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Abstract 
Estimating the time since HIV infection (TSI) at population level is essential for tracking 

changes in the global HIV epidemic. Most methods for determining duration of infection 

classify samples into recent and non-recent and are unable to give more granular TSI 

estimates. These binary classifications have a limited recency time window of several months, 

therefore requiring large sample sizes, and cannot assess the cumulative impact of an 

intervention. We developed a Random Forest Regression model, HIV-phyloTSI, that combines 
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measures of within-host diversity and divergence to generate TSI estimates from viral deep-

sequencing data, with no need for additional variables. HIV-phyloTSI provides a continuous 

measure of TSI up to 9 years, with a mean absolute error of less than 12 months overall and 

less than 5 months for infections with a TSI of up to a year. It performed equally well for all 

major HIV subtypes based on data from African and European cohorts. We demonstrate how 

HIV-phyloTSI can be used for incidence estimates on a population level. 

 
 
Abbreviations used 
 
FRR: false recency rate 
LRTT: longest root-to-tip distance 
MAA: Multi-Assay Algorithms (for measuring TSI) 
MAE: mean absolute error 
MAF: minor allele frequency 
MAF12c: MAF in the 1st and 2nd codons 
MAF3c: MAF in the 3rd codon 
MRCA: most recent common ancestor 
NGS: next-generation sequencing 
OLS: ordinary least squares (regression) 
PrEP: Pre-Exposure Prophylaxis 
TSI: time since infection (with HIV) 
PreP: pre-exposure prophylaxis 
UWP: University of Washington International Clinical Research Studies (ICRC) program 
datasets 
RAK: Rakai Community Cohort Study dataset 
BEE: BEEHIVE Consortium dataset 
MRC: MRC-UVRI Uganda dataset 
 

Introduction 
Accurate estimates of HIV incidence are critical for surveillance of HIV epidemics and to 

determine the effectiveness of prevention efforts (Mastro 2013). HIV incidence, the rate at 

which new infections arise from the susceptible part of the population, tracks the leading 

edge of the epidemic, measuring transmission at a given moment in time. The traditional 

longitudinal cohort approaches for measuring incidence are costly, and incidence derived 

from a cohort with many HIV prevention interventions is likely to give biased estimates 

(Incidence Assay Critical Path Working Group 2011; Brookmeyer 1997; Busch et al. 2010). 
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A cross-sectional study design would be preferable for measuring incidence, and recent 

methodological advances have brought this possibility closer. Cross-sectional HIV incidence 

estimation is currently based on algorithms that use observable changes in the biomarker 

profile of individuals to class infections as recent or non-recent (Busch et al. 2010). 

Identification of individuals with recent HIV infection allows one to estimate incidence by 

counting the number of such individuals within the population/cohort and adjusting for the 

time period associated with that recent state. Using the quality of the antibody response to 

HIV infection as a host biomarker, these methods have been used to estimate HIV incidence 

at a country level (Voetsch et al. 2021), within specific risk groups (Teixeira et al. 2021), as the 

primary outcome of intervention trials, and have been considered for counterfactual 

incidence estimation to determine the effectiveness of Pre-Exposure Prophylaxis (PrEP).  

An alternative to host response biomarkers is measurement of the genetic diversity of HIV 

sequences found in individual infections. It has long been recognised that in the absence of 

treatment, HIV viral genetic diversity increases with duration of infection in a single host 

(Shankarappa et al. 1999; Zanini et al. 2015), and several studies have used measures of HIV 

genetic diversity to estimate HIV incidence. These studies use several sequence-based and 

non-sequence-based parameters: nucleotide ambiguity (Kouyos et al. 2011; Ragonnet-Cronin 

et al. 2012), Hamming distance - Q10 (Park et al. 2011), generalized entropy (Wu et al. 2015), 

pairwise distances (Moyo et al. 2016), time to most recent common ancestor (MRCA) (Moyo 

et al. 2017) and high-resolution melting diversity assays (Cousins et al. 2014). However, no 

single approach has demonstrated sufficient precision for HIV incidence estimation. 

