N

N

A software engineering point of view on digital twin
architecture
Gagélic Bechu, Antoine Beugnard, Caroline Gl Cao, Quentin Perez, Christelle
Urtado, Sylvain Vauttier

» To cite this version:

Gaglic Bechu, Antoine Beugnard, Caroline Gl Cao, Quentin Perez, Christelle Urtado, et al.. A
software engineering point of view on digital twin architecture. ETFA 2022 - IEEE 27th Interna-
tional Conference on Emerging Technologies and Factory Automation, Sep 2022, Stuttgart, Germany.
10.1109/ETFA52439.2022.9921617 . hal-03832378

HAL Id: hal-03832378
https://imt-mines-ales.hal.science/hal-03832378

Submitted on 28 Oct 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://imt-mines-ales.hal.science/hal-03832378
https://hal.archives-ouvertes.fr

A software engineering point of view
on digital twin architecture

Gaélic Béchu'/®, Antoine Beugnardl , Caroline G. L. Cao'®,
uentin Perez=®, Christelle Urtado“®, Sylvain Vauttier
Quentin Perez?®, Christelle Urtado’®, Syl Vauttier?
YLabSTICC, IMT Atlantique, Brest, France
I{firstname.lastname}@imt-atlantique.fr
2EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
2{firstname.lastname}@mines-ales.fr

Abstract—Digital twins, along with Internet of Things and
Artificial Intelligence, have been identified as one of the key
technologies for Industry 4.0. However, the definition of Digital
Twin (DT) is still abstract and context-dependent. In this paper,
we present a metamodel that supports concrete and operational
descriptions of digital twin deployment. This metamodel en-
compasses the different aspects of deployment, including the
definition of hardware and software components that compose the
layered cyber-physical architectures of the digital twin, along with
the installation and instantiation tasks that compose deployment
processes. Multiple configurations can also be defined to support
the deployment of a digital twin in different execution contexts.
The relevance of this metamodel was evaluated by two case
studies. The first consists of deploying the digital twin of a cobot
in a simulation environment. The second applies the approach in
a home automation environment. In both cases, our metamodel
provides complete and precise descriptions of the deployment
process and thus constitutes a viable first step towards a model-
driven approach for digital twin deployment.

Index Terms—Digital Twin, Model-Driven Engineering, Archi-
tecture Deployment.

I. INTRODUCTION

Digital twins, along with Internet of Things and Artificial
Intelligence, have been identified as one of the key tech-
nologies for Industry 4.0. However, as for many emerging
concepts, the definition of Digital Twin is still abstract and
context-dependent. We present in this paper a metamodel that
supports concrete and operational descriptions for digital twin
deployment. The remainder of this paper is organized as fol-
lows. Section [[I] details the metamodel we proposed to handle
the deployment of digital twins in a model-driven approach.
Section presents an evaluation of the completeness and
adaption of our metamodel in two case studies. Section [V]
discusses these preliminary results and provides perspectives
about this on-going work.

II. A METAMODEL FOR MODEL-DRIVEN DEPLOYMENT OF
DIGITAL TWINS

If there is no consensus on the definition of Digital Twins,
there is even less agreement on their software architec-
ture. The 1SO23247 standard [[1] provides a global architec-
ture where “boxes” communicate through connecting “lines”.
These boxes are:

External Tools

= status :
f””—————u ———————— Data & History

~~~~~~~~~~~~~~~~~~~~~ :

Fig. 1: Digital Twin macro-architecture

o User Entity including Human, Human-Machine Interac-
tion, Manufacturing Execution Systems, Enterprise Re-
source Planning and other DTs,

e Core Entity including Management Services and Digital
Representation of Observable Manufacturing Elements,

o Data Collection and Device Control Entities that gather
elements to connect actual devices,

o Cross System Entity including all communication ser-
vices.

This standard is not a software architecture; it is a refer-
ence architecture. It includes real “things” such as devices,
humans, and applications. The software part of DTs (yet
to be defined) is complex. Among all software, DTs may
use OSs, drivers, controllers of hardware, databases, data
conversion, data storage, data analysis applications, Al tools,
3D engines, etc. Hence, defining a software architecture is
context-dependent. This paper defines a synthetic architecture
as a simple organization of software and data streams.
Figure [I] illustrates the adopted organization of our DTs. The
overall architecture is composed of four main packages. The
content is digital (i.e., files such as electronic documents,
spreadsheets, software, scripts, text files, etc.)

The Devices box denotes the sociotechnical system (STS)
itself, including humans, which are not part of the DT.

The External Tools box refers to the external software that can


https://orcid.org/0000-0002-6461-6061 
https://orcid.org/0000-0002-3096-237X
https://orcid.org/0000-0003-1982-6489
https://orcid.org/0000-0002-1534-4821
https://orcid.org/0000-0002-6711-8455
https://orcid.org/0000-0002-5812-1230

HEAD

Y RN | Y
(Eirth)&(&ldSQ)«—A(A;ddSB)H@onf 1)
\

| origin/varl |--->(AddS4)<----| ext2 |

birth | | origin/master | | extl |

Fig. 2: A DT configuration: its birth, add some parts, two
configurations and two variants (branches)

be used (and shared) and that usually requires configurations
that are part of either the Core or the Tools boxes.

The Core Twin box contains everything (hardware description
and software) defining the STS. It includes sensors, actuators
and drivers. It also contains all brokers (scripts, software)
ensuring the connection between all parts (software and data)
including status extraction and data historization.

The Data & History box contains the status of the DT and all
historical (biographical) data. It includes 3D-models, sensors
values, actuators commands, etc. If, for some reason (software
installation/configuration constraint), data have to be located
elsewhere, a link is explicitly mad

The Tools box contains software such as simulation, analyzing
or learning tools. It reads information from Data & History
and feeds it with new information (statistics, configurations).
Dependency among tools and data have to be explicit, as in a
configuration management tool such as git (see Figure [2)).
The Management box contains software, scripts and data used
to manage the DT. It includes introspection services (request),
GUIs, controllers, etc.

Beyond this organization, we define an ontology that gathers
all needed concepts to describe, implement and manage a DT.
An excerpt is shown in Figure[3] For the sake of readability, we
used colors to refer to the architecture of Figure |I} The green
part (Devices) is a hierarchy of RealWor1dThing including
Hardware and LivingBeing. The red part represents the
core digital twin. The blue part describes management with
Services and ConfigurationScript. The purple part
denotes Data produced and consumed by Software. The
white part represents Tools, whereas the yellow one denotes
abstractions that organize concepts.

III. MODELING THE DEPLOYMENT OF DIGITAL TWINS IN
TWO INTELLIGENT ENVIRONMENTS

A. Case Study #1: Human-Robot Interaction

The first deployment case study focuses on the collaboration
between a robotic arm and its operator while they are perform-
ing a collaborative task. This case study mimics the environ-
ment of a worker in a manufacturing plant and was created

! Configuration data splits into 2 categories: technical and model. Model
data must be located in the Data & History component, while technical must
be in the Core Twin. Technical data collect logins, IP addresses, etc.

2 For example, a Unix symbolic link, or some kind of readme file at least.

CPS/STS

CoreTwin (red)

DigitalTwin

O
Abstractions (yellow)

‘ Device (green)
consumes *

Deployment RealWorld
Configuration || 7--- Thing
H > z -
* produces i
