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KEY PO INT S

� KIR3DL2, with
expression triggered by
HTLV-1 infection, is a
novel diagnostic marker
of acute-type ATL.

� The lacutamab
monoclonal anti-
KIR3DL2 antibody may
be an effective strategy
to treat ATL and is
under study for
relapsed/refractory
PTCL.

Adult T-cell leukemia (ATL) is a lymphoid neoplasm caused by human T-cell leukemia virus
type 1 (HTLV-1), which encodes the transcriptional activator Tax, which participates in the
immortalization of infected T cells. ATL is classified into 4 subtypes: smoldering, chronic,
acute, and lymphoma. We determined whether natural killer receptors (NKRs) were
expressed in ATL. NKR expression (KIR2DL1/2DS1, KIR2DL2/2DL3/2DS2, KIR3DL2,
NKG2A, NKG2C, and NKp46) was assessed in a discovery cohort of 21 ATL, and KIR3DL2
was then assessed in 71 patients with ATL. KIR3DL2 was the only NKR among those
studied frequently expressed by acute-type vs lymphoma- and chronic/smoldering-type
ATL (36 of 40, 4 of 16, and 1 of 15, respectively; P 5 .001), although acute- and
lymphoma-type ATL had similar mutation profiles by targeted exome sequencing. The
correlation of KIR3DL2 expression with promoter demethylation was determined by
microarray-based DNA methylation profiling. To explore the role of HTLV-1, KIR3DL2 and
TAX messenger RNA (mRNA) expression levels were assessed by PrimeFlow RNA in
primary ATL and in CD41 T cells infected with HTLV-1 in vitro. TAX mRNA and KIR3DL2

protein expressions were correlated on ATL cells. HTLV-1 infection triggered KIR3DL2 by CD41 cells but Tax alone
did not induce KIR3DL2 expression. Ex vivo, autologous, antibody-dependent cell cytotoxicity using lacutamab, a
first-in-class anti-KIR3DL2 humanized antibody, selectively killed KIR3DL21 primary ATL cells ex vivo. To conclude,
KIR3DL2 expression is associated with acute-type ATL. Transcription of KIR3DL2 may be triggered by HTLV-1
infection and correlates with hypomethylation of the promoter. The benefit of targeting KIR3DL2 with lacutamab is
being further explored in a randomized phase 2 study in peripheral T-cell lymphoma, including ATL (registered on
https://clinicaltrials.gov as #NCT04984837).

Introduction
Adult T-cell leukemia (ATL, a fatal malignant disorder of CD41

T lymphocytes) is caused by infection with human T-cell leukemia
virus type 1 (HTLV-1). It is not clear why a small proportion of
HTLV-1–infected individuals develop a clinically aggressive type of
ATL. ATL can be classified into 4 clinical subtypes.1 Aggressive
forms are divided into acute or lymphoma types, depending on
the presence of abnormal lymphocytosis, whereas patients with
the chronic or smoldering types are categorized as having

indolent ATL. Indolent ATL generally progresses slowly, and
patients are carefully monitored by watchful waiting. Chemother-
apy is applied if transformation to an aggressive type occurs.
However, patients with the chronic or smoldering type could pre-
sent various symptoms and are offered intensive treatments.2 Little
is known about the viral or host molecular determinants of ATL.

HTLV-1 encodes the transcriptional activator Tax, which activates
various transcriptional pathways, such as cyclic adenosine
monophosphate response element binding protein (CREB) and
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NF-kB, and it represses p53 and interferes with several cell cycle
regulators, including cyclins and cdk inhibitors.3,4 These multiple
functions are believed to participate in the immortalization of
HTLV-1–infected cells. In contrast, the role of Tax in advanced
ATL is unclear because the activator cannot be detected in cells
from most patients with ATL,5 probably because of negative
selection by the strong anti-Tax cytotoxic T-lymphocyte (CTL)
response,6 but may be expressed in vitro in the absence of cyto-
toxic cells. Furthermore, provirus sense expression in cells is
inactivated (by methylation of the 59 long terminal repeat (LTR),
mutation of TAX, or by deletion of the 59 LTR proviral DNA) in
more than half of all patients with ATL.7-10 Recently, 2 reports
described high-throughput RNA sequencing techniques to ana-
lyze HTLV-1 viral expression; both confirmed that sense RNA
expression was absent in .90% of ATL samples.11,12

