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Microtubules are essential filamentous components of the cytoskeleton that are present in 

virtually all eukaryotic cells, where they ensure essential functions: Microtubules establish 

and maintain cell shape, serve as tracks for the intracellular transport, or build the mitotic and 

meiotic spindles that segregate genetic material during cell division. Microtubules further 

form the structural backbone of cilia and flagella, essential organelles that are involved in 

cell-cell signalling and cell motility.  

The history of microtubule research spans more than 150 years. Spindle fibres that we know 

today are microtubules were first seen in mitotic cells and depicted in 1870s and 80s in 

drawing by Walther Flemming [1] and Theodor Boveri [2], and were first photographed in 

dividing worm and sea urchin eggs in 1939 [3]. With the development of transmission 

electron microscopy approaches in the 1950s, so-called “tube fibres” were identified in the 

sperm flagella of Sphagnum moss [4], as well as in cilia from several other species [5]. An 

improvement of fixation methods [6] allowed Myron Ledbetter and Keith Porter to measure 

the size of those fibres, and to suggest that they may be made from “smaller filamentous units 

packed together to form the wall of the cylinder” and that these “smaller units […] appear 

circular in cross-section” [7]. Their analysis of plant cells, together with David Slautterback’s 

analysis of hydra cells brought these authors to propose that the rod-shaped, long, and hollow 

structures found in mitotic spindles, cilia and flagella and in interphase cells would all be the 

same structure, which they called for the first time “microtubules” [8, 9].  

In 1967, Gary Borisy and Edwin Taylor used colchicine, a well-characterised mitotic-spindle 

poison, to identify the protein building block of microtubules from sea urchin cells [10, 11]. 

The Taylor lab further purified this colchicine-binding protein from cilia, sperm tails [12] and 

brain tissue [13], however it was Hideo Mohri who in 1968 coined its name: “tubulin” [14]. In 

the following years, biochemical approaches revealed that microtubules were made from 

dimers of two different tubulin proteins, later known as a- and b-tubulin [15, 16].  



The fact that microtubules can assemble into many different structures in cells, and fulfil a 

wide variety of different functions, together with the emerging notion that more than just two 

types of tubulin (i.e. a- and b-tubulin) might be present in cells [17], and that tubulin 

undergoes posttranslational modification [18] led Chandler Fulton and Peter Simpson to 

propose in 1976 “the multi-tubulin hypothesis” [19]. This hypothesis proposes that tubulin 

expression from different genes, together with their posttranslational modifications, can 

generate biochemically divergent microtubule subtypes in cells, which in turn can fulfil 

distinct functions. Indeed, shortly after, several genes encoding different tubulin variants, aka 

isotypes, were cloned [20, 21], which immediately suggested that tubulin isotypes could 

assemble into functionally distinct microtubules. However, subsequent work showing that 

most tubulin isotypes were functionally interchangeable somehow mitigated the initial 

excitement in the field [22]. Only the more recent discovery of a large spectrum of disease-

causing tubulin mutations [23, 24] was able to reverse this trend, generating a growing 

interest in the physiological roles of tubulin isotypes. 

Microtubule diversity can also be generated by posttranslational modifications of tubulin, 

such as detyrosination [25], generation of D2-tubulin [26], acetylation [27], polyglutamylation 

[28], polyglycylation [29], polyamination [30], and methylation [31]. The discovery of the 

enzymes catalysing those modifications ([32], and references within) provided first insights 

into their physiological importance. For instance, abnormal accumulation of 

polyglutamylation causes neurodegeneration and vision disorders in mice and humans [33-

36], and perturbation of polyglutamylation or polyglycylation was linked to male infertility 

[37-39], ciliopathies[40] and cancer [41].  

The mechanisms generating microtubule diversity by expression of different tubulin isotypes 

and by posttranslational modifications are today known as the “tubulin code” [K.J. Verhey, J. 

Gaertig, The Tubulin Code, Cell Cycle 6(17) (2007) 2152-2160]. The recent progress in the 

understanding of how this diversity is achieved, how it affects microtubule properties and 

their cellular functions, and how this translates into regulation of biological functions opened 

up an entirely new perspective on cytoskeletal regulation, and its importance for human 

health. This special issue gathers in-depth reviews on the relevance of the tubulin code in a 

variety of biological system written by broad spectrum of experts. Some of them discuss 

domains in which tubulin diversity was known to be important for a long time, while others 

highlight fields in which the impact of the tubulin code only begins to emerge. Joachimiak & 

Wloga discuss how the unicellular prokaryotes became a playground for studying tubulin 

modifications and modifying enzymes. Guichard et al. review advances in the understanding 



of the role of the tubulin code for centrioles, while Gadadhar et al. summarise how tubulin 

isotypes and posttranslational modifications control sperm development and function. Takashi 

dissects the emerging roles of tubulin modifications in meiosis, while Sanyal et al. focus 

specifically on the roles of posttranslational modifications of the a-tubulin C-terminal tails in 

muscle cells and in neurons. Kimmerlin et al. contribute a comprehensive review on the role 

of tubulin diversity in platelet functions, and Bieniussa et al. gather growing evidence for the 

involvement of microtubules in the auditory function. The review from Maillard and 

colleagues focusses on the spectrum of tubulin mutations linked to neurodevelopmental 

disorders.  

The ambition of this collection is to provide a broad overview of the current knowledge on the 

role of the tubulin code in different biological settings. It should encourage a broad 

community of researchers to consider the role of tubulin diversity in their ongoing research 

and could help revealing similar regulatory principles in different biological systems. 
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