Connector || Software | | Program | | LivingBeing || Hardware
Tool Script &

Tools (white)

Configurati

DataSet simulates

Data

Data/History (purple)

* services ‘ ‘
*

Services ConfigurationScript

Management (blue)

Fig. 3: A DT ontology (excerpt)

with the purpose of joining through a DT a human operator and
a robotic arm. The digitalization of this interaction is done with
Unityﬂ which is the simulator that best suits our needs. The
robotic arm at our disposal is controlled on ROS] We could
have remained with a ROS-friendly simulator such as Gazebo,
but while being adequate for robotics applications, Gazebo is
not ideal for the digitalization of anything non-robotic [2].
We created the DT of the Human using gyroscopes placed on
different body parts of our operator. We streamed this data
between different computers to have a DT of our human oper-
ator in Unity. The factor to consider here is the communication
between the various hardware and software tools. These tools
were designed to work on their own for different purposes
and we had to build a generalized architecture that integrated
different communication means (Radio, TCP/IP, USB).

We built a Composite Structure Diagram (CSD) according to
the ontology proposed in Section [} As shown in Figure 4] the
different hardware components support different applications
and software tools. We can see the communication between the
hardware components as well as the structure of the DT. The
Human-Robot Interaction DT can be seen as the combination
of two different DTs: the Human DT and the Robot DT.

B. Case Study #2: Home Automation System

The second case study concerns a Home Automation System
(HAS). The HAS is composed of two major elements: hard-
ware (sensors, actuators, computers, routers, etc.) and software
(home automation software, operating systems, etc.) In this
case, we mix real (smart light bulb, computers, router, etc.)
and simulated hardware. We built a predictor of a bed pressure
sensor which indicates whether a person is in bed or not. To
do so, we trained a forecasting model (naive forecaster) to
learn data patterns with Sktime. Data used for learning come
from the dataset of Chimamiwa et al. [3]. We then integrated
this simulated sensor in the HAS.

3 https://unity.com/
4 http://wiki.ros.org



Central Computer : Hardware

LinuxOS:SoftwareTool

CPS_Standalone

CPS_Combined

Humandata:LivingBeings

DigitalTwin_HumanMaodel_Unity

DigitalTwin_HumanRobot_Unity

] IHumanSubiecIl] [ HumanSubject2 I

Configuration_Datastored

Configuration_HR_Unity_Datastored

Record dimensions

[ DeploymentConfiguration ]

[ DeploymentConfiguration ]

e S L ) (Location] [ HumanTask | [Location] [ HumanTask |
SoftwareTool:XsensStudio Resources Resources
Data UnityProject_HumanModel UnityProject

HumanDimensions:Dataset

Assets

1
J

[ ProgrammScript ] [ Data

[HumandimensionsSubjectl]

[ProgrammScript][ Data ]

ConfigurationScript

[Humand\mensionsSubjeth]

ConfigurationScript

TCPIP |

Ros_Workspace/src

[ ProgrammScript] [ Connector ]

HumanMovements: Dataset

DigitalTwin_Robot_Moveit

ConfigurationScript

RecodedMotionS1

Configuration_PickandPlace_j2n4s3

RecodedMotionS2

HumanTask

[

Moveit:SoftwareTool

] [ Data ]

[ DeploymentConfiguration ]

I

Resources

Ros_Workspace/src

[ F‘rogrammScript] [Connector]

XsensSensors:|OT |

ConfigurationScript
SoftwareTool:Moveit

| R

[ Robotic arm kinova : Hardware }

0S:SoftwareTool

Unity: SoftwareTool

Fig. 4: CSD of a Human Robot Interaction collaborative task using the DT ontology

Next, we built a Composite Structure Diagram of the HAS us-
ing our proposed ontology described in Section[[l As shown in
Figure[5] we are able to take into consideration all the hardware
and software composing the HAS. Moreover, the ontology
allows the composition of Cyber-Physical System (CPS). In
Figure [3 it is the case of HomeAutomationSystem and
BedPressureSystem. HomeAutomationSystem is the
CPS composed of a Raspberry Pi 4 and the dedicated OS
installed on it. Other components such as the zWaveDongle
are also plugged in. On the Raspberry Pi OS, the home
automation application (i.e., OpenHABEI) is installed. The
ontology also allows the modeling of components and tech-
nologies to communicate between devices and the CPS. The
Z-Wave protocol is used for the interaction between the light
bulb and the OpenHAB software. Another example in Figure 3]
is the WiFi communication between the two CPSs through the
router.

3 https://www.openhab.org/

A prospective work is to use this approach to model and
manage DTs for the connected apartment of the HUman at