KIR3DL2 (also known as CD158K) is a killer immunoglobulinlike
receptor (KIR) normally expressed by a subset of NK cells and a
small proportion of CD41 and CD81 T lymphocytes. The recep-
tor’s expression is aberrant in S�ezary syndrome and in other
cutaneous T-cell lymphomas (CTCLs).13 It has been suggested
that in a small proportion of patients with ATL, circulating tumor
cells also express KIR3DL2.14 The initial report was recently con-
firmed by an immunohistochemical assessment of 12 additional
patients with ATL.15 In patients with SS, the detection of
KIR3DL2 expression on circulating tumor cells is useful for diag-
nosis, prognosis, and follow-up of tumor cell burden.16-20 More-
over, lacutamab, a humanized cytotoxic monoclonal antibody
(mAb) against KIR3DL2, has shown antitumor activity in preclini-
cal studies.21 Lacutamab was well tolerated and had beneficial
clinical activity for relapsed/refractory CTCL in a phase 1 study
(registered on https://clinicaltrials.gov as #NCT02593045).22

Given the unmet therapeutic needs of patients with ATL, we
studied the expression of NK receptors (NKRs), particularly
KIR3DL2, in a cohort of patients with ATL and tested the efficacy
of lacutamab on primary ATL cells. We also sought to determine
the mechanisms of KIR3DL2 expression.

Methods
Patients and quantification of the HTLV-1
proviral load
The study was approved by an independent ethics committee
(CPP Ile de France II, CNIL: number 1692254, registration num-
ber 000001072), and all living patients gave their written
informed consent. The study population’s demographic and clin-
ical characteristics are summarized in supplemental Table 1
(available on the Blood Web site). Clinical data were retrospec-
tively collected. Samples were collected at the time of diagnosis
and, depending on the patient, at various times in the course of
the disease. Except for 1 patient with Kikuchi disease, all HTLV-1
carriers were asymptomatic. The HTLV-1 plasma viral load (PVL)
was quantified with real-time polymerase chain reaction (qRT-
PCR) and primers specific for the pX region, as previously
described.12,23 The PVL was expressed in HTLV-1 proviral copies
per 100 peripheral blood mononuclear cells (PBMCs).

Immunohistochemistry and flow cytometry
Tissues sections were stained with hematoxylin and eosin reagent.
Expression of KIR3DL2 was assessed by immunohistochemistry

(IHC), using the specific anti-KIR3DL2 mAb clones MOG1-
MK323-12B11 and H5 at a dilution of 10 mg/mL (Innate Pharma,
Marseille, France), allowing for staining of frozen and formalin-
fixed, paraffin-embedded tissue sections, respectively. All immu-
nostainings were performed with an automated Leica Biosystem
Bond III system. Flow cytometry (FC) of lymphocytes was per-
formed with 8-color mixes (supplemental Methods). KIR3DL2 and
NKp46 were respectively detected with the anti-KIR3DL2 mAb
clone 13E4 and the anti-NKp46 mAb clone 9E2 (both provided
by Innate Pharma) conjugated to phycoerythrin. The ratio of fluo-
rescence intensity was assessed to determine the positivity of
KIR3DL2. Data were analyzed on a FACSCanto II cytometer with
FlowJo software (version 10.2, Ashland, OR; Becton Dickinson
and Company).

qRT-PCR, targeted exome sequencing,
and methylation
KIR3DL2 messenger RNA (mRNA) expression was detected
using the Roche Real-Time Ready Assay (ID 136820; supplemen-
tal Methods). TAX mRNA was quantified using the TaqMan
method according to a previously described protocol.24 Tar-
geted exome sequencing was performed as described previ-
ously.9 A microarray-based DNA methylation analysis of samples
from 28 patients with ATL, 4 HTLV-1 asymptomatic carriers, and
isolated CD41 T lymphocytes from 4 healthy donors was per-
formed with the Infinium HumanMethylation450 BeadChip sys-
tem (Illumina, Inc., San Diego, CA; supplemental Methods). Cell
lines (PBMCs from healthy donors and patients with ATL), were
treated with 5-azacytidine (5-aza; Sigma-Aldrich) and analyzed
for KIR3DL2 expression (using FC) after a 72-hour incubation.
Direct KIR3DL2 promoter methylation levels were analyzed by
Methylation Sensitive-Multiple Ligation-Dependent Probe Assay
with a custom probe (supplemental Methods), SALSA MLPA
P200 Reference-1 probemix, and EK1 reagent kits from MRC-
Holland, according to the manufacturer’s recommendations.
Data were analyzed with Coffalyser software (MRC-Holland).

