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electronic transport and avalanche simulation in
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Abstract—We present an efficient simulation method for elec-
tronic transport and avalanche in single-photon avalanche diodes
(SPAD). Carrier transport is simulated in the real space using
a particle Monte Carlo approach based on the Fokker-Planck
point of view on an advection-diffusion equation, that enables
us to reproduce mobility models, including electric fields and
doping dependencies. The avalanche process is computed thanks
to impact ionization rates implemented using a modified Random
Path Length algorithm. Both transport and impact ionization
mechanisms are computed concurrently from a statistical point
of view, which allows us to achieve a full multi-particle simulation.
This method provides accurate simulation of transport and
avalanche process suitable for realistic three-dimensional SPADs,
including all relevant stochastic aspects of these devices, together
with a huge reduction of the computational time required,
compared to standard Monte Carlo methods for charge carrier
transport. The efficiency of our method empowers the possibility
to precisely evaluate SPADs figures of merit and to explore new
features that were untrackable by conventional methods.
An extensive series of comparisons with experimental data on
state-of-the art SPADs shows a very good accuracy of the
proposed approach.

Index Terms—Advection-Diffusion Monte Carlo (ADMC),
avalanche breakdown probability, electronic avalanche, electronic
transport, drift-diffusion, jitter, Monte Carlo simulation, single-
photon avalanche diode (SPAD), technology computed aided
design (TCAD), Fokker-Planck

I. INTRODUCTION

Single-photon avalanche diodes are avalanche photodiodes,
operated above breakdown voltage, in which a single photon
absorption can lead to a self-sustained electron-hole avalanche
in the junction. These devices are used in many applications
such as Fluorescence Lifetime Imaging Microscopy [1], Time-
of-Flight (TOF) and Light Imaging Detection and Ranging
(LiDAR) [2], [3]. Predictive numerical simulation of SPAD
behavior is a key step to improve the performance of these de-
vices in terms of output parameters such as Photon Detection
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Rémi Helleboid, is with the CEA LETI, Grenoble, France.

Efficiency (PDE), timing jitter, afterpulsing and dark-count-
rate [4].
A great deal of effort has already been dedicated to find-
ing accurate methods to simulate the SPAD operation and
to extract reliable electrical characteristics of a given de-
vice architecture without the need of expensive and time-
consuming manufacturing and characterization. The state-of-
the-art methodologies rely on solving the Boltzmann transport
equation (BTE) by means of particle Monte Carlo simulation
in the phase-space, either under frozen field to investigate
the details of avalanche process [5], [6] or self-consistently
coupled to Poisson’s equation to study all stages of SPAD
operation [7]. This stochastic approach of transport can repro-
duce the statistical behavior of the SPAD, but it is known to
be computationally very intensive, which makes it unsuitable
for SPADs with sizes of several micrometers. To address this
issue, many empirical models have been developed to extract
SPAD’s characteristics [8]–[12]. While these models have
proven themselves to be accurate for simple architectures, they
are not able to reproduce the intrinsic statistical behavior of
SPAD devices. Recently, some attempts to address a statistical
calculation with a reduced simulation time have been made
[13], [14], but at the cost of strong simplifications such as the
need to artificially split the device into an absorption and a
multiplication region. These models assume that the electric
field is constant in the multiplication region and treat the
avalanche as a one-dimensional process. Hence, such methods
cannot succeed in simulating state-of-the-art SPAD devices
in which the electrostatics is highly non-uniform and bent in
order to increase the active absorption volume [15].
This work aims at gathering efficient empirical models within
a stochastic Monte Carlo method, able to simulate accurately
and efficiently the statistical figures of SPADs of any archi-
tecture, without any simplification of the device geometry.
Our approach relies on interpreting a transport advection-
diffusion equation as a Fokker-Planck equation and to solve it
for each particle with a Monte Carlo method operating only
in the real space. Concurrently, the impact ionization process
is considered through a probabilistic Random Path Length
algorithm, which randomly creates new particles, according
to an ionization coefficient model.
The coupling of these two stochastic numerical processes
leads to a multi-particle simulation that allows us to extract
figures of interest for the SPAD operation such as avalanche
breakdown probability and timing jitter.
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The strength and accuracy of our method is underlined and
confirmed by comparing numerical results with characteriza-
tion results for state-of-the-art SPADs. In what follows, for
clarity purposes, our Monte-Carlo approach will be referred
to as the Advection-Diffusion Monte Carlo (ADMC).