In recent years, next-generation sequencing (NGS) data has shown promise for identifying 

recent infections from genetic sequence data alone. Puller et al showed that a new NGS-based 

measure (3rd base ambiguity in the pol gene) can be used to estimate time since HIV-1 

infection (TSI) many years after the infection, in contrast to most alternative biomarkers. The 

study was based on data from 42 patients in (Puller, Neher, and Albert 2017) and is yet to be 

validated in a larger population. TSI has also been estimated using average pairwise diversity 

(Carlisle et al. 2019), and a combination of pairwise sequence diversity and divergence in sub-

sequences within pol and env in 30 individuals (Zhou et al. 2021). These studies also show 

that sequence methods have the potential to estimate TSI for the entire duration of infection, 

rather than classifying individuals as ‘recent’ or ‘non-recent’. A seminal study from 1999 
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demonstrated that “DNA Distance”, or longest root to tip distance (LRTT), increased almost 

linearly with time since infection (TSI) (Shankarappa et al. 1999; Zanini et al. 2015). However, 

LRTT relies on multiple sequences from a single time point, which historically has been costly 

to compute and therefore seen as impractical for population studies. This is changing with 

the widespread adoption of next-generation sequencing. 

In this study, we present a new method for estimating TSI of all major HIV-1 subtypes from 

deep sequence data, using both LRTT and diversity: HIV-phyloTSI. HIV-phyloTSI employs a 

machine-learning algorithm, using data from four different cohorts representing 480 

individuals with known approximate TSI as a training dataset. Performance was evaluated in 

two ways: first, using a simulated dataset, and second, using a dataset from the HPTN-071 

(PopART) Phylogenetics Ancillary study (Hall et al. 2021) (“HPTN 071-02 Study Protocol” 2017) 

The output of HIV-phyloTSI are continuous estimates of TSI, rather than a binary classification 

of samples as recent and non-recent, and the method is sufficiently accurate to estimate HIV 

incidence in a cross-sectional cohort without use of additional demographic variables. 

 

Results 

Participants and datasets 

HIV genome sequences were made available by the PANGEA and BEEHIVE consortia following 

consortium-specific guidelines for data access. PANGEA (Abeler-Dörner et al. 2019) is a 

network of collaborators from Africa, Europe and the United States (US) who have generated 

a large number of HIV NGS sequences from Eastern and Southern Africa. The samples used 

for this study were collected in Uganda, Kenya and South Africa by MRC Uganda/UVRI (Asiki 

et al. 2013; Kasamba et al. 2019; Asiki et al. 2011) (MRC), the University of Washington 

International Clinical Research Centre programs (Celum et al. 2010; Baeten et al. 2012; 

Lingappa et al. 2011) (UWP) and the Rakai Community Cohort Study (Wawer et al. 1999; 

Chang et al. 2016) (RAK). BEEHIVE (Blanquart et al. 2017) (BEE) is a network of HIV cohorts 

that collected HIV samples from HIV seroconverters across Western Europe (Belgium, Finland, 

France, Germany, the Netherlands, Sweden, Switzerland, United Kingdom) and in Uganda. 

Participants in all studies were treatment-naive and viraemic at the time of sampling. 

Participants in all studies gave written consent and ethics approvals were granted to the 
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institutions that generated the data. Participant characteristics for the different datasets are 

listed in Table 1. 

 
Table 1: Participant characteristics in training dataset 
  

UW Clinical 
Research Centre 

programs 

Rakai 
Community 

Cohort Study 

BEEHIVE MRC-UVRI 
Uganda 

 
 (UWP) (RAK) (BEE) (MRC) 

Participants 114 152 113 101 

Samples selected from 
cohort 

160 152 113 102 

Age, median (range) 34.7 (21.9 - 55.5) 32.0 (17.0 - 50.0) 33.1 (20.4 
- 62.8) 

30.2 (17.0 
- 75.4) 

Proportion female 0.42 0.51 0.03 0.46 

Years since infection, mean 
(range) 

0.4 (0.0 - 1.4) 2.5 (0.6 - 17.9) 0.7 (0.1 - 
2.1) 

0.6 (0.1 - 
21.0) 