Cell lines, primary ATL cells, and cell culture
The TIB-161 HuT 78 KIR3DL21 and the TIB-152 Jurkat
KIR3DL22 T-cell lines were purchased from the American Type
Culture Collection. We also studied the C8166 HTLV-11 human
T cells; the MT-2, MT-4, C91/PL, and HUT-102 HTLV-1 virus-
producing T cells; and the TL-OmI ATL–derived cell lines (sup-
plemental Methods). PBMCs from healthy donors and patients
with ATL were separated by Ficoll-Hypaque density gradient
centrifugation.

HTLV-1 infection in vitro and transfection
PBMCs were cultured alone, stimulated with 1 mg/mL of phyto-
hemagglutinin (Sigma, St Quentin Fallavier, France) and
20 U/mL interleukin-2 (Roche, Boulogne-Billancourt, France), or
stimulated and then infected with purified HTLV-1 from an MT-2
culture supernatant. The MT-2 cells were seeded (106 per millili-
ter) in culture medium and grown overnight. The supernatant
was collected and centrifuged for 2 hours at 100000g. HTLV-1
viruses were quantified using an HTLV-1-p19 ELISA kit (Gentaur).
Several concentrations of HTLV-1 (0-900 ng/mL p19 equivalent)
were used to stimulate the PBMCs in vitro. T-cell lines were
transfected with the DMRIE-C reagent (Roche). The pSG5M
empty vector and the pSG5M-Tax plasmids have been
described.25 The pGEX-2T and pGEX-2T-Tax (wild-type and
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m47) plasmids were kindly provided by V. Mocquet (�Ecole Nor-
male Sup�erieure [ENS], Lyon, France), and the pGEX-2T-p24
(GST-CA) plasmid has been described.26

PrimeFlow RNA assay and imaging
flow cytometry
The Affymetrix PrimeFlow RNA assay was performed according
to the manufacturer’s instructions (supplemental Methods). In
brief, the PrimeFlow RNA assay is based on the binding of a
specific oligonucleotide probe set to the TAX RNA sequence,
followed by hybridization of multiple amplifier molecules for sig-
nal amplification and conjugation to a fluorescent dye that can
then be quantified by FC. Lymphocytes were identified on the
basis of their forward and side scatter properties, and live cells
were selected after the exclusion of doublets. CD32 and CD41

lymphocytes were then assessed for TAX mRNA expression and
KIR3DL2 protein expression. Fluorescent signals from antibodies
and probes were quantified by FC on an LSR Fortessa system
running FACS DIVA software (version 7; BD Biosciences). Images
were acquired with the ImageStream system and analyzed on
an Imagestream ISX mkII cytometer (Amnis Luminex), which use
a combination of FC and cell imaging to analyze a very large
number of events. Between 30000 and 50000 events were col-
lected in each experiment. Single-stain controls were run for
each fluorochrome used, and spectral compensation was per-
formed with IDEAS software (version 6.2; Amnis Luminex). Spe-
cific masks were designed for the analysis of nuclear or
cytoplasmic localizations of KIR3DL2 and TAX mRNA in live
cells.

Ex vivo autologous antibody-dependent cellular
cytotoxicity assays
Autologous antibody-dependent cellular cytotoxicity (ADCC)
assays were performed on isolated cells, using the indicated
mAbs. PBMCs were split into 2 samples, and CD41 T cells and
autologous NK cells were purified (using negative isolation by
magnetic bead labeling) with the respective MACS isolation kits
(Miltenyi Biotech). Isolated CD41 T cells were preincubated for
30 minutes at room temperature with the anti-KIR3DL2 lacutamab
(provided by Innate Pharma), the negative control (IC), or the pos-
itive control (the anti-CD52 alemtuzumab), all at 20 mg/mL, and
then mixed with autologous NK lymphocytes at the indicated
effector/target (E/T) ratios. The initial E/T ratio was determined
by FC. The cells were incubated for 4 to 6 hours at 37�C in
RPMI/10% fetal bovine serum. The death of ATL cells was moni-
tored by FC after incubation with 7-aminoactinomycin D (7-AAD)
cell viability stain (eBioscience).