home projecT (HUTﬂ and use them as a workbench for the
development and training of Al-based mechanisms.

IV. RELATED WORK

For the sake of space, we reference a survey from Minerva et
al. which draws an interesting picture of technical features
of DTs and shows that most software architectures published
are tailored to specific goals. Taking a different approach,
our proposal provides a generic, model-driven solution for
constructing and deploying DT architectures.

V. DISCUSSION AND CONCLUSION

We have performed a preliminary validation of our metamodel
defined in Section [IIl with two different use cases. The first
one is a human-robot interaction (HRI) system. The second is

6 https://www.hut-occitanie.ew/



HAS_CONFIG1#HomeAutomationSystem : CPS L m)
HAS_CONFIG1#0penHabPlatform : CPS ()
RaspberryPi : Hardware a
RaspberryPiOSs : SotwareTool o
OpenHab : SotwareTool [ m)
zWaveBinding : Connector
zipatoLightBulbThing : Script Q‘ smartLightBulb : CPS §)
‘ é R — zWave : Connector
zWaveDongle :
{ Hardwarse \ P zipatoLightBulb :
Lﬂ N I Hardware
bedPressureDataCollector: Service f m)
bedPressureSensorThing :
Script
h{tp!inding : Connector
. [§ wificard :
bedPressureSensorPredictor CEREEDD
Thing : Script LE
HAS_CONFIG1#BedPressureSensorPredictionSystem : CPS € wifi : Connector .
wifiRouter :
computerBedPressureSensor : Hardware a O) Hardware
linux0s : SotwareTool O
pythonFlaskServerForBedPressureSensor : SotwareTool [ 3]
bedPressureSimulationService: Service i m|
httpAPI : C t
bedPressurePredictorModel : P ennectar wifiCard : ]
Script '—O I Hardware

Fig. 5: CSD of the Home Automation System using the DT ontology.

a smart environment system. In this work-in-progress report,
we propose our ontology as a generic tool for modeling DT
architectures.

We are continually improving our models and verifying them
with practical experiments. We aim to refine the definition
of “ digital twin ”, initially by defining different categories
according to different configurations. This categorization will
allow us to identify the different shortcomings of these con-
figurations.

Our focus on HRI digital twin brings multiple perspectives.
We strive to understand the methodology needed to create
a digital twin, while at the same time to create a dataset
containing our HRI interactions. To date, many HRI datasets
exist but are mainly focused on behavior analysis and not from
a manufacturing point of view m Our approach allows us to
contribute to a comprehensive database for constructing digital
twins for the future smart factories of Industry 5.0 [5]]. Our
second use case of a smart environment system showcases the
general applicability of our approach. Daily activity datasets
are also scarce and difficult to collect. Building digital twins
could be a way to leverage the data collected in the HUT
project after the dismantling of its smart apartment.

7 https://github.com/mjyc/awesome-hri-datasets

ACKNOWLEDGEMENTS

This work is funded in part by the CARNOT MINES and TSN
Institutes, the Chair of Industry of the Future funded by the
Région de Bretagne and University of South Australia, as well
as GT VOCA of the HUman at home projecT (HUT) funded
by FEDER and the Région Occitanie. We thank Panagiotis
Papadakis, Christophe Lohr and Alireza Asvadi for their
expertise.

REFERENCES

[1] ISO 23247-2:2021 Automation systems and integration - Digital twin
[framework for manufacturing - Part 2: Reference architecture, Interna-
tional Standard Organization, 2021.

M. S. P. de Melo, J. G. da Silva Neto, P. J. L. da Silva, J. M. X. N.
Teixeira, and V. Teichrieb, “Analysis and comparison of robotics 3d
simulators,” 2019 21st Symposium on Virtual and Augmented Reality
(SVR), pp. 242-251, 2019.

G. Chimamiwa, M. Alirezaie, F. Pecora, and A. Loutfi, “Multi-sensor
dataset of human activities in a smart home environment,” Data in Brief,
vol. 34, p. 106632, 2021.

R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the iot context:
A survey on technical features, scenarios, and architectural models,”
PROCEEDINGS OF THE IEEE, vol. 108, no. 10, pp. 1785-1824, October
2020.

D. Romero and J. Stahre, “Towards the resilient operator 5.0: The future
of work in smart resilient manufacturing systems,” Procedia CIRP, vol.
104, pp. 1089-1094, 2021.

(2]

(3]

(4]

(31



	Introduction
	A metamodel for model-driven deployment of digital twins
	Modeling the deployment of digital twins in two intelligent environments
	Case Study #1: Human-Robot Interaction
	Case Study #2: Home Automation System

	Related Work
	Discussion and Conclusion
	References