II. MODEL

A. Transport model

Carrier transport in semiconductor devices has been widely
studied through the Boltzmann transport equation, which de-
scribes the evolution of the density of carriers in real and phase
spaces:

∂f

∂t
(r,k, t) + v · ∇rf +

1

~
F · ∇kf = Qcollf (1)

where f(r,k, t)dr dk dt is the probability of finding a particle,
at time t, position r, with a wave vector k within a small
volume dr×dk×dt. v is the group velocity at position r and
time t, F is the total external force applied to the carriers and
Qcoll is the collision integral operator. Although this equation
was very successful to model all regimes of semi-classical
transport, its integration by the means of BTE Monte Carlo
methods is known to be computationally heavy, which may
prevent its use in many-particle simulations of large devices.
The complexity of this phase and real space equation can be
lowered by integrating over all the possible k vectors, in the
reciprocal space. This leads to the balance equation, which
can, at the cost of some simplifications be turned into the
well-known Jacoboni drift-diffusion equation [16]:

∂f

∂t
(x, t) = −v0

∂f

∂x
(x, t) +D0

∂2f

∂x2
(x, t) (2)

where v0 is the carrier drift velocity, D0 the carrier diffusion
coefficient and f(x, t) the carrier density probability, said
differently, if the studied system is made of Ne electrons, then
the local charge density can be extracted as:

n(x, t) = Nef(x, t)

This equation (2) is valid for a bulk semiconductor with
constant doping level and uniform electric field, in a one-
dimensional simulation. Yet, it can be generalized to a three-
dimensional device simulation with varying-in-space doping
level and electric field, and then becomes:

∂f

∂t
(r, t) = −div(v(r, t)f(r, t)) + div(D(r, t)∇f(r, t)) (3)

with v(r, t) and D(r, t), the space and time dependent drift-
velocity and diffusion coefficient at, respectively, position r
and time t.
The function f in (2) and (3) is basically the same as in (1)
but the information on the wave vector k is lost, because f
was integrated over all the reciprocal space.
To be complete, one must add initial and boundary conditions
to this equation. The initial condition can be any density prob-
ability function, which represents the distribution of charges
at the beginning of the simulation. The boundary conditions
describe the behavior of charges at specific boundaries of the
simulation domain. They can be either reflecting boundary

conditions, for example at interfaces with insulators, or absorb-
ing/emitting boundary conditions at metallic contact interfaces.
Usually, the drift-diffusion equation (3) is solved as a standard
partial differential equation, by the means of deterministic
numerical methods such as finite difference, finite element
or box methods [17]. Those methods were explored in-depth
to achieve good accuracy while keeping computational time
within a reasonable range. Yet, in SPAD simulations, analysis
of the statistical behavior is a crucial aspect of device opera-
tion, which cannot be achieved using deterministic methods.
Our model relies on the reformulation of the generalized
equation (3) as a stochastic differential equation (SDE). In-
deed, (3) can be interpreted as a particular form of a Fokker-
Planck equation, which describes the spatio-temporal evolution
of the probability density function of a continuous random
process where both diffusive and dragging forces are present.
A time-continuous random process is a stochastic process, i.e.
a sequence of random numbers, indexed by a continuous set
of values, it will be written, for example, (Zt)t≥0. One can
define the probability density of such a process at a given time
t by a function g(·, t), for which g(r, t)dr is the probability
for the process to occur in a small volume dr at position r at
time t.
Said differently, if we define the probability law PZt

of the
position of the stochastic process of (Zt) at time t, as:

PZt : A 7→ P(Zt ∈ A) (4)

with A a subset of R3, the probability density function of
the random variable Zt, named g(·, t), associated to PZt is a
function such as:

PZt
(A) =

∫
A

g(ν, t)dν (5)

We now expose the link between (3) and a time-continuous
stochastic process. The so-called generalized drift-diffusion
can be interpreted as a Fokker-Planck equation, for which
solutions are temporal probability density function of the
stochastic process (Xt), defined as follows [18]:

dXt = v(Xt, t)dt+ σ(Xt, t)dBt (6)

The process Xt can be directly interpreted as the position of
a particle in real space. We thus have Xt the random variable
representing the position of the particle at time t in the real
space, v(Xt, t) the drift velocity of the particle at its position
and at time t, σ(Xt, t) the diffusion matrix of the dynamics at
position Xt and time t and Bt is the three-dimensional standard
Brownian motion. The diffusion factor of (6) is linked to the
electronic diffusion coefficient through the following relation:

σ(Xt, t) =
√

2D(Xt, t).