Statistical analysis
Continuous variables were quoted as the median (interquartile
range), and groups were compared by unpaired t test. Confi-
dence intervals were estimated with a continuity correction. The
patients’ tumor cells were defined as KIR3DL21 or KIR3DL22 as
assessed by IHC and/or FC, to define 2 groups. Survival in each
of the groups of patients was estimated according to the
Kaplan-Meier method, and the groups were compared by using
the log-rank test. All graphic and statistical analyses were per-
formed with GraphPad Prism software (version 7, San Diego,
CA) and R software.27 The threshold for statistical significance
was set to P , .05.

Results
KIR3DL2 expression is associated with
acute-type ATL
Expression of NKRs (KIR2DL1/2DS1, KIR2DL2/2DL3/2DS2,
KIR3DL2, NKG2A, NKG2C, and NKp46) was measured on
PBMCs from a discovery cohort of 21 patients with ATL, using
FC. ATL cells were identified by their CD4 and low CD3/TCRab
expression and the absence of CD7 expression (supplemental
Figure 1). KIR3DL2 was the only NKR expressed on CD41 CD7-
ATL tumor cells among those studied (Figure 1A). In total,
KIR3DL2 expression was next assessed in 110 samples collected
from 71 patients with ATL and 8 HTLV-1 asymptomatic carriers
(ACs) by FC and/or IHC (supplemental Table 1; supplemental
Figure 2). Of the 40 patients with acute-type ATL, 36 (90%) had
KIR3DL21 abnormal lymphocytes with a median of 53% of
KIR3DL21 cells (Figure 1C). In contrast, KIR3DL2 positivity was
much less frequent among patients with lymphoma or chronic/
smoldering types of ATL (4 of 16 and 1 of 15, respectively;
Figure 1B-C). Moreover, the KIR3DL22 patient with an initial
diagnosis of chronic-type ATL became KIR3DL21 after transfor-
mation to the acute type (Figure 1D). KIR3DL2 was not found on
CD41 lymphocytes from HTLV-1 carriers, except 1 patient with
Kikuchi disease where a few cells expressed KIR3DL2. We used
qRT-PCR KIR3DL2 to assess mRNA expression on PBMCs from
48 patients with ATL and 5 with HTLV-1 ACs. KIR3DL2 mRNA
was found in most acute type cases (23 of 30; 74%), but was
less frequently present in chronic type (7 of 13; 54%) cases and
was absent in lymphoma-type (Figure 1E) cases. In 2 patients
with chronic-type ATL and high KIR3DL2 mRNA expression lev-
els, the ATL subsequently transformed into acute-type ATL.
KIR3DL2 mRNA levels correlated with KIR3DL2 protein expres-
sion (supplemental Figure 3A). In 40 healthy donors, a median
of 3% and 9.3% of CD41 and CD81 T lymphocytes expressed
KIR3DL2, respectively (supplemental Table 2). CD41CD72

T lymphocytes from 19 healthy donors did not express KIR3DL2,
compared with CD41CD72 from patients with ATL (supplemen-
tal Figure 4; P 5 .0002). Neither protein nor mRNA expression
of KIR3DL2 was observed in the HTLV-1–infected (MT-2, C91PL,
and C8166) or ATL-derived cell line (TL-OmI and HUT-102).

The diagnostic value of KIR3DL2 expression was confirmed by
its prognostic impact on the whole cohort of patients with ATL.
The 2-year overall survival rate was significantly lower in
KIR3DL21 cases (18% vs 52% in KIR3DL22 cases; P , .001;
Figure 2A) but was similar in aggressive ATL subtypes according
to KIR3DL2 expression (Figure 2B; NS).