Proportion of infections 
<=12 months 

0.84 0.24 0.6 0.59 

                                   <=24 
months 

1.00 0.34 0.95 0.64 

Predominant subtypes A1, D, C D, A1, C B, C, F1 D, A1, B 

log10 viral load mean 
(range) 

4.9 (3.4 - 6.8) 3.1 (0.0 - 6.4) 4.6 (3.1 - 
5.6) 

4.3 (2.9 - 
5.2) 

CD4 cell count mean 
(range) 

503 (33 - 1664) 442 (15 - 1626) 501 (140 - 
1062) 

623 (197 - 
1597) 

 

* CD4 cell count data and viral load data obtained closest to the date of the sequencing 

sample were available for 84% of samples (443/527) and 58% of samples (308/527). 

 

Datasets were chosen to include participants with known seroconversion intervals (UWP and 

BEE) and participants with recent as well as participants with non-recent infections (RAK and 

MRC) (Figure 1). No other pre-selection was made, but as only sequenced genomes were 

included, this of necessity implies detectable viral load (above 102 copies per ml).  Cohorts 

from different geographical locations were included to ensure a representation of subtypes 
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A, B, C, and D. In total, the training dataset consisted of 527 sequences from 480 participants 

(Table 1). 

 

 
Figure 1. Distribution of time since infection (TSI) and seroconversion intervals in the 

training datasets. Vertical lines show duration of the seroconversion interval, from three 

weeks prior to the last HIV-negative test to the date of the date of the first HIV-positive test. 

TSI was defined as the time in years between the sampling date and the midpoint of the 

seroconversion interval (circles).  

 

HIV diversity and divergence increase with the duration of infection 

Minor allele frequency (MAF) has been shown to increase over the course of an HIV infection 

and has previously been used to identify recent infections (Carlisle et al. 2019; Puller, Neher, 

and Albert 2017; Ragonnet-Cronin et al. 2012, 2021; Kouyos et al. 2011). In this study, we split 

MAF into two variables, designated MAF12c for the first two codon positions and MAF3c for 

the third codon position, to allow for their different evolutionary rates. Both MAF12c and 

MAF3c increased with TSI (Figure 2), at rates that varied by HIV gene. The most rapid increase 

was observed for MAF3c in the gp120 and gp41 regions, this is consistent with the high 

substitution rate in the env gene relative to the more constrained pol and gag genes. MAF3c 

was informative across the genome, particularly in gag, pol and gp120 (Figure S1), while 

MAF12c remained highly constrained in gag and pol, but was markedly more informative in 

gp120 (Figure S1). We hypothesized that estimates could be improved by using more complex 

statistics derived from phylogenetic trees. We therefore constructed intrahost diversity trees 

in sliding windows along the genome using phyloscanner (Wymant, Hall, et al. 2018) and 

tested if pairwise patristic distance, overall root-to-tip length or longest root-to-tip distance 
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(LRTT) were predictors of TSI (Figure S2). LRTT performed best, and was included alongside 

MAF12c and MAF3c as a predictor in this study. LRTT was particularly informative in gp120 

and for non-recent infections (Figure 2). The performance of all three predictors was not 

influenced by the sequencing method used (amplicon-based or probe-based) (Figure S3). 

To determine whether some genomic locations were particularly informative, we assessed 

the correlation of MAF12c, MAF3c, and LRTT values across the HIV genome with the known 

TSI (Figure S4). Informativeness was more variable for the MAF predictors than for LRTT. 

MAF3c was most informative in the 3’ region of gag, the 5’ region of pol, and the 5’ region of 

gp120; MAF12c was most informative in the 5’ region of gp120; and LRTT was informative in 

all of gag, pol and gp120. The most informative windows, defined as having r2 over 0.3 for any 

predictor, were included as one of the feature combinations during model selection 

(LRTT_MAF3c_topwin). MAF3c alone was highly informative, but performance was improved 

by including other parameters. 
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Figure 2. Genetic divergence (LRTT) and diversity (MAF3c, MAF12c) values along the HIV 

genome in samples grouped by time since infection. Lines show mean root-to-tip distance 

of the largest subgraph (LRTT), and mean minor allele frequencies at the third codon position 

(MAF3c) and first and second positions (MAF12c). MAF3c and MAF12c measures shown as 

mean per 250 bp window. The shaded area indicates the width of the 95% bootstrap 

confidence interval around the mean. 

