,σ) ∈ Str(Σ,D) with σ(D) ∩ {ν(x1), . . . ,ν(xk+1)} = /0, we
define a structure encode(σ,ν) ∈ Str(Σ∪Π,D), with universe U, that agrees with σ

over Σ and maps cM+i to ν(xi), for all i ∈ [1,k+1], such that encode(σ,ν)(D) =
σ(D)∪{ν(x1), . . . ,ν(xk+1)}.

The correctness of our construction will rely on the fact that the composition acts
like glueing, for structures with universe U, whose sets of elements involved in some
relation may only overlap at the interpretation of the ports from Π:



A(x1, . . . ,xk+1)← A(x1, . . . ,xk+1)∗A(x1, . . . ,xk+1) (1)

A(x1, . . . ,xk+1)← ∃y .D(y)∗A(x1, . . . ,xk+1)[xi/y], for all i ∈ [1,k+1] (2)

A(x1, . . . ,xk+1)← R(y1, . . . ,y#R), for all R ∈ Σ and y1, . . . ,y#R ∈ {x1, . . . ,xk+1} (3)

Ak()← ∃x1 . . .∃xk+1 .D(x1)∗ . . .∗D(xk+1)∗A(x1, . . . ,xk+1) (4)

(a)

Aτ(x1, . . . ,xk+1)← Aτ1(x1, . . . ,xk+1)∗Aτ2(x1, . . . ,xk+1), where τ = glue](τ1,τ2) (5)

Aτ(x1, . . . ,xk+1)←∃y .D(y)∗Aτ1(x1, . . . ,xk+1)[xi/y], for all i ∈ [1,k+1], (6)

where τ = glue](fgcst]M+i(τ1),ρi) for the type ρi of some structure
S ∈ Str({cM+i},D) with singleton universe and S 
D(cM+i),

Aτ(x1, . . . ,xk+1)← R(y1, . . . ,y#R), for some y1, . . . ,y#R ∈ {x1, . . . ,xk+1}, (7)
where τ = typeqr(φ)(S), S ∈ Str(Σ∪{cM+1, . . . ,cM+k+1},D) and
S 
 R(y1, . . . ,y#R)[x1/cM+1, . . . ,xk+1/cM+k+1]∗

∗∗ 1≤i< j≤k+1cM+i 6= cM+ j ∗∗ 1≤i≤k+1D(cM+i)

Ak,φ()← ∃x1 . . .∃xk+1 .D(x1)∗ . . .∗D(xk+1)∗Aτ(x1, . . . ,xk+1) (8)
for all τ such that φ ∈ τ

(b)

Fig. 1. The SID ∆(k) defining structures of treewidth at most k (a) and its annotation ∆(k,φ)
defining the models of an MSO sentence φ, of treewidth at most k (b)

Lemma 6. For an integer r≥ 0, a store ν and disjoint compatible structures (U,σ1),(U,σ2)∈
Str(Σ∪Π,D), such that Rel(σ1)∩Rel(σ2)⊆{σ1(cM+1), . . . ,σ1(cM+k+1)} and (σ1(D)∪
σ2(D))∩{ν(xi) | i ∈ [1,m]}= /0, we have:

typer(encode(σ1 •σ2,ν)) = glue](typer(encode(σ1,ν)), typer(encode(σ2,ν)))

Let ∆(k,φ) be the set of rules from Figure 1 (b). The main property of this SID is
stated and proved below:

Proposition 6. Given k≥ 1 and an MSO sentence φ, for any guarded structure (U,σ)∈
Str(Σ,D), we have: (1) (U,σ)
 φ and tw(σ)≤ k if and only if (2) (U,σ) |=∆(k,φ) Ak,φ().

The above result shows that SLR can define the guarded models σ ∈ Str(Σ,D) of a
given MSO formula whose treewidth is bounded by a given integer. We do not know,
for the moment, if this result holds on unguarded structures as well.

The above construction of the SID ∆(k,φ) is effectively computable, except from
rule 7, where one needs to determine the type of a structure S = (U,σ) with infinite
universe. However, we argue in the following that determining this type can be reduced
to computing the type of a finite structure. This type can be determined by solving
finitely many MSO model checking problems on finite structures, each of which being
known to be PSPACE-complete [47].

Given an integer n≥ 0 and a structure S = (U,σ)∈ Str(Σ), we define the finite struc-
ture Sn = (Un,σ), where Un def

= Dom(σ)∪{u1, . . . ,un}, for pairwise distinct elements
u1, . . . ,un ∈ U\Dom(σ). Then, for any quantifier rank r, the structures S and S2r

have
the same r-type, as shown below:

Lemma 7. Given r ≥ 0 and S = (U,σ) ∈ Str(Σ), we have typer(S) = typer(S2r
).



8 The Remaining Cases

We present the results from Table 1, not already covered by §4, §5, §6 and §7.

[[SO]]kD 6⊆ [[MSO]] First, [[SO]]kD 6⊆ [[MSO]] follows from the fact that any non-recognizable
context-free word language, corresponding to a non-MSO-definable set of structures
can be defined in SLR (Proposition 3). Since [[SLR]]⊆ [[SO]], we obtain that [[SO]]kD 6⊆
[[MSO]]. Moreover, [[SO]] 6⊆ [[MSO]] follows from the fact that our counterexample in-
volves only structures of treewidth one (i.e., lists encoding words as in §4).

[[SLR]]kD ⊆ [[SO]] By applying the translation of SLR to SO from §6 to ∆(k) (Fig. 1a)
and to a given SID ∆ defining a predicate A of zero arity, respectively, and taking the
conjunction of the results with the SO formula defining guarded structures12, we obtain
an SO formula that defines the set [[A()|∆]]kD, thus proving that [[SLR]]kD ⊆ [[SO]].

[[(M)SO]]kD⊆ [[(M)SO]] For each given k≥ 1, there exists an MSO formula θk that defines
the structures of treewidth at most k [22, Proposition 5.11]. This is a consequence of the
Graph Minor Theorem proved by Robertson and Seymour [45], combined with the fact
that bounded treewidth graphs are closed under taking minors and that the property of
having a given finite minor is MSO-definable13. Then, for any given (M)SO formula φ,
the (M)SO formula φ∧θk defines the models of φ of treewidth at most k.

Open Problems The following problems from Table 1 are currently open: [[SLR]]kD ⊆
[[SLR]] and [[SO]]kD ⊆ [[SLR]], both conjectured to have a negative answer. In particular,
the difficulty concerning [[SLR]]kD ⊆ [[SLR]] is that, in order to ensure treewidth bound-
edness, it seems necessary to force the composition of structures to behave like glueing
(see the definition of ∆(k) in Fig. 1a), which is however difficult to ensure without the
additional predicate symbol D.

Since [[MSO]]kD ⊆ [[SLR]] but [[MSO]] 6⊆ [[SLR]], it is natural to ask for the exis-
tence of a fragment of SLR that describes only MSO-definable families of structures of
bounded treewidth. Unfortunately, since SLR can define context-free languages (Prop.
3), the MSO-definability of the set of models of a SLR formula is undecidable, as a
consequence of the undecidability of the recognizability of context-free languages [31].
On the other hand, the treewidth-boundedness of the set of models of a SLR formula is
an open problem, related to the open problem [[SLR]]kD ⊆ [[SLR]] above.

9 Conclusions

We have compared the expressiveness of SLR, MSO and SO, in general and for mod-
els of bounded treewidth. Interestingly, we found that SLR and MSO are, in general,
incomparable and subsumed by SO, whereas the models of bounded treewidth of MSO
can be defined by SLR, modulo augmenting the signature with a unary relation symbol
used to store the elements that occur in the original structure.

12 ∧
R∈Σ∀x1 . . .∀x#R . R(x1, . . . ,x#R)→

∧
i∈[1,#R]D(xi).

13 The proof of Robertson and Seymour does not build θk, see [3] for an effective proof.
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A Proofs

Proposition 1. The set {Kn | n ∈ N} is strictly treewidth-unbounded.