Gene mutations in 40 patients with aggressive subtypes (8
KIR3DL22 and 32 KIR3DL21 cases) were analyzed with data
obtained from previously published targeted exome sequenc-
ing.9 There were no significant differences in the mutation pro-
files between the KIR3DL22 and KIR3DL21 groups, suggesting
that the molecular pathogeneses are similar (supplemental Fig-
ure 5). At least 1 activating mutation was found in the TCR-NF-
kB pathway, the T-cell trafficking pathway, and the immune
escape pathway (n 5 6 [75%] vs 27 [85%] and 5 [62%] vs 17
[52%]; and n 5 3 [37%] vs 10 [30%] in KIR3DL22 compared with
KIR3DL21cases, respectively), and at least 1 mutation in the cell
cycle control pathway was detected in 2 [25%] vs 10 [30%] in
KIR3DL21 cases.
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KIR3DL2 expression correlated with KIR3DL2
gene promoter hypomethylation
Given that DNA methylation is known to influence variegated
KIR expression in NK cells,28 we assessed the KIR3DL2 pro-
moter’s DNA methylation profile in 28 patients with ATL, 4
HTLV-1 ACs, and 4 healthy donors. The KIR3DL2 promoter was
significantly less methylated in acute-type than in lymphoma-
and chronic-/smoldering-type ATLs or HTLV-1 ACs; this result
was consistent with KIR3DL2 expression (Figure 3A; supplemen-
tal Figure 3B). Two patients with lymphoma-type ATL (P57 and
P58) had KIR3DL2 promoter hypomethylation but did not
express KIR3DL2. Interestingly, they were brothers, suggesting a
similar lymphomagenesis in both cases. To determine whether
KIR3DL2 transcription was a consequence of DNA hypomethyla-
tion, we next measured the induction of KIR3DL2 transcription
in the KIR3DL21 Hut 78 and the KIR3DL22 Jurkat T-cell lines
after treatment with the DNA methylase inhibitor 5-aza. After 72
hours of 5-aza treatment, cell-surface KIR3DL2 expression was
efficiently and dose-dependently induced on Hut 78 cells but
not on Jurkat cells (Figure 3B). Using a custom MS-MLPA assay,
we studied the DNA methylation of KIR3DL2 promoter. As
expected, KIR3DL2 promoter methylation was significantly lower
in acute-type ATL (n 5 6; median methylation ratio, 0.66) and
Hut 78 cells (methylation ratio, 0.41) compared with normal
PBMCs (n 5 9; methylation ratio, 0.91) (supplemental Figure 6).
Moreover, 5-aza treatment led to a significant decrease (26.2%)
in KIR3DL2 methylation from a minimum dose of 1 mM (methyla-
tion ratios: 0.31 vs. 0.42) (Figure 3C). By contrast, KIR3DL2

expression on PBMCs from healthy donors and from 4
KIR3DL21 patients with ATL did not increase upon ex vivo 5-aza
treatment. Last, CD41 T cells from 2 patients treated with 5-aza
in vivo for myelodysplastic syndrome did not express KIR3DL2.
These results suggest that in ATL cells, KIR3DL2 protein expres-
sion may be maintained by DNA hypomethylation at the
KIR3DL2 promoter. However, DNA-demethylating treatment
alone does not induce KIR3DL2 expression in a negative base-
line state and does not increase the demethylation status of the
KIR3DL2 promoter in acute-type ATL.

TAX mRNA expression corelates with KIR3DL2
protein expression in primary ATL cells
We used the PrimeFlow RNA assay and KIR3DL2 immunolabel-
ing to assess the correlation between TAX mRNA expression
and KIR3DL2 protein expression in primary ATL cells from 3
patients with acute-type disease (P9, P18, and P28). For 2
patients, analyses were performed using the ImageStream imag-
ing flow cytometer. It is noteworthy that although Tax expres-
sion is weak in fresh primary ATL cells, nearly 50% of cells from
patients with ATL express viral antigens after ex vivo culture.29

Hence, to induce TAX expression, we cultured primary ATL cells
for 12 to 15 hours before the PrimeFlow RNA assay. On ATL
cells, TAX mRNA expression correlated with KIR3DL2 protein
expression (Figure 4; supplemental Figure 7), with a cytoplasmic
localization (Figure 4B). These results suggest that infected cells
could preferentially express KIR3DL2.