The differential dynamics (6) can be reformulated under its
integral form:

Xt =
∫ t

0

v(Xs, s)ds+
∫ t

0

σ(Xs, s)dBs (7)

The Brownian motion (Bt) is a time-continuous random pro-
cess describing a succession of infinitesimal random steps that
follow a centered Gaussian law with variance dt. Each step is
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independent of the previous ones, which results in a continuous
random walk with no bias and a variance: Var(Bt) = t. It is
possible to construct a Brownian motion of any dimension by
stacking independent one-dimensional Brownian motions in a
vector of the desired dimension.
Our model relies on the following proposition: a process de-
fined by the SDE (6) or (7) has a probability density function,
as defined in (5), that is a solution of the PDE defining the
generalized drift-diffusion (3). Proof of this statement and of
existence of such density function can be found in [19]. The
particular form of the Fokker-Planck equation we are using can
also be found under the name ”Kolmogorov forward equation”
which is often treated as a so-called ”Kolmogorov backward
equation with reverse time”. For this proposition to be true,
the boundary and initial conditions of the PDE and of the
SDE must match. The most common initial condition for the
stochastic process is to set deterministically its value at time
t = 0, for example Zt=0 = r0, which amounts setting the
initial condition of (3) to the Dirac delta function :

f : (r, t = 0) 7−→ δr0(r) (8)

The process (6) can hence be seen as a random walk, with
standard deviation σ(Xt, t), which is linked to the diffusion
of carriers, and biased by the drift velocity v(Xt, t) due to
external forces. This view enables us to see the random process
(Xt)t≥0 as the position of a carrier over time.
We have thus built a path between the deterministic macro-
scopic description of the density of carriers (with the drift-
diffusion equation) and a stochastic description of individual
carriers submitted to drift and diffusion. This is of first impor-
tance in the context of SPAD simulation, where the modeling
of the statistical behavior of the device, resulting from the
stochastic behavior of carriers, is mandatory to estimate all
their relevant figures of merit.
In the present study, we have assumed that the transport is
isotropic, and thus that the velocity and the diffusion coef-
ficient can be reduced to single scalar functions that depend
on the electric field strength and the doping concentration,
through carrier mobility. We show in section III that this choice
is reasonable for device simulation of Silicon-based SPAD
devices at room temperature. Yet, for other applications or
simulation parameters, such as cryogenic temperatures, where
the transport might be highly anisotropic, one can keep the
diffusion coefficient under a full 3x3 matrix-form and adjust
the velocity with respect to the crystallographic orientation of
the electric field [20].
The drift-velocity for electrons and holes is computed by using
the field, temperature and doping dependent model of Arora
[21], together with a high-field saturation regime model from
Canali’s work [22].
Furthermore, the Einstein relation is assumed to hold:

De,h(‖F‖, Ntotal) =
µe,h(‖F‖, Ntotal)kBT

q
(9)

with De,h the diffusion coefficient, µe,h the charge mobility,
for electron (e) and hole (h), kB the Boltzmann constant, T
the temperature and q the elementary charge. The mobility
depends on the electric field strength ‖F‖ and the total doping
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Fig. 1. Comparison of the carriers’ drift velocity between input model [21],
[22] and the Monte-Carlo results. Error bars represent the 99% confidence
interval. The velocity is extracted by computing the distance over time ratio for
1000 electrons at different electric fields. The results show that our algorithm
reproduces perfectly the input mobility model at any electric field.

concentration Ntotal. The diffusion coefficient thus depends on
the local electric field and doping concentration, through the
mobility. If necessary, one can straightforwardly replace the
Einstein relation by a more sophisticated model for diffusion
in order to take into account, for example, high-field effects
[23], [24].
The stochastic formulation of the drift-diffusion equation
enables us to use stochastic numerical methods to simulate
the transport of charges within the semiconductor material
and thus gathering results over many simulations to extract
the figures of interest. In this case the Monte-Carlo Euler-
Maruyama method [18] is particularly well-suited, the algo-
rithm is straightforward and goes as follows. We choose a
constant time step dt, and we start from a given position x0.
We call Xn the numerical approximation of Xt at time n · dt.
The Euler-Maruyama Monte-Carlo scheme is then given by:{

X0 = x0
Xn+1 = Xn + v(Xn, n · dt)dt+ σ(Xn, n · dt)Wn (10)

where (Wn)n≥1 are random variables that follow a centered
Gaussian distribution with variance dt. The transport proper-
ties of the carrier does not depend on the chosen time step
dt, as the Brownian motion construction guarantee to have a
standard deviation of

√
t where t is the simulated time. Yet,

because the Euler-Maruyama deterministic part is a numerical
scheme of order one in time, the time step must stay relatively
small, we found that a value of 10 fs was a good compromise
between accuracy and computational time.
Our transport algorithm has been validated by checking that
the random process results in the desired electron and hole
velocities as displayed in figure 1, which demonstrates the
accuracy of our method.