Proof (Proof of Proposition 1). Let Kn
def
= (V ,E), modulo isomorphism. We prove that

tw(Kn) = n−1, for all n≥ 2, by showing that, in every tree decomposition (N ,F ,r,λ)



of Kn
def
= (V ,E) there is a node p ∈ N , such that λ(p) = V . By induction on n ≥ 2,

the base case n = 2 follows immediately from point (1) of Def. 5. For the inductive
step n > 2, let u ∈ V be a vertex and let p ∈ N be the node of least depth, such that
u ∈ λ(p). By point (2) of Def. 5, this node is unique. Let {v1, . . . ,vn−1}

def
= V \{u}. By

the inductive hypothesis, there exists a node m ∈ N , such that λ(m) = {v1, . . . ,vn−1},
because the restriction of (V ,E) to {v1, . . . ,vn−1} is a clique and (N ,F ,r,λ) is also a
tree decomposition of that clique. Since (u,v1), . . . ,(u,vn−1)∈E , by point (1) of Def. 5,
there exists nodes q1, . . . ,qn−1 ∈N , such that u,vi ∈ λ(qi), for all i ∈ [1,n−1]. By the
choice of p, these nodes are all descendants of p, because u ∈ λ(qi), for all i ∈ [1,n−1]
and p has the lowest depth among all such nodes. We distinguish two cases:

– m is not a descendant of p, then let q be the deepest common ancestor of m and p.
Since vi ∈ λ(qi)∩λ(m), we obtain vi ∈ λ(q), for all i ∈ [1,n−1], by point (2) of
Def. 5. This leads to u,v1, . . . ,vn−1 ∈ λ(p), by the same argument.

– m is a descendant of p and let q′i, . . . ,q
′
n−1 be the deepest common ancestors of m

and q1, . . . ,qn−1, respectively. Since vi ∈ λ(qi)∩λ(m), we obtain vi ∈ λ(q′i), for all
i ∈ [1,n−1], by point (2) of Def. 5. Since q′1, . . . ,q

′
n−1 are all ancestors of m, they

are linearly ordered by the ancestor relation and let q′k be the deepest such node.
Then we obtain u,v1, . . . ,vn−1 ∈ λ(q′k), by point (2) of Def. 5.

Proposition 2. Given structures (U,σ) ' (U ′,σ′), for any sentence φ of SLR and any
SID ∆, we have (U,σ) |=∆ φ ⇐⇒ (U ′,σ′) |=∆ φ.

Proof (Proof of Proposition 2). By induction on the definition of the satisfaction re-
lation |=∆, we show that σ |=ν

∆
ψ ⇐⇒ σ′ |=h◦ν

∆
ψ, for any store ν and any bijection

h : U →U ′, such that, for any relation symbol R ∈ Σ, we have 〈u1, . . . ,un〉 ∈ σ(R) ⇐⇒
〈h(u1), . . . ,h(un)〉 ∈ σ′(R) and, for any constant c ∈ Σ, we have h(σ(c)) = σ′(c), as in
Def. 3. We consider the following cases:

– φ= ξ ./ χ, for ./∈{=, 6=}: we prove only the case where ξ∈V(1) and χ∈{c1, . . . ,cM},
the other cases being similar. By the above point, for all ./∈ {=, 6=}, by the defini-
tion of h, we have:
• σ(R) = /0 ⇐⇒ σ′(R) = /0, for all R ∈ Σ, and
• ν(ξ) ./ σ(χ) ⇐⇒ h(ν(ξ)) ./ h(σ(χ)) ⇐⇒ (h◦ν)(ξ) ./ σ′(χ).

– φ = R(ξ1, . . . ,ξ#R): 〈(σ,ν)(ξ1), . . . ,(σ,ν)(ξ#R)〉 ∈ σ(R) ⇐⇒ 〈h((σ,ν)(ξ1)), . . . ,
h((σ,ν)(ξ#R))〉 ∈σ′(R). If ξ1, . . . ,ξ#R ∈V(1), the latter condition is 〈(h◦ν)(ξ1), . . . ,
(h◦ν)(ξ#R)〉 ∈σ′(R). Else, if ξ1, . . . ,ξ#R ∈{c1, . . . ,cM}, the condition is 〈h(σ(ξ1)),
. . . ,h(σ(ξ#R))〉 ∈σ′(R). The general case ξ1, . . . ,ξ#R ∈V(1)∪{c1, . . . ,cM} is a com-
bination of the above cases.

– φ = A(ξ1, . . . ,ξ#A): this case follows by the induction hypothesis.
– φ= φ1∗φ2: σ |=ν

∆
φ1∗φ2 if and only if there exists disjoint and compatible structures

σ1 •σ2 = σ, such that σi |=ν

∆
φi, for all i = 1,2. We define the structures σ′1 and σ′2

as follows, for i = 1,2:
• σ′i(R) = {〈h(u1), . . . ,h(u#R)〉 | 〈u1, . . . ,u#R〉 ∈ σi(R)}, for all relation symbols
R ∈ Σ,
• σ′i(c) = h(σi(c)), for all constant symbols c ∈ Σ.

Then σ′1 and σ′2 are disjoint and compatible and σ′ = σ′1 •σ′2. Moreover, by the
inductive hypothesis, we have σ′i |=ν

∆
φi, for all i = 1,2, leading to σ′ |=ν

∆
φ1 ∗φ2.



– φ = ∃x . ψ: by the inductive hypothesis, we obtain σ |=ν[x←u]
∆

ψ ⇐⇒ σ′ |=h◦(ν[x←u])
∆

ψ ⇐⇒ σ′ |=(h◦ν)[x←h(u)]
∆

ψ ⇐⇒ σ′ |=h◦ν
∆
∃x . ψ.

Proposition 3. Given a context-free grammar G = (N,X ,∆), there exists an SID ∆G
and a binary predicate symbol AX ∈ def(∆G), such that w ∈ L(G) ⇐⇒ σw |=∆G
AX (b,e), for all w ∈ A∗.

Proof (Proof of Proposition 3). Assume w.l.o.g that the context-free grammar G does
not produce the empty word and that it is in Greibach normal form i.e., contains only
production rules of the form Y0→ αY1 . . .Yi, where Y0, . . . ,Yi ∈ N, for some i≥ 0 and
some α ∈ A . For each nonterminal Y , we consider a binary relation symbol AY (x1,x2)
and for each production rule as above, we consider a rule:

AY0(x1,x2)← ∃y1 . . .∃yi .D(x1)∗Pα(x1)∗E(x1,y1)∗AY1(y1,y2)∗E(y2,y3)∗ . . .
∗E(yi−1,yi)∗AYi(yi,x2)

if i≥ 1 and AY0(x1,x2)←D(x1)∗Pα(x1)∗x1 = x2, if i = 0. Let ∆ be the set of the rules

above and let LY (G)
def
= {w ∈ A∗ | Y B∗w}, for all Y ∈ N. Let w = a1 . . .an ∈ A∗ be

any word and σw ∈ Str({D,E,Pa,Pb,b,e}) be the structure encoding w. We prove that
Y B∗w ⇐⇒ (σw,ν) |=∆ AY (x,y), for any word w ∈ A∗ and any nonterminal Y ∈ N,
where ν is any store such that ν(x) = σw(b) and ν(y) = σw(e).
“⇒” By induction on the length n ≥ 1 of the derivation of w from Y . The base case
n = 1 corresponds to a production rule Y → α in G that yields the rule AY (x1,x2)←
D(x1)∗Pα(x1)∗x1 = x2 in ∆ and σα |=∆ AY (b,e) follows. For the inductive step n > 1,
we assume w.l.o.g. that the derivation is ordered such that each nonterminal is fully
expanded before another nonterminal from the same rule (every derivation of a context-
free grammar can be reordered in this way). Let Y0 → αY1 . . .Yi be the first rule of
the derivation and let Y jB∗ w j be the sub-derivations of Y1, . . . ,Yi, respectively. Then
w = αw1 . . .wi. We can now choose structures σ0 •σ1 •· · ·•σi = σw, such that σ0(D) =
{v0}, σ0(Pα) = {v0}, σ0(E) = {(v j,v j+1) | j ∈ [0,n−1]}, σ0(b) = v0 and σ0(e) = vn,
for some set of pairwise different universe elements v0, . . . ,vn ∈ U. We denote by σ′j,
for 1 ≤ j ≤ i, the structure that is identical to σ j except that we set σ′j(b) = v j and
σ′j(e) = v j+1, where we set vn+1 = σw(e). We recognize that σ′j is isomorphic to σw j .
By the inductive hypothesis, we have σw j |=∆ AY j(b,e) for all 1 ≤ j ≤ i. By Prop. 2
we get that σ′j |=∆ AY j(b,e). Let ν be a store with ν(y j) = v j for all 1≤ j ≤ i. We now
recognize that:

(σ0•σ1• . . .•σi,ν) |=∆ D(b)∗Pα(b)∗E(b,y1)∗AY1(y1,y2)∗E(y2,y3)∗. . .∗E(yi−1,yi)∗AYi(yi,e).

Hence, σw |=∆ AY (b,e), as required.
“⇐” By induction on the length of the unfolding that defines the satisfaction relation. In
the base case, we have σα |=D(b)∗Pα(b)∗b= e, leading to Y B∗α, for a rule Y → α

of G. For the inductive step, assume that:

σw |=ν

∆ D(b)∗Pα(b)∗E(b,y1)∗AY1(y1,y2)∗E(y2,y3)∗ . . .∗E(yi−1,yi)∗AYi(yi,e)

for some store ν, where AY0(x1,x2)←∃y1 . . .∃yi .V(x1)∗Pα(x1)∗E(x1,y1)∗AY1(y1,y2)∗
E(y2,y3)∗ . . .∗E(yi−1,yi)∗AYi(yi,x2) is a rule of ∆, for some i ≥ 1. Then G has a rule
Y → αY1 . . .Yi. Moreover, there exist structures σ0 •σ1 • . . .•σi = σw, such that:



– σ0 |=ν D(b)∗Pα(b)∗E(b,y1)∗E(y2,y3)∗ . . .∗E(yi−1,yi),
– (σ j,ν) |=∆ AY j(y j,y j+1), for all j ∈ [1, i−1], and
– (σi,ν) |=∆ AYi(yi,e).

Let σ′j be the structures that agree with σ j, except that σ′j(b) = ν′(y j), σ′j(e) = ν(y j+1),
for all j∈ [1, i−1], and σ′i(e)=σw(e). It is easy to show that there exist words w1, . . . ,wi,
such that w = αw1 . . .wi and σw j ' σ′j, for all j ∈ [1, i]. By Prop. 2, we obtain σw j |=∆

AY j(b,e), hence Y jB∗w j, by the inductive hypothesis, thus leading to Y B∗w.

Lemma 1. Given an SID ∆, one can build a normalized SID ∆′ such that def(∆) ⊆
def(∆′) and for each structure σ and each predicate atom A(ξ1, . . . ,ξ#A), we have σ |=∆

∃ξi1 . . .∃ξin .A(ξ1, . . . ,ξ#A) ⇐⇒ σ |=∆′ ∃ξi1 . . .∃ξin .A(ξ1, . . . ,ξ#A), where {ξi1 , . . . ,ξin}=
{ξ1, . . . ,ξ#A}∩V(1).

Proof (Proof of Lemma 1). Let ∆ be an SID. For each predicate A ∈ def(∆) and each
partition {I1, . . . , Ik} of [1,#A], we consider a fresh predicate AI1,...,Ik of arity k ≥ 1, not
in def(∆). Let ∆′ be the SID obtained from ∆ by introducing, for each rule:

A(x1, . . . ,x#A)←∃y1 . . .∃ym . φ∗∗ h
`=1B

`(z`,1, . . . ,z`,#B`) ∈ ∆ (9)

where φ is a quantifier- and predicate-free formula and for each equivalence relation ≈
on the set of variables {x1, . . . ,x#A}∪{y1, . . . ,ym} that is compatible with all equalities
in φ i.e., x = y occurs in φ only if x≈ y, the following rules:

AI1,...,Ik(x1, . . . ,xk)←
(
∃y j1 . . .∃y jn . ψ∗∗ k

`=1B
`
J`1,...,J

`
s`
(zr`,1 , . . . ,zr

`,s`
)
)

(10)

[xi1/x1, . . . ,xik/xk]

A(x1, . . . ,x#A)← AI1,...,Ik(xi1 , . . . ,xik) (11)

where:
– ≈ induces the partitions {I1, . . . , Ik} of [1,#A] and {J`1, . . . ,J`s`} of [1,#B`], for each
` ∈ [1,k],

– xi j and zr
`,s`

are the first in their ≈-equivalence classes, respectively, in the total
order x1 < .. . < x#A < y1 < .. . < ym,

– ψ is obtained from φ by replacing each variable x, such that x≈ xi j with xi j , respec-
tively each z, such that z≈ zr

`,s j with zr
`,s j , and removing the trivial equalities of the

form x = x,
– the quantifier prefix ∃y j1 . . .∃y jn is the result of eliminating from ∃y1 . . .∃ym the

variables that do not occur in fv(ψ)∪
⋃h

`=1{z`,r1 , . . . ,zr
`,s`
}.

In particular, one can remove from ∆′ the rules containing unsatisfiable disequalities of
the form x 6= x, obtained from the above transformations. We are left with proving the
equivalence from the statement.
“⇒” Assume that σ |=ν

∆
A(ξ1, . . . ,ξ#A) for a store ν, and let ≈ be the equivalence

relation over {ξ1, . . . ,ξ#A}, defined as ξi ≈ ξ j ⇐⇒ (σ,ν)(ξi) = (σ,ν)(ξ j). We now
prove by induction that σ |=ν

∆
A(ξ1, . . . ,ξ#A) implies σ |=ν

∆′ AI1,...,Ik(ξi1 , . . . ,ξik), where
{I1, . . . , Ik} are the partitions of [1,#A] induced by ≈ and the ξi j are minimal represen-
tatives of I j in some fixed total order. Since σ |=ν

∆
A(ξ1, . . . ,ξ#A), there is a rule (9) in ∆,



a store ν′, that agrees with ν over ξ1, . . . ,ξ#A and structures σ0 • . . .•σh = σ, such that
σ0 |=ν′ φs and σi |=ν′

∆
B`(z`,1, . . . ,z`,#B`)s, for all ` ∈ [1,h], where s def

= [x1/ξ1, . . . ,xn/ξn]
is the substitution that replaces the formal parameters by terms. Let ≈′ be the equiv-
alence over x1 < .. . < x#A < y1 < .. . < ym defined as x ≈ y ⇐⇒ ν′(x) = ν′(y). By
the inductive hypothesis, we have σi |=ν′

∆′ B
`
J1,...,rs`

(zJ`,1 , . . . ,zr
`,s`

)s, where zr`,1 , . . . ,zr
`,s`

is the sequence of minimal representatives wrt ≈′. Since ≈′ ⊇ ≈, there exists a rule
of type (10) in ∆′ allowing to infer that σ |=ν

