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Summary
Writing software is tedious, error-prone, and accessible only to a small share of the population
– yet coding grows increasingly important as the digital world plays larger and larger roles
in peoples’ lives. Programming by example seeks to make programming more reliable and
accessible by allowing non-technical users to specify programs only from pairs of input-output
examples. DeepSynth is a general purpose programming by example tool, which combines
predictions from neural networks with symbolic methods to generate programs.

Statement of need
DeepSynth was used for the experiments of the recently published Fijalkow et al. (2022). The
main purpose was to evaluate and compare different search algorithms and their integration
with neural predictions. Beyond the publication Fijalkow et al. (2022), the goal of DeepSynth
is to serve as a reference implementation of existing neuro-symbolic methods for programming
by example. Indeed, it includes different options for different parts of the pipeline, focussing
on neural predictions and search algorithms.

How it works
DeepSynth is parameterised by a domain specific language (DSL), which is the programming
language chosen for solving a program synthesis task. The user first specifies a DSL by
giving a set of primitives together with their types and semantics, as well as semantic and
syntactic constraints (such as program depth). The compilation phase constructs a Context
Free Grammar (CFG) representing the set of programs.

The second ingredient is the prediction model. DeepSynth leverages PyTorch (Paszke et al.,
2019): a neural network reads the examples and outputs predictions to guide the search towards
likely programs. DeepSynth includes end to end procedures for training a neural network that
makes predictions from examples. The predictions are given as distributions on the derivation
rules of CFG.

Figure 1 illustrates the machine learning pipeline on a toy DSL describing integer list manipu-
lating programs.
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Figure 1: Pipeline for neural predictions for syntax guided program synthesis.

Once the DSL is specified and the prediction model trained, DeepSynth can be used as follows:
the end user gives a few input-output examples, and DeepSynth searches for a program
matching the examples. DeepSynth includes a number of predictions-guided search algorithms;
the most efficient is HeapSearch. An optional parallelisation framework allows the user to split
the search on multiple CPUs by partitioning the progam space.

We refer to the readme for example uses of DeepSynth. The full technical details are described
in Fijalkow et al. (2022).

State of the field
Programming by example has been intensively investigated in the past years both in academia
and in industry, spearheaded by the success of FlashFill in Microsoft Excel (see Gulwani
(2011)), allowing users to synthesize spreadsheet programs by giving examples. FlashFill is
now integrated into the larger and more ambitious project PROSE by Microsoft Research (see
the website). PROSE is a general purpose program synthesis tool (see the GitHub repository).
It is based on constraint programming: in addition to the DSL, the end-user needs to specify
so-called witness functions, which are used for specifying a programming by example instance
in a SAT or SMT solver.

Other tools have emerged recently exploiting the programming by example paradigm, for
instance SmartFill for Google Sheets, and the TF-Coder for TensorFlow (see Shi et al. (2020)).
Unlike PROSE, they are tailored to address a single domain: for SmartFill spreadsheet programs,
and for TF-Coder tensorflow programs. A number of other prototype tools have been developed
in the academic world: DeepCoder was the first leveraging deep learning techniques (see Balog
et al. (2017)), PC-Coder (see Zohar & Wolf (2018)), and recently the general-purpose
DreamCoder (see Ellis et al. (2021)).

The recent release of the GitHub Copilot (see GitHub (2021)), powered by the Codex large
language model from OpenAI, shows the wide applicability of the program synthesis: Copilot is
presented as your AI pair programmer, meaning that it assists developers by autocompleting
pieces of code in an interactive fashion. The key difference is that specifications in Copilot are
given in natural language, which may or may not include examples.
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Features
This package has the following capabilities:

• Create a DSL from syntactic constraints and semantics functions;
• Transform this DSL into a Context Free Grammar (CFG);
• Transform this CFG into a Probabilistic CFG (PCFG);
• Sample programs from a PCFG;
• Enumerate programs in a PCFG with different algorithms including HeapSearch;
• A grammar splitter that enables to split the search into n independent searches, enabling

parallel search scaling linearly with the number of CPUs;
• A neural network architecture to predict probabilities of a CFG given pairs of input-output

examples and its automatic training procedure from a DSL that supports int, bool and
list inputs.
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