Figure 1. The NK receptor KIR3DL2 is expressed by tumor cells in patients with acute-type ATL. (A) Heat map showing NK receptor expression (defined using
FC) in PBMCs sampled from 5 healthy controls (HCs), 2 patients with enteropathy-associated T-cell lymphoma (EATL), 2 patients with T-cell prolymphocytic leukemia
(T-LPL), 2 patients with Sezary syndrome (SS), 1 patient with peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), and 21 patients with ATL. The heat map
represents the ratio of fluorescence intensity, as regards the isotypic control (IgG1), expressed as an arbitrary unit, to scale the color code of the heat map using the
cytobank software (https:///www.cytobank.org). High protein expressions are shown in yellow, and negative protein expressions are shown in black. KIR3DL2 was the
only NKR expressed on ATL tumor cells among those studied. (B) IHC assessment of KIR3DL2 protein expression on representative lymph node biopsy specimens
(original magnification, 3200), showing that a patient with acute-type ATL (P25) expressed KIR3DL2, whereas a patient with lymphoma-type ATL (P57) did not.
(C) Percentage of KIR3DL21 cells among tumor cells in patients with ATL by FC or IHC, according to the ATL subtype (acute, lymphoma, and chronic type). (D) Example
of a patient (P18) with KIR3DL22 chronic-type ATL, which became KIR3DL21 at the time of the transformation into an acute-type ATL. After 12 months of evolution, the
patient presented with lymphocytosis (38.33 103 mL) with 96% abnormal KIR3DL21 lymphocytes, high levels of lactate dehydrogenase, and lymph node and central nervous
system involvement, leading to a diagnosis of an acute-type ATL. (E) KIR3DL2 mRNA expression (assessed by qRT-PCR) in PBMCs from 48 patients with ATL, 5 HTLV-1
carriers, CD41 T lymphocytes from 4 healthy donors, and Hut 78 cells (2-sided Mann-Whitney nonparametric test). Two patients (P13 and P36) with high KIR3DL2 mRNA
expression levels were diagnosed as having chronic-type ATL at the time of mRNA analysis; subsequently, the diseased transformed into KIR3DL21 acute-type ATL.
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HTLV-1 infection, but not Tax expression alone,
induces KIR3DL2 expression on CD41 T cells
To explore the role of HTLV-1 infection in KIR3DL2 expression,
we assessed PBMCs obtained from healthy donors that had
been activated or infected with HTLV-1 in vitro. Purified HTLV-1
virions induced KIR3DL2 expression by CD41 T cells in a dose-
dependent manner (ie, p19 equivalent, n 5 3; Figure 5A; sup-
plemental Figure 8). The induced KIR3DL2 expression was
observed after 7 days of cell culture but not after 24 hours (sup-
plemental Figure 9). The HTLV-1 PVL was quantifiable in
infected PBMCs, which attests to the existence of reverse tran-
scription and (probably) HTLV-1 integration. Likewise, KIR3DL2
expression was not induced by activation of CD41 T cells with
phytohemagglutinin/interleukin-2, suggesting that a stable

infection (rather than activation alone) is necessary for KIR3DL2
expression (supplemental Figure 10). It is noteworthy that this
effect was restricted to KIR3DL2, because neither KIR3DS1 nor
NKp46 was induced by HTLV-1 infection (supplemental Figure
11). To confirm the specificity of our data, we applied the Prime-
Flow RNA assay and immunolabeling of KIR3DL2. As expected,
TAX mRNA was induced by HTLV-1 infection in a dose-
dependent manner. KIR3DL2 protein and TAX mRNA expres-
sion correlated on CD41 lymphocytes. Moreover, TAX mRNA
was mostly expressed in KIR3DL21 CD41 lymphocytes, whereas
KIR3DL22 CD41 lymphocytes were also negative for TAX
mRNA (Figure 5B). We then hypothesized that Tax itself may
induce KIR3DL2 expression. We therefore decided to transfect
Jurkat T cells and use qRT-PCT to measure mRNA levels of
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KIR3DL2 and the positive control ICAM-1. After 24 hours, over-
expression of Tax led to an increase in ICAM-1 transcripts but
not KIR3DL2 expression (supplemental Figure 12). Moreover,
among the informative patients with ATL, 35% (6 of 17)
expressed KIR3DL2, despite having a deletion of the 59-LTR
region that carries the viral promoter, and therefore could not
express Tax. Finally, 2 patients (P3 and P36) and 1 HTLV-1 car-
rier (C1) did not express TAX mRNA by qRT-PCR, even though
they expressed the KIR3DL2 protein (supplemental Table 3).
Taken together, these results indicate that the presence of Tax
alone does not induce KIR3DL2 mRNA expression.