∆′ AI1,...,Ik(ξi1 , . . . ,ξik). We finally obtain
σ |=ν

∆′ A(ξ1, . . . ,ξ#A), by a rule of type (11).
”⇐” Assume that σ |=ν

∆′ A(ξ1, . . . ,ξ#A). Then, by a rule of type (11) from ∆′, we must
have σ |=ν

∆′ AI1,...,Ik(ξi1 , . . . ,ξik). We now prove by induction that σ |=ν

∆′ AI1,...,Ik(ξi1 , . . . ,ξik)

implies that σ |=ν′
∆
A(ξ1, . . . ,ξ#A), where ν′ is a store that maps each ξ j ∈ V(1), such

that j ∈ I j, into (σ,ν)(ξi j). Assume that σ |=ν′′
∆′ (ψ ∗∗ h

`=1B
`
J`1,...,J

`
s`
(zr`,1 , . . . ,zr

`,s`
))s,

by a rule of type (10), where ν′′ is a store that agrees with ν over ξi1 , . . . ,ξik and
s def
= [x1/ξi1 , . . . ,xk/ξik ] is a substitution. Then there exists structures σ0 • . . . •σh = σ,

such that σ0 |=ν′′ ψs and σ` |=ν′′
∆′ B

`
J`1,...,J

`
s`
(zr`,1 , . . . ,zr

`,s`
)s, for all `∈ [1,h]. By the defini-

tion of ∆′, there exists a rule of type (9) in ∆ and a corresponding equivalence relation≈
over x1 < .. . < x#A < y1 < .. . < ym, which induces the partitions {I1, . . . , Ik} of [1,#A]
and {J`1, . . . ,J`s`} of [1,#B`], for each ` ∈ [1,k], and xi j and zr

`,s`
are the first in their

≈-equivalence classes. We can now choose a store ν′′′, such that:
– (σ,ν′′′)(ξ j) = (σ,ν′′)(ξi j), for all j ∈ [1,k], and
– (σ,ν′′′)(z js) = (σ,ν′′)(zr`,qs) if j ∈ J`q, for all ` ∈ [1,h] and q ∈ [1,s`].

By the definition of ψ, we have σ0 |=ν′′′ φ. By the inductive hypothesis, we obtain
σ` |=ν′′′

∆
B`(z`,1, . . . ,z`,#B`), for all ` ∈ [1,h]. Hence σ |=ν′′′

∆
A(ξ1, . . . ,ξ#A), by a rule of

type (9).

Lemma 2. Given a normalized SID ∆, a predicate atom A(ξ1, . . . ,ξ#A) and an infinite
set U ⊆ U, for each structure σ and a store ν, such that σ |=ν

∆
A(ξ1, . . . ,ξ#A), there

exists a structure σ′, such that σ′ |=ν⇓U
∆

A(ξ1, . . . ,ξ#A) and ||Dom(σ)|| ≤ ||Dom(σ′)||.

Proof (Proof of Lemma 2). The structure σ′ is built inductively on the definition of
the satisfaction relation σ |=ν

∆
A(x1, . . . ,x#A). Since no existentially quantified variable

is constrained by equality during this derivation, one can use the definition of |=⇓U
∆

instead, thus ensuring that σ′ |=ν⇓U
∆

A(x1, . . . ,x#A). Moreover, since the values of all
existentially quantified variables are pairwise distinct in σ′, it follows that ||Dom(σ)|| ≤
||Dom(σ′)||.

Lemma 3. Given a normalized SID ∆ and a predicate atom A(ξ1, . . . ,ξ#A), we have
tw(σ) ≤W, for each structure σ and store ν, such that σ |=ν⇓U

∆
A(ξ1, . . . ,ξ#A), for

some infinite set U ⊆ U, where W ≥ 1 is a constant depending only on ∆.

Proof (Proof of Lemma 3). Let W be the maximal number of variables that occurs free
or bound in the right-hand side of a rule from ∆. Given an infinite set U ⊆ U, we build
a tree decomposition T = (N ,F ,r,λ) of σ, inductively on the definition of the satisfac-
tion relation σ |=ν⇓U

∆
A(ξ1, . . . ,ξ#A), such that

⋃
n∈N λ(n)⊆U∪{(σ,ν)(ξ1), . . . ,(σ,ν)(ξ#A)}.



Assume that σ |=ν⇓U
∆

A(ξ1, . . . ,ξ#A) is the consequence of a rule A(x1, . . . ,x#A)←
∃y1 . . .∃ym . ψ ∗∗ k

`=1B`(z`1, . . . ,z
`
#B`

) from ∆, where ψ is a quantifier- and predicate-

free formula, such that σ |=ν′⇓U
∆
∃y1 . . .∃ym . ψ∗∗ k

`=1B`(z`1, . . . ,z
`
#B`

), where ν′ is the
store that maps xi into ν(ξi), for all i ∈ [1,#A]. Then there exists a store ν′′ that agrees
with ν′ over x1, . . . ,x#A, such that ν′′(y1), . . . ,ν

′′(ym) ∈ U are pairwise distinct, and
structures σ0 •σ1 • . . .•σk = σ, such that σ0 |=ν′′ ψ and σ` |=ν′′⇓U`

∆
B`(z`1, . . . ,z

`
#B`

), for
all ` ∈ [1,k], where U1, . . . ,Uk is a partition of U into k infinite sets. Note that, because
U is infinite, such a partition always exists. By the inductive hypothesis, there exists a
tree decomposition T` = (N`,F`,r`,λ`) of σ`, such that tw(T`)≤W and

⋃
n∈N`

λ`(n)⊆
U`∪{ν′′(z`1), . . . ,ν′′(z`#B`

)}, for each ` ∈ [1,k].
We define the tree decomposition T = (N ,F ,r,λ) such that T1, . . . ,Tk are the im-

mediate subtrees of the root and λ(r) = {ν′′(x1), . . . ,ν
′′(x#A)}∪{ν′′(y1), . . . ,ν

′′(ym)}.
Then, for each relation atom R(z1, . . . ,z#R) that occurs in ψ, the set {ν′′(z1), . . . ,ν

′′(z#R)}
is a subset of the label of the root, thus fulfilling point (1) of Def. 5. To check point (2) of
Def. 5, let u∈ λi(ni)∩λ j(n j), where ni ∈Ni and n j ∈N j, for some 1≤ i < j≤ k. Since

σi |=ν′′⇓Ui
∆

Bi(zi
1, . . . ,z

i
#Bi

), σ j |=
ν′′⇓U j
∆

B j(z
j
1, . . . ,z

j
#B j

) and Ui∩U j = /0, we obtain that u
is not the image of an existentially quantified variable via ν′′, hence u = ν′′(z), for some
z ∈ {zi

1, . . . ,z
i
#Bi
} ∩ {z j

1, . . . ,z
j
#B j
} ⊆ {ξ1, . . . ,ξ#A} ∪ {y1, . . . ,ym}. Then u ∈ λ(r), thus

fulfilling point (2) of Def. 5. We have tw(T ) = max{||λ(r)||, tw(T1), . . . , tw(Tk)} ≤W ,
since ||λ(r)|| ≤ #A+m≤W , by the definition of λ(r), and tw(Ti)≤W , for all i ∈ [1,k],
by the inductive hypothesis.

Proposition 4. Given a SLR sentence φ and an SID ∆, the set [[φ|∆]] is either finite or
it has an infinite subset of bounded treewidth.

Proof (Proof of Proposition 4). Given a sentence φ, we introduce a fresh predicate Aφ

of arity zero and consider the rule Aφ()← φ. Then, for each structure σ, we have σ |=∆ φ

if and only if σ |=∆φ
Aφ(), where ∆φ

def
= ∆∪{Aφ()← φ}. Let ∆′

φ
be the normalized SID,

such that σ |=∆′
φ
Aφ(), by Lemma 1. Given an infinite subset U of U, there exists a

structure σ′ and a store ν, such that σ′ |=ν⇓U
∆′

φ

Aφ() and ||Dom(σ)|| ≤ ||Dom(σ′)||, by

Lemma 2. By Lemma 3, we also obtain tw(σ′) ≤W , where W depends only of ∆′
φ

and hence of ∆ and φ. If Aφ() has finitely many isomorphic models, there is nothing
to prove. Otherwise, consider an infinite sequence σ1,σ2, . . . of models of Aφ(), such
that ||Dom(σi)|| < ||Dom(σi+1)||, for all i ≥ 1 (note that such a sequence always exists
as otherwise there would only be finitely many isomorphic model). Then there exists a
sequence of models σ′1,σ

′
2, . . . of Aφ(), such that ||Dom(σi)|| ≤ ||Dom(σ′i)|| and tw(σ′i)≤

W , for all i ≥ 1. By going to a subsequence, if necessary, one can retrieve an infinite
treewidth-bounded set of models of φ.