 

In conclusion, LRTT adds a measure of TSI that is complementary to MAF. Both predictors 

perform best in the gp120 region of the env gene, however, all regions of the genome are 

informative. A model should ideally aggregate information across all genomic regions to 

become more powerful. 
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CD4 cell counts and age are informative but are not essential for estimating TSI 

Limited clinical data were available for the sequences in the training dataset. CD4 cell counts 

and viral load measurements obtained close to the date of the sequencing sample were 

available for 84% (443/527) and 58% (308/527) of the samples, respectively. Mean CD4 cell 

count and mean log10 viral load were significantly different between recent and non-recent 

infections (CD4 count, 543 v 451 cells/mm3; log10 viral load, 4.9 v 4.3; p< 0.001, Welch's t-

test, with recency cut-off of 12 months) (Figure 3A,B), but with high variance and substantial 

overlap between the distributions. In datasets where CD4 cell count data are available from 

the sample collection date, recency estimates may be further improved by incorporating this 

variable. In the present dataset, gains were marginal (<1 percentage point in r2). Age was 

informative in the two population cohorts (RAK and MRC), but not in the two cohorts enriched 

for seroconverters (UWP and BEE) (Figure 3C). We opted against including age as a variable 

in the present study so as to keep the model as generally applicable as possible. 

The estimates were not influenced by the presence of drug resistance mutations. Given the 

dates of sampling, none of the participants was infected while using PreP. 

 
A                                B 
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C 

 
Figure 3. CD4 cell count, viral load and age can be informative. A. Most recent CD4 cell count 

obtained closest to sequencing sampling date. B. Viral load (log10 copies per mL) obtained 

closest to sequencing sampling date. C. Distribution of age at sampling in different cohorts in 

the training data set. 

 

Models based on diversity and divergence yield good accuracy and false recency rates 

The chosen predictor variables - MAF12c, MAF3c and LRTT - were calculated for each window 

of 250 base pairs and then averaged separately across gag, pol, env gp120 and env gp41, as 

well as across the whole genome. In five samples, missing data meant that gene-averaged 

values could not be derived for one or more genes; these were filled by imputation. To select 

a regression method, we tested performance of three commonly used methods (ordinary 

least squares (OLS), gradient boosted regression, and random forest regression), using a 

subset of feature combinations to estimate the square-root transformed TSI. The square-root 

transformation helped the model accommodate greater uncertainty around the actual TSI 

values (wider seroconversion intervals) in non-recent infections (Figure 1). Cross-validated 

model scores (mean r2 values) were computed using 10-fold cross-validation, in each iteration 
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splitting the data randomly into 75% training and 25% test datasets and scoring model 

performance on the test data (Table S1). 

OLS performed adequately for the simplest models, where a single feature was used in 

addition to the indicator variable for sequencing method, but was outperformed by gradient 

boosted and random forest regression for larger feature sets. The cross-validated r2 scores 

were similar for gradient boosted and random forest regression, with random forest slightly 

outperforming gradient boosted regression on all feature combinations assessed (Table S1). 

Scatterplots of known versus estimated square root-transformed TSI for each of the feature 

combinations are shown in Figure S5. Random forest regression was selected for subsequent 

analyses. 

To assess model performance with different combinations of features, we compared several 

metrics using 20-fold cross validation: mean r2 on test data (strength of correlation with 

known TSI) (Figure 4A), accuracy of predicting infections as having TSI below either 12 or 18 

months (Figure 4B), mean absolute error (MAE) (Figure S6A) and the false recency rate (FRR) 

(Figure S6B). Since our model predicted continuous TSI, we were able to obtain binary 

estimates (recent/non-recent) at any arbitrary recency cut-off after running the model. We 

compared this continuous approach to a ‘classification’ approach that uses a binary outcome 

throughout, based on a pre-decided threshold of recent versus non-recent infections. 