In an ex vivo assay, lacutamab efficiently enables
autologous NK cells to eliminate KIR3DL21

primary ATL cells
Lacutamab is a first-in-class anti-KIR3DL2 humanized cytotoxicity-
inducing antibody that was selected for its potent antitumor
effector functions. It is currently in clinical trials for treatment of
CTCL. We evaluated lacutamab’s antitumor efficacy by using
tumor cells from patients with ATL as targets (T) and autologous
NK cells as effectors (E) (gating strategy is shown in supplemental
Figure 13; supplemental Table 4). This autologous model is rele-
vant because as it takes into account both the functional status of
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NK cells in patients with ATL and the intrinsic sensitivity of tumor
cells to lacutamab-mediated ADCC. Activity of lacutamab against
primary ATL cells was observed in all 4 of the KIR3DL21 patient
samples tested, and killing of cells increased with the E/T ratio. In
most cases, lacutamab’s anti–tumor cell effect was evidenced at
an E/T ratio of 1:1 or more, with significant killing of ATL cells,
compared with the negative control condition at an E/T ratio of
5:1 (P 5 .0006; Figure 6A; supplemental Figure 14). Regardless
of the E/T ratio, nonspecific (baseline) NK-mediated cytotox-
icity was negligible, as shown by the absence of greater kill-
ing with the IC antibody. Moreover, lacutamab did not
mediate the killing of KIR3DL22 ATL cells in patients with
KIR3DL21 or KIR3D3L22 ATL (Figure 6B-D). We used the
same assay to show that lacutamab antibodies did not induce
the death of effector NK cells from patients with ATL (Figure
6C; supplemental Figure 15). Finally, we confirmed these
results with ADCC experiments on frozen KIR3DL21 primary
ATL cells (heterologous NK cells from healthy donors; n 5 3;
supplemental Figure 16). These observations suggest that (1)
primary KIR3DL21 ATL cells are selectively sensitive to ADCC
mediated by lacutamab through KIR3DL2 targeting, and (2)
NK cells from patients with ATL are functional and can medi-
ate potent lacutamab-driven ADCC.

Discussion
In a retrospective study, we showed that KIR3DL2 expression is
a useful biomarker for identifying acute-type ATL. Furthermore,
our data suggest that KIR3DL2 expression by ATL cells may be

induced by HTLV-1 infection and regulated by DNA hypomethy-
lation of the gene’s promoter. Last, our results suggest that
KIR3DL2 may be a novel therapeutic target in select patients
with ATL.

It was recently demonstrated that high KIR3DL2 expression is a
characteristic feature of S�ezary syndrome.17-19 Furthermore,
marked KIR3DL2 expression has been observed in all CTCL13

and in other PTCL subtypes (see Decroos et al30). We showed
that KIR3DL2 expression is also a hallmark of acute-type ATL in
all involved organs. Moreover, KIR3DL2 expression was associ-
ated with a low survival rate, which is in line with the poor prog-
nosis observed for acute-type ATL.31 Because KIR3DL2 can be
detected easily and specifically on routinely fixed tissue sections
and using FC, this is a robust marker that facilitates the diagno-
sis of acute-type ATL. ATL cells usually express CD3, CD4, and
CD25, but not CD7.32 The ectopic expression of TSLC1/CADM1
may constitute a biomarker for HTLV-1–infected cells and acute-
type ATL.33,34 Although the loss of CD7 in the CADM11 sub-
population is associated with the onset of aggressive ATL,35,36 a
positive marker of acute-type ATL has not been identified.
Despite the occasional presence of KIR3DL21 cells in lym-
phoma- and chronic-type ATL, KIR3DL2 expression may be a
marker of acute-type ATL or transformation of chronic-type ATL.