Lemma 4. For any structure σ and store ν, σ |=ν

∆
A(ξ1, . . . ,ξ#A) iff there exists an un-

folding tree T = (N ,F ,r,λ) for A(ξ1, . . . ,ξ#A), such that σ |=ν Θ(T ,A(ξ1, . . . ,ξ#A)).

Proof (Proof of Lemma 4). We omit the annotations from φn, in this proof and simply
write φ because the annotations are not relevant for this proof. “⇒” By induction on the



definition of the satisfaction relation σ |=ν

∆
A(ξ1, . . . ,ξ#A). Assume the relation holds

because:
σ |=ν′

∆ ψs∗∗ h
`=1B`(z`,1, . . . ,z`,#B`

)s

for a rule r : A(x1, . . . ,x#A)← ∃y1 . . .∃ym . ψ ∗∗ h
`=1B`(z`,1, . . . ,z`,#B`

) from ∆, where
ψ is a quantifier- and predicate-free formula, s def

= [x1/ξ1, . . . ,x#A/ξ#A] is a substitution
and ν′ is a store that agrees with ν over {ξ1, . . . ,ξ#A}∩V(1). Then there exist structures
σ0 •σ1 • . . . •σh = σ, such that σ0 |=ν′ ψs and σ` |=ν′

∆
B`(z`,1, . . . ,z`,#B`

)s, for all ` ∈
[1,h]. By the induction hypothesis, there exist unfolding trees T` = (N`,F`,r`,λ`) for
B`(z`,1, . . . ,z`,#B`

)s, such that (σ`,ν
′) |=∆ Θ(T`,B`(z`,1, . . . ,z`,#B`

)s), for all ` ∈ [1,h].
Then T = (N ,F ,r,λ) is defined as N def

= {r} ∪
⋃h

`=1 N`, F def
= {(r,r`) | ` ∈ [1,h]} ∪⋃h

`=1 F` and λ = {(r, r)}∪
⋃h

`=1 λ`, assuming w.l.o.g. that N`∩Nk = /0, for all 1≤ ` <
k ≤ h and r 6∈

⋃h
`=1 N`. The check that σ |=ν Θ(T ,A(ξ1, . . . ,ξ#A)) is routine.

”⇐” By induction on the structure of T . Let p1, . . . , ph be the children of r in T . By
Def. 8, we have:

σ |=ν′
ψs∗∗ h

`=1Θ(T [p`],B`(z`,1, . . . ,z`,#B`
))s

where s def
= [x1/ξ1, . . . ,x#A/ξ#A] is a substitution, ν′ is a store that agrees with ν over

{ξ1, . . . ,ξ#A}∩V(1) and λ(r)=A(x1, . . . ,x#A)←∃y1 . . .∃ym . ψ∗∗ h
`=1B`(z`,1, . . . ,z`,#B`

)

is a rule from ∆. Then there exist structures σ0•σ1• . . .•σh =σ, such that σ0 |=ν′ ψs and
σ` |=ν′ Θ(T �p` ,B`(z`,1, . . . ,z`,#B`

))s, for all ` ∈ [1,h]. Since T [p`] is an unfolding tree
for B`(z`,1, . . . ,z`,#B`

)s, by the inductive hypothesis, we obtain σ` |=ν′
∆
B`(z`,1, . . . ,z`,#B`

)s,
for all ` ∈ [1,h]. Then, we have σ |=ν′

∆
ψs ∗∗ h

`=1B`(z`,1, . . . ,z`,#B`
)s, leading to σ |=ν

∆

A(ξ1, . . . ,ξ#A).

Proposition 5. Given an SID ∆ and a predicate atom A(ξ1, . . . ,ξ#A), for each structure
σ and store ν, we have σ |=ν

∆
A(ξ1, . . . ,ξ#A) ⇐⇒ σ 
ν AA

∆
(ξ1, . . . ,ξ#A).

Proof (Proof of Proposition 5). “⇒” By Lemma 4, there exists an unfolding tree T =
(N ,F ,r,λ) of A(ξ1, . . . ,ξ#A), such that σ |=ν Θ(T ,A(ξ1, . . . ,ξ#A)). Let Θ(T ,A(ξ1, . . . ,ξ#A))=
∃y1 . . .∃yK . Φ, where Φ is a quantifier- and predicate-free formula. Note that, by Def.
8, no second-order variables occur in Θ(T ,A(ξ1, . . . ,ξ#A)). Hence there exists a store
ν′ that agrees with ν over ξ1, . . . ,ξ#A, such that σ |=ν′ Φ. We define another store ν′′,
that agrees with ν and ν′ over ξ1, . . . ,ξ#A such that, moreover, we have:

– ν′′(x) = r,
– ν′′(Xi) = {n ∈N | λ(n) = ri}, for all i ∈ [1,R],
– ν′′(Yj) = {(n,m) ∈N ×N | m is the j-th child of n}, for all j ∈ [1,P]; we consider

that the order between the children of a vertex in an unfolding tree is the syntactic
order of their corresponding predicate atoms, in the sense of Def. 8,

– ν′′(Zk,`)= {(n,(σ,ν′)(ξ`)) | n ∈N , Rn
k(ξ1, . . . ,ξ#Rk) occurs in Φ}, for all k∈ [1,N]

and ` ∈ [1,#Rk].
We have σ
ν′′ T(x,{Xi}R

i=1,{Yj}P
j=1) because T is an unfolding tree for A(ξ1, . . . ,ξ#A),

by Def. 8. The proof of σ 
ν′′ F(ξ1, . . . ,ξ#A,x,{Xi}R
i=1,{Yj}P

j=1,{{Zk,`}#Rk
`=1}N

k=1) fol-
lows from (σ,ν′) |= Φ and the definition of ν′′, by the points (i-vii) from the definition
of F. We obtain σ 
ν AA

∆
(ξ1, . . . ,ξ#A) from the definition of AA

∆
.



”⇐” There exists a store ν′ that agrees with ν over ξ1, . . . ,ξ#A, such that:

σ 
ν′T(x,{Xi}R
i=1,{Yj}P

j=1) (12)

σ 
ν′F(ξ1, . . . ,ξ#A,x,{Xi}R
i=1,{Yj}P

j=1,{{Zk,`}#Rk
`=1}

N
k=1) (13)

By (12) we obtain an unfolding tree T = (N ,F ,r,λ) for A(ξ1, . . . ,ξ#A), such that:
– N =

⋃R
i=1 ν′(Xi),

– F =
⋃P

j=1 ν′(Yj),
– λ(n) = ri ⇐⇒ n ∈ ν′(Xi), for all n ∈N and i ∈ [1,R].

Let Θ(T ,A(ξ1, . . . ,ξ#A)) = ∃y1 . . .∃yK . Φ, where Φ is a quantifier- and predicate-free
formula (Def. 8). By Lemma 4, it is sufficient to show the existence of a store ν′′ that
agrees with ν over ξ1, . . . ,ξ#A, such that σ |=ν′′ Φ. Let fk,` denote the partial mapping
defined by ν′(Zk,`), for each k ∈ [1,N] and ` ∈ [1,#R], by point (i) of the definition of F.
For each r∈ [1,K], we define ν′′(yr)

def
= fk,`(n) if yr occurs in or is constrained to be equal

to a term ξ` that occurs in an annotated relation atom Rn
k(ξ1, . . . ,ξ#Rk) from Φ. Note that

there can be at most one such relation atom in Φ, because of the assumption that in each
rule from ∆ at most one relation atom Rk(z1, . . . ,z#Rk) occurs. Otherwise, if yr is not
constrained in Φ to be equal to a term that occurs in a relation atom, ν′′(yr) is given an
arbitrary fresh value. Because the equalities and disequalities from Φ are taken care of
by points (v) and (vi) from the definition of F, it remains to check the satisfaction of the
relation atoms from Φ. To this end, we define a decomposition σ =•n∈N , k∈[1,N]σn,k

such that σn,k |=ν′′ Rk(ξ1, . . . ,ξ#Rk), for all relation atoms Rn
k(ξ1, . . . ,ξ#Rk) from Φ. Such

a decomposition is possible due to points (ii-iv) from the definition of F.