B. Impact ionization model

The peculiarity of our model is that the impact ionization
modeling is fully coupled with the transport model. We have
implemented a modified version of the ”Random Path Length
Algorithm” (RPLA) [25] [14].
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In our model, the path integral (11) is computed on the fly,
concurrently with the transport simulation, at each time step
of the Monte-Carlo process. Thus, our model does not require
the assumption that the device is divided into an absorption
region and an avalanche region as in other previous works
[13]. It allows us to simulate the full electron-hole avalanche
process three-dimension space without the need for severe
approximations on the device electrostatics in the so-called
avalanche region.
Carrier multiplication is modeled through field-dependent rates
of impact ionization [26], which is the number of impact
ionization events a carrier experienced per distance unit.
The probability that an electron will not create an impact
ionization event between two positions z and z′ is given by :

Pii(z
′|z) = 1− exp

(
−
∫ z′

z

α(x) dx

)
(11)

where α(x) is the impact ionization coefficient at position x
[27].
With the RPLA the occurrence of an impact ionization event
is modeled by a random variable that follows the probability
Pii. A way of simulating such a probability law is to generate
a random number variable r uniformly distributed between 0
and 1, then the integral expression (11) is computed along the
carrier’s trajectory, to get the position z for which Pii(z′|z) =
r. If such a z exists, then we consider that an impact ionization
occurred at this location. The integral Pii is then reset to zero
for the particle and a new random number r is drawn. The
created electron and hole will follow the same process, and
might, eventually also experienced impact ionization.
In [13], the authors back-traced the timing of the impact-
ionization event by assuming that the carrier’s path in a so-
called ”avalanche-region” is a one-dimensional straight line at
constant velocity. In our algorithm, we compute the integral
Pii(z

′|z) on the fly, consistently with the trajectory, and
whenever Pii(z′|z) reaches or exceeds the random value r,
an electron-hole pair is created at the current position of the
parent carrier. The capacity of the multiplication model to be
used consistently with the transport simulation is mandatory to
accurately model the operation of state-of-the-art devices with
highly bent electric fields, for which considering straight lines
for carrier trajectories is very inaccurate [28]. The extraction
of impact ionization coefficients in Silicon was performed by
several authors either from measurements or from BTE Monte
Carlo simulations. In this work we have used the experimental
coefficients given by Van Overstraeten and De Man [29], but
one can straightforwardly replace them by any other data.
Our multiplication modeling was tested by extracting the im-
pact ionization coefficients back from simulation, at different
electric fields. This is done by counting the number of impact
ionization events on a given traveled distance and comparing
the obtained coefficient with the values of the Van Overstraeten
data used as an input, both for electrons and holes. The results
are reported in figure 2 and show that our stochastic algorithm
perfectly reproduces the input model of multiplication.
It was noted by several authors that modeling particle multi-
plication with impact ionization rates leads to the possibility
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Fig. 2. Comparison of the carriers’ impact ionization rates between input
model [29] and the ADMC results. Error bars represent the 99% confidence
interval. ADMC coupled with a RPLA accurately reproduces the input impact
ionization model.

for a cold electron injected in a high electric field to create an
impact ionization immediately after being injected. This is in
contradiction with the fact that an impact ionization can occur
only if the electron has gained enough energy from the electric
field to be able to knock another electron out of the valence
band [30], [31]. To accumulate this minimal threshold energy,
the electron is required to travel a minimal mandatory distance
in a high electric field. This length is called ”dead-space” as no
ionization can occur within this distance. Those considerations
led to the creation of different models that take into account
this energy threshold, among which the dead space model
[32] and the effective field model [27] are the most used.
The minimal energy required for a carrier to trigger an impact
ionization was computed using theoretical considerations on
the band structure and conservation of mass and momentum
[33], [34]. It is also common to use effective values for
this threshold energy, computed through conventional Monte-
Carlo simulations and fitting procedures [35]. Those threshold
energy values are often used as a fitting parameter, within
an acceptable range of values. In this study we have used
the following values for Silicon, the threshold energy for an
electron to impact ionize is Eeth = 1.8eV and Ehth = 2.4eV
for a hole, following [36].
For a particle injected with no energy in the system, we com-
pute its energy gain from the electric field by extracting the
electrostatic potential it traveled through, which is equivalent
to integrating the electric field F over the particle path:

Egained =

∫
Path

∥∥∥−−→F(z)
∥∥∥ dz = n∑

k=0

∥∥∥∥−−−→F(Xk)
∥∥∥∥ v(Xk) · dt (12)

While Egained is lower than the threshold energy Eeth the
impact ionization coefficient α in (11) is zero, and no impact
ionization can occur. This non-local impact ionization model
is called the ”hard dead space model” because of the sharp
transition between zero and non-zero impact ionization prob-
ability.
The need to avoid such a sharp transition, that is not observed
in BTE Monte Carlo simulation results, has been discussed by
several authors and is still under debate [37]. One might also
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Fig. 3. Extracted dead space at various electric fields for hard and soft
threshold models. Error bars represent the 99% confidence intervals. Plain blue
and red lines represent theoretical values from formula (14) for electron and
hole, respectively. Both models give values close to the theoretical calculation
with an expected higher variability for the soft dead space model.

want to take into account the residual energy of the carrier that
engender the impact ionization, as well as the initial energy
of the created electron and hole [38]. We did not focus on
those topics as they would not significantly affect BrP or
jitter result in SPADs. Yet we show that within our model,
it is straightforward to implement models that would cope
with those small-scale physical effects. Indeed, by randomly
selecting the initial energy of the carriers on a given statistical
distribution, one can retrieve a so-called ”soft dead-space” [39]
model. As an example, we have used a Gaussian distribution
whose mean and standard deviation were set to roughly match
results from BTE Monte Carlo.
When using a dead space impact ionization model, one must
tweak the commonly used function for impact ionization rates
for electrons αe and holes αh. Indeed, those values, as they
come from measurements, intrinsically include the presence
of the dead space. Following [40], the impact ionization
coefficients for dead space models are transformed as such:

αdead−spacee,h =
1

1
αe,h

+ de,h
(13)

where de and dh are the dead space for electrons and holes,
respectively.
The dead space can be extracted by simulating multiplication
at different fields and looking at the distance traveled by an
electron (de) or a hole (dh) to reach its minimal threshold
energy. We have checked that the obtained values matches the
theoretical values for a constant electric field E :

de,h =
Ee,hth
Eq . (14)

The extracted values are shown in figure 3, one can observe
the good agreement in both cases with the theoretical value
for a constant electric field.
The difference in behavior of the impact ionization models is
underlined by the probability density function of the distance
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Fig. 4. Probability density function of the position of the first impact
ionization for a cold electron injected in a constant electric field of 600kV/cm
with three different impact ionization models. Each curve is made out of 1
000 000 single-particle simulation results.

traveled by a carrier before it suffered its first impact ioniza-
tion, represented in figure 4. The local model enables impact
ionization to occur immediately after the carrier was injected,
while dead-space models give results where a certain distance
is needed for the carrier to gain a threshold energy, necessary
to trigger an impact ionization. The hard dead-space model
results in a zone where the probability of triggering an impact
ionization is strictly zero, while the soft model slightly relax
this condition, with a low, but positive ionization probability.

C. Device simulation

Device simulation procedure begins with the design of the
desired device followed by simulation of the manufacturing
process with a commercial process simulator to obtain the final
doping profile of the device. The electrostatics of the device
is then calculated with standard commercial TCAD simulation
software [41]. This preliminary workflow results in doping
and electric field profiles in two or three dimensions. Our
methodology then uses these profiles whenever it is necessary
for the simulation, by interpolating the doping and the electric
field within the mesh of the simulation. In what follows, the
frozen field approximation is used [42], which means that the
electrostatics of the device is not updated at each iteration of
the Monte Carlo simulation, with respect to the new charge
distribution. Our simulation could be extended to a so-called
self-consistent device simulation, at the cost of computing,
with a solver of the Poisson equation, the charge densities
and its corresponding electric field after every given time step
[43]. In Algorithm 1, the overall design of our methodology
is represented, non-local approximations are not considered
for clarity purposes. The algorithms with hard and soft dead-
space models are shown in the Algorithms section of the
supplementary material file. Figure 5 represents the trajectory
of a single electron injected in the volume of the SPAD, which
drifts and diffuses following the electric field, and finally
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Fig. 5. Illustration of the device multi-particle simulation. The background
map represents the strength of the electric field, the red region corresponds
to the SPAD main junction. An electron is injected in the volume of the
SPAD (yellow cross), it drifts and diffuses towards the junction and triggers
several impact ionization events, leading to a self-sustained avalanche. The
color of the trajectories’ dot represents the intrinsic time of the particles. A
zoomed view of the avalanche is shown in the inset. The third dimension was
dismissed for visualization purposes.

creates an avalanche in the junction of the SPAD, visible in
the inset.