KIR expression is clonally distributed in NK cells, but can also
be acquired in T lymphocytes after chronic antigenic stimu-
lation, after exposure to cytokines,37,38 or after malignant trans-
formation. However, the underlying mechanisms have yet to be
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characterized.39 In our study, tumor cells from patients with
acute- or lymphoma-type ATL had the same mutational profile,
suggesting that the molecular pathogenesis was similar. Fur-
thermore, DNA hypomethylation of the KIR3DL2 promoter was
found to correlate with KIR3DL2 protein expression in ATL cells.
In vitro treatment with the methyltransferase inhibitor 5-aza led
to a decrease of KIR3DL2 promoter methylation and was associ-
ated with greater KIR3DL2 expression in a KIR3DL21 cell line
but not in KIR3DL22 cells. Although activation of CD41 T cells
by phytohemagglutinin/interleukin-2 did not induce the surface
expression of KIR3DL2 protein, HTLV-1 infection triggered
KIR3DL2 expression by normal CD41 cells under the conditions
of the experiments and after 7 days of cell culture, suggesting
that a stable infection (rather than activation alone) is required
for KIR3DL2 expression. It remains to be determined whether
HLTV-1 induces KIR3DL2 transcription in all CD41 cells or solely
in a preexisting subpopulation of KIR3DL21 CD41 T cells.
Indeed, the origin of the ATL cells is subject to debate,40 and a
small population of KIR3DL21 CD4 T cells was identified in
healthy donors. However, this effect is also observed in vitro in
KIR3DL22 CD41 T cells, and so the “subpopulation hypoth-
esis” is unlikely; it is more likely that HTLV-1 influences KIR3DL2
expression either through infection-dependent chronic antigenic

stimulation, viral integration, or the transcriptional activity of
viral proteins. We evidenced a correlation between TAX mRNA
expression and KIR3DL2 protein expression in HTLV-1–infected
CD41 cells in vitro and in primary ATL cells ex vivo. Tax may
therefore have a role in the induction of KIR3DL2 expression.
The KIR3DL2 gene promoter contains binding sites for NF-kB
and cyclic adenosine monophosphate response element bind-
ing protein, 2 transcription factors known to be activated by
Tax.3 However, Tax alone is not sufficient to induce KIR3DL2
expression. Taken as a whole, these results suggest that
KIR3DL2 gene transcription may be induced by HTLV-1 infec-
tion and regulated by DNA hypomethylation of the gene pro-
moter. Such a 2-step process may explain why KIR3DL2
expression was restricted to acute-type ATL, even though
HTLV-1 was integrated into all ATL subtypes.

The international consensus on the treatment of ATL is based
on the clinical subtype and prognostic factors.41,42 Treatment
options include intensive chemotherapy; allogeneic hematopoi-
etic stem cell transplantation31; a combination of arsenic triox-
ide, interferon a, and zidovudine (for chronic-type ATL)43,44; and
mogamulizumab for relapsed/refractory CCR41 ATL.45 Never-
theless, the prognosis for patients with ATL remains poor.31,46
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Acute-type cases of ATL are particularly refractory to chemother-
apy, and patients often relapse before transplantation.47,48

In proof-of-concept experiments, we showed in this study that
lacutamab, an anti-KIR3DL2 humanized mAb currently in clinical
trials for CTCL, was effective in autologous killing assays ex vivo,
where it induces NK-cell–based lysis of primary ATL cells. The
efficacy of lacutamab against primary ATL cells was similar to
what has been observed in previous similar ADCC assays
against primary Sezary cells.21 These results demonstrated both
the functional status of the ATL patients’ NK cells and the sensi-
tivity of primary ATL cells to ADCC via KIR3DL2 targeting. As
previously described, we did not find that lacutamab reduces
the count of KIR3DL21 NK cells.22 Our present data therefore
provide the preclinical rationale for considering the clinical use
of lacutamab in patients with ATL. In this respect, the benefit of
targeting KIR3DL2 with lacutamab is being further explored in a
randomized phase 2 study in relapsed/refractory peripheral
T-cell lymphoma, including ATL (registered on https://
clinicaltrials.gov at #NCT04984837).

In summary, our present results demonstrated that KIR3DL2 is a
marker with diagnostic value for acute-type ATL. The induction
of KIR3DL2 by HTLV-1 infection revealed a previously unknown
trigger of KIR protein expression in CD41 cells. Further studies
of the role of KIR3DL2 in lymphomagenesis are now warranted.
Lacutamab is currently in development in advanced CTCL (regis-
tered on http://clinicaltrials.gov as #NCT03902184),22 and our
findings open up the way to a novel treatment for acute-type
ATL that will be included in the randomized phase 2 study
“KILT,” evaluating lacutamab in patients with relapsed/refractory
KIR3DL21 PTCL (#NCT04984837).
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