Definition 11. A tree decomposition T = (N ,F ,r,λ) of a structure (U,σ) is said to
be reduced if and only if the following hold:
1. for each R ∈ Σ and each 〈u1, . . . ,u#R〉 ∈ σ(R) there exists a leaf n ∈ N such that
{u1, . . . ,u#R} ⊆ λ(n), called the witness of 〈u1, . . . ,u#R〉 ∈ σ(R),

2. every leaf witnesses exactly one tuple 〈u1, . . . ,u#R〉 ∈ σ(R),
3. T is a binary tree i.e., a tree where each node has at most two children,
4. if n ∈N has two children m1,m2 ∈N then λ(n) = λ(m1) = λ(m2),
5. if n ∈ N has one child m ∈ N then either λ(n) = λ(m) and m witnesses a tuple
〈u1, . . . ,u#R〉 ∈ σ(R), or ||λ(n)\λ(m)||= ||λ(m)\λ(n)||= 1,

6. ||λ(n)||= k+1, for all n ∈N .

Lemma 8. If a structure (U,σ) has a tree decomposition of width k, then it also has a
reduced tree decomposition of width k.

Proof (Proof of Lemma 8). The properties (1-6) can be proven directly from Defini-
tion 5. The main tool is the introduction of intermediate nodes into the tree decomposi-
tion. We list some of the cases. For (1), if a node witnesses more than one tuple, then we
introduce an intermediate node between itself and its parent that is labeled by the same
set of vertices. The intermediate node then becomes the witness for the this tuple. This
process can be iterated until every node witnesses at most one tuple. For (3), if a node n0
has children m0, · · · ,ml we can introduce new nodes n1, . . . ,nl−1 with λ(m0) = λ(mi),



and create a new tree decomposition which agrees with the old tree decomposition ex-
cept that we remove the edges from n0 to the children m0, · · · ,ml and add edges from ni
to mi and ni+1 for all i < l−1 and edges from nl−1 to ml−1 and ml . For (6), note that we
always consider structures over some infinite universe. Hence, we can always extend
the labels of the tree-decomposition with some fresh vertices from the universe.

Lemma 9. Let σ∈ Str(Σ,D) be a structure and ν be a store, such that σ |=ν

∆(k) A(x1, . . . ,xk+1)

and ν(xi) 6∈ σ(D), for all 1 ≤ i ≤ k + 1. Then, there exists a reduced tree decompo-
sition T = (N ,F ,r,λ) of σ, such that tw(T ) = k, λ(r) = {ν(x1), . . . ,ν(xk+1)} and
λ(n)⊆ σ(D)∪{ν(x1), . . . ,ν(xk+1)}, for all n ∈N .

Proof (Proof of Lemma 9). We prove the claim by induction on the number of rule ap-
plications. The claim clearly holds for the base case, by rule (3). We now consider the
rule (1) i.e., we assume that σ |=ν

∆(k) A(x1, . . . ,xk+1)∗A(x1, . . . ,xk+1). Then, there exist
structures σ1 and σ2, such that (σi,ν) |=∆(k) A(x1, . . . ,xk+1), for i= 1,2 and σ1 •σ2 = σ.
We note that the latter implies that σ1(D)∩ σ2(D) = /0 (†). We now apply the in-
ductive hypothesis and obtain reduced tree decompositions Ti for σi whose respec-
tive roots are labelled by {ν(x1), . . . ,ν(xk+1)} and λ(n)⊆ σ(D)∪{ν(x1), . . . ,ν(xk+1)},
for all nodes n of Ti and all i = 1,2. We obtain a reduced tree decomposition for
σ by composing T1 and T2 with a fresh root node labelled by {ν(x1), . . . ,ν(xk+1)}.
Note that T is indeed a tree decomposition because the only elements that may ap-
pear in labels of both T1 and T2 must belong to {ν(x1), . . . ,ν(xk+1)}, by (†). Clearly,
we have λ(n)⊆ σ1(D)∪σ2(D)∪{ν(x1), . . . ,ν(xk+1)}= σ(D)∪{ν(x1), . . . ,ν(xk+1)},
for all nodes n of the resulting tree decomposition T . We now consider the rule (2)
i.e., we assume that σ |=ν

∆(k) ∃y . D(y) ∗A(x1, . . . ,xk+1)[xi/y]. Then, there is an ele-

ment u 6∈ {ν(x1), . . . ,ν(xk+1)} such that σ′ |=ν[xi←u])
∆(k) A(x1, . . . ,xk+1), where the struc-

ture σ′ agrees with σ, except that σ(D) = σ′(D) \ {u}. We now apply the inductive
hypothesis and obtain a reduced tree decomposition T1 for σ′ whose root is labelled
by ({ν(x1), . . . ,ν(xk+1)}\{ν(xi)})∪{u} and λ(n)⊆ ((σ′(D)∪{ν(x1), . . . ,ν(xk+1)})\
{ν(xi)})∪{u}, for all nodes n of T1 (‡). We can now obtain a reduced tree decomposi-
tion T for σ by composing T1 with an additional root labelled by {ν(x1), . . . ,ν(xk+1)}.
Note that T is indeed a tree decomposition because ν(xi) 6∈ λ(n) for every node n of
T1, because of (‡), u 6= ν(xi) and the assumption that ν(xi) 6∈ σ(D). We have λ(n) ⊆
σ′(D)∪{ν(x1), . . . ,ν(xk+1)}∪{u}= σ(D)∪{ν(x1), . . . ,ν(xk+1)} for all nodes n of the
resulting tree decomposition T .

Lemma 10. Let σ ∈ Str(Σ,D) be a structure with tw(σ) ≤ k witnessed by some re-
duced tree decomposition T = (N ,F ,r,λ), with λ(r) = {u1, . . . ,uk+1} and σ(D) =⋃

n∈N λ(n) \ {u1, . . . ,uk+1}, and let ν be a store with ν(xi) = ui, for all i ∈ [1,k+1].
Then, σ |=ν

∆(k) A(x1, . . . ,xk+1).

Proof (Proof of Lemma 10). The proof goes by induction on the structure of T . The
claim clearly holds for the base case, where T consists of a single leaf, by rule (3). Con-
sider first the case where the root of T has two children. The subtrees T1 and T2 rooted
in the two children induce substructures σ1 and σ2 of σ, where 〈v1, . . . ,v#R〉 ∈ σi(R)



iff 〈v1, . . . ,v#R〉 is witnessed by some leaf of Ti, for i = 1,2. Because T is a reduced
tree decomposition, there is at most one leaf that witnesses a tuple 〈v1, . . . ,v#R〉 ∈
σi(R). Hence, we have σ = σ1 •σ2. From the inductive hypothesis we obtain σi |=ν

∆(k)
A(x1, . . . ,xk+1), for i = 1,2. Hence σ1 •σ2 |=ν

∆(k) A(x1, . . . ,xk+1)∗A(x1, . . . ,xk+1), thus
σ |=ν

∆(k) A(x1, . . . ,xk+1), by rule (1). Consider now the case where the root of T has
a single child which is not a leaf and consider the subtree T1 rooted at this child.
Then, there is an element u 6∈ {u1, . . . ,uk+1}, such that the root of T1 is labeled by
{u1, . . . ,ui−1,u,ui+1, . . . ,uk+1}. Let σ′ be the structure that agrees with σ except that we
have σ′(D)=σ(D)\{u}. By the inductive hypothesis, we obtain σ′ |=ν[xi←u]

∆(k) A(x1, . . . ,xk+1).
Hence, σ |=ν

∆(k) ∃y . D(y) ∗A(x1, . . . ,xk+1)[xi/y], thus σ |=ν

∆(k) A(x1, . . . ,xk+1), by rule
(2).