Algorithm 1: ADMC algorithm
input : Starting position x0

input : Time step dt
input : Final time Tmax
input : EndCondition
input : v(r, t) and σ(r, t)

time← 0
X0 ← x0

pii ← 0
Generate r ↪→ U(0, 1)
while time ≤ Tmax and no EndCondition do

for each particle do
Generate Wn ↪→ N (0, dt)
Xn+1 = Xn+v(Xn, n ·dt)dt+σ(Xn, n ·dt)Wn

pii = pii + v(Xn, n · dt) · dt · αe(Xn)
if pii ≥ r then

Impact Ionization Occurs : Inject a new
electron and hole at position Xn+1

reset pii = 0
reset r ↪→ U(0, 1)

if particle hits an Ohmic contact then
Remove particle from the simulation

III. RESULTS AND DISCUSSION

A. Device architecture and simulation parameters

1) Device architecture: Our method was tested against char-
acterization results from several SPAD devices. The considered
SPADs are made of a main N on top of P regions that form
the main junction, also hereafter called the avalanche region.
A guard ring formed of lower p-type and n-type annular areas
is also used to prevent lateral breakdown [44]. These SPADs
are backside illuminated. The optical stack ends with an anti-
reflective coating layer, the interface between the optical stack
and the silicon is structured to enhance the light absorption
[45]. This interface is passivated by the means of an additional
P+ layer, to reduce the dark count rate due to the interfacial
defects [15]. A schematic representation of a two-dimensional
sectional view of the SPAD architecture is given in figure 6.
The dimensions of the different regions as well as the doping
level in each of them can be modulated in order to optimize
the device performances.
2) Simulation parameters: The simulations were performed
with a time step of 10 fs and a maximum simulation time of
5 ns. Simulations are typically made by injecting electrons in
the volume of the SPAD, with starting points distributed on a
grid of 50 × 50 points × 150 points, the values are taken to
approximately match the SPAD’s dimension ratios. On each of
these points, 250 simulations are performed, leading to a total
of around 108 simulations. During the simulation, if more than
200 particles are active (i.e. not absorbed by a contact), we
consider that the simulation ends in an avalanche breakdown
event. All the simulations are independent from each other,
which allows us to parallelize the simulation process. One may
note that, unlike in standard ”free-flight”-based Monte Carlo,
the time step in our method is constant and equal for every
particle. This implies that all the particles are always synchro-
nized in time, which is a strong advantage for parallelization
over the particles, without performing costly synchronization.
Simulations on three-dimensional SPADs, using the above
set of parameters, performed with parallelization over the
simulations, using 40 cores, take around 15 hours. Although
comparison with standard BTE Monte Carlo highly depends
on implementation, we found that our method is at least 200
times faster than typical Full-Band Monte Carlo simulation.
The temperature is set to 300 K, to match the experimental
conditions, for comparison purposes.
The only considered wavelength is 940 nm, which is the
wavelength of the light emitted by the laser diode used in
the experiments. At such large wavelengths, the absorption
coefficient of silicon is very low, and the optical absorption
can thus be considered uniform in the silicon volume thanks to
the optical structuration that scatters the incoming light in all
directions and the metal and oxide reflectors that reflect the
light back into the silicon volume. For shorter wavelengths,
the optical absorption might become non-uniform and one
would have to couple the optical simulation with the ADMC
simulation. This can easily be done by setting the number
of simulations starting from a given position to a number
proportional to the optical absorption at this position.
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Fig. 6. Schematic sectional view of the considered SPAD architecture.