Lemma 5. For any guarded structure (U,σ)∈ Str(Σ,D), such that ||σ(D)|| ≥ k+1 and
σ(R) 6= /0, for at least some R ∈ Σ, we have tw(σ)≤ k if and only if (U,σ) |=∆(k) Ak().

Proof (Proof of Lemma 5). “⇒” If σ has tree decomposition of width at most k, then
it also has a reduced tree decomposition T = (N ,F ,r,λ) of width k, by Lemma 8.
Let λ(r) = {u1, . . . ,uk+1} and ν be a store such that ν(xi) = ui, for all i ∈ [1,k+1]. By
Lemma 10, we get that σ |=ν

∆(k) A(x1, . . . ,xk+1) ∗D(x1) ∗ · · · ∗D(xk+1). Thus, σ |=∆(k)

Ak(), by rule (4).
“⇐” By rule (4), there exists a store ν with ν(xi) = ui, for all 1 ≤ i ≤ k+ 1, and a

structure σ′ ∈ Str(Σ,D) that agrees with σ on Σ such that σ′ |=ν

∆(k) A(x1, . . . ,xk+1) and
σ′(D) = σ(D)\{u1, . . . ,uk+1}. By Lemma 9, there exists a reduced tree decomposition
T of σ′ of width k. Thus tw(σ)≤ k, because σ′ agrees with σ on Σ and we have σ′(D) =
σ(D)\{u1, . . . ,uk+1}.

Lemma 6. For an integer r≥ 0, a store ν and disjoint compatible structures (U,σ1),(U,σ2)∈
Str(Σ∪Π,D), such that Rel(σ1)∩Rel(σ2)⊆{σ1(cM+1), . . . ,σ1(cM+k+1)} and (σ1(D)∪
σ2(D))∩{ν(xi) | i ∈ [1,m]}= /0, we have:

typer(encode(σ1 •σ2,ν)) = glue](typer(encode(σ1,ν)), typer(encode(σ2,ν)))

Proof (Proof of Lemma 6). Let us consider σ′1 = encode(σ1,ν) and σ′2 = encode(σ2,ν).
In order to apply glueing we will now consider two structures isomorphic to σ′1 and σ′2,
respectively. We note that Dom(σ′1)∩Dom(σ′2)⊆ {σ′2(cM1), . . . ,σ

′
2(cM+k+1)} because

of our assumption that Rel(σ1)∩Rel(σ2)⊆ {ν(x1), . . . ,ν(xk+1)}). We further note that
σ′1(cMi) = σ′2(cMi), for all i ∈ [1,M+ k+1], because σ1 and σ2 are compatible and the
interpretation of the additional constants cM+1, . . . ,cM+k+1 has been chosen w.r.t. the
same store ν. Hence, we can choose some partitioning U1]U2 = U such that U1 and
U2 are countably infinite, Dom(σ′1)⊆U1 and Dom(σ′2)\{σ′2(c1), . . . ,σ

′
2(cM+k+1)} ⊆

U2. We can now choose a structure σ′′2 with Dom(σ′′2) ⊆ U2 that is isomorphic to σ′2
and that agrees with σ′2 except for c1, . . .cM+k+1, whose interpretation is chosen as
σ′′2(c1), . . . ,σ

′′
2(cM+k+1)∈U2 \(Dom(σ′1)∪Dom(σ′2)). Then, (U1,σ

′
1) [resp. (U2,σ

′′
2)]

is isomorphic to (U,σ1) [resp. (U,σ2)]. In particular, they have the same type i.e.,
typer(U1,σ

′
1) = typer(U,σ′1) and typer(U2,σ

′′
2) = typer(U,σ′2). Moreover, we have that



glue(encode((U1,σ
′
1),ν),encode((U2,σ

′′
2),ν)) = encode(σ1 •σ2,ν). We compute:

typer(encode(σ1 •σ2,ν)) =
typer(glue(encode((U1,σ

′
1),ν),encode((U2,σ

′′
2),ν))) =

glue](typer(encode((U1,σ
′
1),ν)), typer(encode((U2,σ

′′
2),ν))) =

glue](typer(encode((U1,σ
′
1),ν)), typer(encode((U2,σ

′′
2),ν))) =

glue](typer(encode(σ1,ν)), typer(encode(σ2,ν)))

Lemma 11. Let k≥ 1 be an integer, φ be an MSO sentence, σ∈ Str(Σ,D) be a structure
and ν be a store such that σ |=ν

∆(k,φ) A
τ(x1, . . . ,xk+1), ν(xi) 6∈ σ(D) for all i ∈ [1,k+1],

and ν(xi) 6= ν(x j) for all i 6= j. Then, typeqr(φ)(encode(σ,ν)) = τ.

Proof (Proof of Lemma 11). We prove the claim by induction on the number of rule ap-
plications. The claim clearly holds for the base case, by a rule of type (7). We now con-
sider a rule of type (5), i.e., we have σ |=ν

∆(k,φ) A
τ1(x1, . . . ,xk+1)∗Aτ2(x1, . . . ,xk+1), such

that τ= glue](τ1,τ2). Then, there are structures σ1 and σ2 with σi |=ν

∆(k,φ) A
τi(x1, . . . ,xk+1),

for i= 1,2 and σ1•σ2 =σ. By the inductive hypothesis, we have that typeqr(φ)(encode(σi,ν))=
τi, for i = 1,2. Because every derivation of ∆(k,φ) is also a derivation of ∆(k), ob-
tained by removing the type annotations from the rules in ∆(k,φ), we get that σi |=ν

∆(k)
A(x1, . . . ,xk+1), for i= 1,2. By Lemma 9 we have that Rel(σi)⊆σi(D)∪{ν(x1), . . . ,ν(xk+1)},
for i = 1,2. Since σ = σ1 •σ2, we have that σ1(D)∩σ2(D) = /0. We compute

typeqr(φ)(encode(σ,ν)) =
glue](typeqr(φ)(encode(σ1,ν)), typeqr(φ)(encode(σ2,ν))) =

glue](τ1,τ2) = τ

by Lemma 6. We now consider rules of type (6) i.e., we have σ |=ν

∆(k,φ) ∃y . D(y) ∗
Aτ1(x1, . . . ,xk+1)[xi/y], for some i ∈ [1,k+1], such that τ = glue](fgcst]M+i(τ1),ρi) for
the type ρi of some structure S∈ Str({cM+i}) with a singleton universe and S
D(cM+i).
Then, there is an element u ∈ U, such that σ′ |=ν[xi←u]

∆(k,φ) Aτ1(x1, . . . ,xk+1), where the
structure σ′ agrees with σ, except that D does not hold for u in σ′. By the inductive
hypothesis, typeqr(φ)(encode(σ′,ν[xi← u])) = τ1. Because every derivation of ∆(k,φ)
is also a derivation of ∆(k), obtained by removing the type annotations from the rules
in ∆(k,φ), we get that σ′ |=ν[xi←u]

∆(k) A(x1, . . . ,xk+1). By Lemma 9 we have that Rel(σ′)⊆
σ′(D)∪{ν(x1), . . . ,ν(xk+1)}\{ν(xi)}∪{u}. Because of ν(xi) 6= u (due to the assump-
tion ν(xi) 6∈ σ(D)) and because of ν(xi) 6= ν(x j) for all i 6= j, we get that encode(σ,ν) =
glue(fgcstM+i(encode(σ′,ν[xi← u])),S′), where S′ ∈ Str({cM+i}) is the structure with
singleton universe {ν(xi)} and S′ 
D(cM+i). Because S is isomorphic to S′, we obtain:

typeqr(φ)(encode(σ,ν)) =
typeqr(φ)(glue(fgcstM+i(encode(σ′,ν[xi← u])),S′)) =
glue](typeqr(φ)(fgcstM+i(encode(σ′,ν[xi← u]))), typeqr(φ)(S′)) =
glue](fgcst]M+i(typeqr(φ)(encode(σ′,ν[xi← u]))), typeqr(φ)(S)) =
glue](fgcst]M+i(τ1),ρi) = τ



Lemma 12. Let k ≥ 1 be an integer, τ be some r-type, σ ∈ Str(Σ,D) be a structure of
treewidth tw(σ) ≤ k, witnessed by some reduced tree decomposition T = (N ,F ,r,λ),
and ν be a store with λ(r) = {ν(x1), . . . ,ν(k+1)} and ν(xi) 6= ν(x j) for all i 6= j, such
that σ(D) =

⋃
n∈N λ(n) \ {u1, . . . ,uk+1} and typer(encode(σ,ν)) = τ. Then, we have

σ |=ν

∆(k,φ) A
τ(x1, . . . ,xk+1).

Proof (Proof of Lemma 12). The proof proceeds by induction on the structure of T .
Clearly the claim holds for the base case, by a rule of type (7). For the inductive step,
we assume first that the root of T has two children. The subtrees T1 and T2 rooted in
the two children induce substructures σ1 and σ2 of σ, where 〈v1, . . . ,v#R〉 ∈ σi(R) if
and only if 〈v1, . . . ,v#R〉 is witnessed by some leaf of the respective subtree. Because
T is a reduced tree decomposition, there is at most one leaf that witnesses a tuple
〈v1, . . . ,v#R〉 ∈ σi(R). Hence, we have σ = σ1 • σ2. Because the only elements that
can appear as labels in T1 and T2 are ν(x1), . . . ,ν(xk+1) (as these are the labels of the
root of the tree decomposition), we get that Rel(σ1)∩Rel(σ2) ⊆ {ν(x1), . . . ,ν(xk+1)}.
Let τi = typer(encode(σi,ν)), for i = 1,2. From the inductive hypothesis, we obtain
σi |=ν

∆(k,φ) A
τi(x1, . . . ,xk+1), for i = 1,2. Let τ

def
= glue](τ1,τ2). By Lemma 6, we obtain:

typeqr(φ)(encode(σ,ν)) = typeqr(φ)(encode(σ1 •σ2,ν)) =

glue](typeqr(φ)(encode(σ1,ν)), typeqr(φ)(encode(σ2,ν))) = glue](τ1,τ2) = τ

Hence, we now get that σ |=ν

∆(k,φ) A
τ(x1, . . . ,xk+1), by a rule of type (5). We now as-

sume that the root of T has a single child which is not a leaf. We consider the sub-
tree T1 rooted at this child. Then, there is an element u 6∈ {ν(x1), . . . ,ν(xk+1)}, such
that the root of T1 is labeled by {ν(x1), . . . ,ν(xi−1),u,ν(xi+1), . . . ,ν(xk+1)}. Let τ1

def
=

typer(encode(σ,ν[xi← u])) and let σ′ be the structure that agrees with σ except that
we have σ′(D) = σ(D) \ {u}. By the inductive hypothesis, we obtain that σ′ |=ν[xi←u]

∆(k,φ)

Aτ1(x1, . . . ,xk+1). Let τ
def
= glue](fgcst]M+i(τ1),ρi) for the type ρi of the structure S ∈

Str({cM+i}) with singleton universe {ν(xi)} and S
D(cM+i). Because of ν(xi) 6= u and
ν(xi) 6= ν(x j) for all i 6= j, we have encode(σ,ν)= glue(fgcstM+i(encode(σ′,ν[xi← u])),S).
We compute:

typer(encode(σ,ν)) =
typer(glue(fgcstM+i(encode(σ′,ν[xi← u])),S)) =
glue](typer(fgcstM+i(encode(σ′,ν[xi← u]))), typer(S)) =
glue](fgcst]M+i(typer(encode(σ′,ν[xi← u]))), typer(S)) =
glue](fgcst]M+i(τ1),ρi) = τ

Hence, we get that σ |=ν

∆(k,φ) ∃y .D(y)∗Aτ(x1, . . . ,xk+1)[xi/y] i.e., that σ |=ν

∆(k,φ) A
τ(x1, . . . ,xk+1)

by a rule of type (6).

Proposition 6. Given k≥ 1 and an MSO sentence φ, for any guarded structure (U,σ)∈
Str(Σ,D), we have: (1) (U,σ)
 φ and tw(σ)≤ k if and only if (2) (U,σ) |=∆(k,φ) Ak,φ().

Proof (Proof of Proposition 6). “(1) ⇒ (2)” Since tw(σ) ≤ k, there exists a reduced
tree decomposition T = (N ,F ,r,λ) of width k, by Lemma 8. Let ν be a store such that
λ(r) = {ν(x1), . . . ,ν(xk+1)} and ν(xi) 6= ν(x j) for all i 6= j ∈ [1,k+1]. Let σ′ be the
structure that agrees with σ on Σ, and for which σ′(D) = σ(D)\{ν(x1), . . . ,ν(xk+1)}.



We observe that encode(σ′,ν) = σ. Thus, we obtain σ |=ν

∆(k,φ) D(x1) ∗ . . . ∗D(xk+1) ∗

Aτ(x1, . . . ,xk+1), by Lemma 12, for τ
def
= typeqr(φ)(σ) = typeqr(φ)(encode(σ′,ν)). Since,

moreover, we have assumed that σ 
 φ, we have φ ∈ τ
def
= typeqr(φ)(σ). Then, we obtain

σ |=∆(k,φ) Ak,φ(), by a rule of type (8).
“(2)⇒ (1)” Since σ |=∆(k,φ) Ak,φ(), there exists a store ν with ν(xi) 6= ν(x j) for all

i 6= j ∈ [1,k+1], such that σ |=ν

∆(k,φ) D(x1)∗ . . .∗D(xk+1)∗Aτ(x1, . . . ,xk+1), for some
type τ with φ∈ τ, by a rule of type (8). Let σ′ be the structure that agrees with σ on Σ, and
for which σ′(D) = σ(D)\{ν(x1), . . . ,ν(xk+1)}. We observe that encode(σ′,ν) = σ. By
Lemma 11, we obtain typeqr(φ)(encode(σ′,ν)) = τ. With encode(σ′,ν) =σ and φ∈ τ we
then obtain σ
 φ. Moreover, we have tw(σ)≤ k, by Lemma 5, because each derivation
of σ′ |=∆(k,φ) Ak,φ() corresponds to a derivation of σ |=∆(k) Ak(), obtained by removing
the type annotations from the rules in ∆(k,φ).

Lemma 7. Given r ≥ 0 and S = (U,σ) ∈ Str(Σ), we have typer(S) = typer(S2r
).

Proof (Proof of Lemma 7). We consider the r-round MSO Ehrenfeucht-Fraı̈ssé game:
In every round, Spoiler picks a vertex u or a set of vertices U in S or S2r

and Duplicator
answers with a vertex or a set of vertices in the other structure. Duplicator wins iff
after r-rounds the substructures induced by the selected vertices are isomorphic. We
now sketch a winning strategy for Duplicator (as the argument is standard, we leave the
details to the reader): For vertices in Dom(σ) the Duplicator plays the same vertices in
the respective other structure (this applies to single vertices as well as sets of vertices).
For the vertices that do not belong to Dom(σ) the Duplicator selects vertices that do
not belong to Dom(σ) in the other structure such that the selected vertices belong to
the same subsets played in the previous rounds; care has to be taken for the involved
cardinalities, if playing in S2r

the Duplicator limits himself to at most 2r−k−1 vertices
that belong to any combination of previously played subsets or the complement of these
subsets, where k is the number of previously played rounds; this choice is sufficient such
that after r-rounds the substructures induced by the selected vertices are isomorphic.
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