B. Avalanche breakdown probability

The detection efficiency of a SPAD is determined by, on one
hand, its optical absorption (OA), and on the other hand its
avalanche breakdown probability (BrP), that is, the probability
that a carrier injected within the device will eventually trigger
an avalanche that will be detected by the readout circuit. The
probability for an incoming photon to trigger a count is called
the Photon Detection Efficiency (PDE). One has also to take
into account the fact that only a fraction of the sensor surface
is photosensitive, this fraction is called the optical fill factor
(FF). The optical absorption as much as the optical fill factor
are ruled by the optical stack and the back-end circuit. Hence,
only the avalanche breakdown probability can be optimized at
a Silicon level.
Within our model, the breakdown probability is defined as the
ratio of the number of simulations that turned into an avalanche
over the total number of simulations performed. For a given
simulation, if a certain threshold number of active particles is
reached, then we consider that the avalanche mode is attained.
This threshold number of particles can either be defined as the
number for which a high enough current will be measured, and
a count triggered, either an arbitrary threshold can be used, set
to a number after which it is highly unlikely that the process
will stop by itself. Figure 7 represents the number of active
particles versus time for 20 000 simulations in a single SPAD.
With this figure, it appears that if a simulation reaches 1000
active particles, it is then very unlikely that it will not lead to
an avalanche (one event over 20 000).
In modern SPAD architecture the electrostatics is neither
homogeneous nor isotropic [46], thus the avalanche breakdown
probability has the same properties. In order to determine the
local BrP, we performed several simulations with the same
starting point r0, so we can determine the BrP of this location.
By repeating this operation on many points within the device
simulation domain, we create a map of avalanche breakdown
probability. Such a map is shown in figure 8 (b), for each point
the color represents the probability for an electron injected at

Avalanche
Threshold

Fig. 7. Number of particles versus time for 20 000 simulations of a SPAD
device. The simulations are synchronized via the time of the first impact
ionization event. Particles are created through the impact ionization process
and removed when collected at Ohmic contacts. The log scale allows us
to appreciate the exponential growth of the number of particles when the
avalanche mode is reached.

this location to eventually trigger an avalanche. These kinds
of maps were already produced by means of deterministic
methods, such as solving the McIntyre equations over electric
field lines [28]. Those methods could not take into account the
statistical intrinsic behavior of the particles. With our method,
a particle can, for example, overcome a potential barrier thanks
to its thermal energy.

Fig. 8. Two-dimensional map of breakdown probability obtained by the
method of Helleboid and al. using the McIntyre model over electric field lines
[28] (left). Two-dimensional map of breakdown probability obtained from the
ADMC method (right).

One can appreciate that, even though the breakdown probabil-
ity maps are overall similar (see figure 8) with both methodolo-
gies, the one made with the ADMC method shows that some
zones that seems to have a zero-BrP with the deterministic
methods, have actually a low, but positive probability to be
active.
On figure 9, many simulations from two single starting points
are shown. For an electron injected near the top right anode
(white star), either it enters directly in the peripheral junc-
tion, where the electric field is low, and cannot trigger any
avalanche, or it diffuses downward enough to get around the
ring region, to eventually be collected in the main junction
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Fig. 9. Many electron trajectories before their first impact ionization. Only
two starting points are considered, represented by the star and the cross. The
important diffusion leads to very different paths, thus the particles enter the
avalanche region at very diverse locations.

and trigger an avalanche. This second pathway cannot be ap-
preciated with straight line or field lines method. Considering
the random nature of transport is mandatory to fully capture
the detailed breakdown mechanisms and understand the device
operation.
Being able to accurately predict low breakdown probability ar-
eas is as well mandatory to simulate dark count rate precisely.
Indeed, small areas can have a massive contribution to dark
count due to localized clusters of defects with high Shockley-
Read-Hall (SRH) generation rate [47]. This can be particularly
the case in the near contact region (top left of figure 6) that are
processed by means of heavily doped implant, that can lead to
clusters of extending defects likely to enhance SHR generation
rate. Dark count rate can be computed by integrating the
result of the multiplication of the local breakdown probability
by the local SRH generation rate [48]. Photon detection
efficiency can also be computed by integrating the result of
the multiplication of the local breakdown probability by the
local photon absorption rate, that can be obtained from optical
simulation.

C. Jitter

The main application of SPAD devices is ToF for three-
dimensional imaging. In order to accurately determine the
distance to an object, the time for a photon between its
emission and its reception after being reflected by the object
must be measured precisely. This measure is perturbed by
different mechanisms: the limited time resolution of the light
source, the transport time from the absorption location within
the SPAD volume and the avalanche region, the time for
the avalanche to grow up to measurable level of induced
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Fig. 10. Distribution of the time between the first impact ionization event
and different number of particles thresholds. This figure illustrates the timing
jitter due to the avalanche process itself. There is a not negligible spread of
time for the avalanche to be established at measurable levels of currents.

current and finally, the finite precision of the readout circuit.
The statistical distribution of the detection times for a given
distance is called jitter. Among the different sources of jitter,
we focus on those directly induced by the silicon device : the
transport time and the avalanche build-up time.
The statistical aspect of the jitter is key, as a high discrepancy
in the timing will be interpreted as a wrong distance, for
example, an additional 1 ns leads to an error of 0.15 m in
the distance hand.
Figure 10 illustrates the jitter due to the avalanche build-up.
The distribution of the time interval between the first impact
ionization and several numbers of active particles thresholds is
shown. The spread of the distribution indicates that the time
required to have a detectable current is a significant source
of jitter. Building those statistical distributions requires an
important number of results, which are hardly attainable with
standard Monte Carlo device simulation. On figure 10, each
curve gathers 106 simulations. While recent works explored
analytically the statistics of the avalanche build-up under
constant one-dimensional electric fields [49] [50], our method
enables further investigations on three-dimensional arbitrary
fields. Figure 11 exhibits some properties of the build-up jitter.
The average plot highlights the exponential growth of the
avalanche process, with a very stable rate after 1000 particles.
The plot of the standard deviation emphasizes the fact that an
important proportion of the build-up time fluctuation occurs
during the beginning of the avalanche. Indeed after around
1000 particles, the standard deviation reaches a plateau. As a
matter of fact, when the multiplication process is made of
many particles, its timing properties are averaged, and the
random history of a single particle has a lesser importance
in the overall avalanche process.
In order to verify the accuracy of our model, we compared
the jitter distribution obtained from our simulation with jitter
characterization performed on several SPADs, manufactured
within a CMOS technology process. Figure 12 gathers three
comparisons between simulation and measurement of the jitter
statistical distribution. We picked three diodes with signifi-
cantly different electrostatics, to underline the robustness of
our methodology against different architectures. Experimental
and simulation parameters were kept identical for the three
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of particles in the avalanche process. The exponential growth of the avalanche
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mostly determined by the timing of the first impact ionization events.

devices. All three SPADs have the same epi-layer thickness,
SPAD A and B have a lighter P-SPAD implant, which helps
increase the depletion region. SPAD C has a heavier P implant,
leading to a narrower depletion region, which causes more
diffusion of the electrons in the SPAD volume. This is reflected
in the jitter distribution, as the SPAD C has a higher jitter tail
than the other two SPADs.
The results show that for all devices, the simulation well
reproduces the experimental results, despite very different
distribution shapes. The beginning of the peak cannot be fully
recovered because of the two extrinsic causes of jitter: the
finite timing resolution of the laser pulse and of the readout
circuit.
To assess the performance of a given device, it is often useful
to reduce the full jitter distribution into a single number figure.
We use a very common figure that is the time for which a given
proportion of the population has a smaller jitter. For example,
the 50% population time is the median of the timing jitter
data.
We compared the 50% population time and the 90% pop-
ulation time for 16 different layouts. The correlation plots
between values extracted from measurements and simulations
are represented in figure 13. For both metrics, we found a
very significant correlation between the simulation and the
characterization. This corroborates the fact that the part of the
jitter our model cannot fully assess is the same for all diodes,
which is consistent with its origin (laser pulse and readout
circuit), which is also the same among all silicon layouts.

IV. CONCLUSION

Since SPAD operation from carrier transport to multiplication
process is intrinsically stochastic, an accurate modeling of
such a device must include this randomness behavior. We

0.0 0.5 1.0 1.5 2.0 2.5
time (s) ×10−9

108

109

1010

Ji
tte

r(
ar

b.
un

it)

Monte Carlo SPAD A
Characterization SPAD A
Monte Carlo SPAD B
Characterization SPAD B
Monte Carlo SPAD C
Characterization SPAD C

Fig. 12. Probability density function of the jitter for three different SPAD
layouts. The densities extracted from simulations are compared to charac-
terization results. The comparison shows an excellent agreement between
simulation and measurement. All simulations were done in three-dimensional
meshes, at the same excess bias as the characterization and each curve gathers
around one million simulations, from starting points evenly distributed within
the device volume.
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The linear regression for correlation is shown, together with the coefficient
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introduced a new kind of Monte Carlo simulation that couples
transport and multiplication mechanisms to achieve full multi-
particle simulation. Our methodology, by its flexibility, makes
it possible to carefully tune the transport as well as the
impact ionization models. The simulations are utterly faster
than any standard BTE Monte Carlo solver, which allows us
to simulate the statistical behavior of the device with large
amounts of data within reasonable computational time. The
new methodology was tested against previous methods and
characterization results to ensure its accuracy.
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