Specifically, we used the same feature sets to fit random forest classifier models, with recency 

defined as true TSI below either 12 or 18 months. For a TSI threshold of 12 months, regression 

with discretisation at 12 months outperformed classification for all feature sets (Figure S7). 

For a TSI threshold of 18 months, classification showed an improvement for the most complex 

feature sets that included individual genomic windows (Figure S7B), but without a 

corresponding improvement in overall accuracy (Figure S7A). We used the regression 

approach in subsequent analyses. 

Feature sets either used information from individual genomic windows (‘FULL’ in feature set 

name), or aggregated information from all windows covering a given gene or the whole 

genome (‘MEAN’ in feature set name). Feature aggregation resulted in a gain of power: 

models built with aggregated feature sets had higher r2 scores and accuracy than those built 

with individual genomic windows (Figure 4). Accuracy varied depending on how genomic 
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features were aggregated (Figure 4). This was mostly due to missing data. For the same 

feature combinations, the best-performing aggregate-feature model MEANS_feats_LRTT, 

which comprised ten aggregated features across gag, pol, gp120 and gp41 as listed in Table 

S2, had a cross-validated r2 score of 0.68 and accuracy of 0.89, while the best-performing 

individual-windows model FULL had an r2 score of 0.61 and accuracy of 0.84. The overall best 

performing models were generated by the feature set “MEANS_feats_LRTT”, with the 

greatest proportion of variance explained by MAF and LRTT in the gag region, followed by 

LRTT in gp120 and pol (Figure S8). The indicator variable for the type of sequencing, is_mrc, 

carried relatively little importance, suggesting that the results remain robust to the type of 

sequence data (amplicon-based or capture-based).  

In conclusion, random forest regression was chosen over OLS and gradient boosted 

regression, and a continuous regression over a binary classification. Models with aggregated 

feature sets performed better than those using individual genomic windows. The best 

performing aggregated feature set, MEANS_feats_LRTT, was used to fit the final predictive 

model. 

 

 
Figure 4. Model r2 and accuracy of identifying recent infections. Markers show mean and 

lines show 95% bootstrap CI over 20-fold cross-validation. A. Model r2 score on test data. B. 

Accuracy, defined as the proportion of samples having TSI correctly estimated as being below 

or above a cut-off of either 12 months (circles, blue) or 18 months (triangles, orange). 
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HIV-phyloTSI is suitable for population-level predictions 

We evaluated the final modzel on the original dataset using a leave-one-out strategy on the 

original dataset (Figure 5), on a simulated population (Figure 6) and on an independent 

dataset (Figure 7).  

Estimates of TSI were made for all 527 samples in a leave-one-out strategy, iterating over the 

full sample set, building a random forest model on the other 526 samples with the previously 

selected parameters, and obtaining a point estimate together with the full distribution of 

estimates from each decision tree in the forest. A separate random forest regression model 

was trained on the mean absolute errors of predictions from the base model, to generate 

prediction intervals around the estimates (Figure 5). 

 
Figure 5: HIV-phyloTSI is more accurate on population level. A. TSI estimates compared with 

known midpoint TSIs, with point estimates indicated as crosses and seroconversion intervals 

as lines. Regression line shown in black with confidence interval as shaded grey area. The 

green line (overlapping with the black line) indicates equality.  
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Figure 5 shows the overall fit for the best performing model with feature set 

MEANS_feats_LRTT, comparing known seroconversion intervals against TSI estimates and 

prediction intervals from the model. The overall regression line is close to the line of equality, 

indicating that over the majority of TSIs, recency and non-recency are misclassified to the 

same extent, despite a tendency to slightly overestimate TSIs below 1 year, and 

underestimate the TSIs greater than 9 years (Figure S9). This implies that although precision 

is insufficient for an individualised clinical assay, population-level incidence estimates are 

likely to be accurate, at least in datasets with similar distribution of recency. 

The suitability of HIV-phyloTSI for population analysis was tested by applying the model to a 

simulated population (Figure 6, Table S2). One thousand people were drawn from a 

population with an average interval of three years from infection to treatment. The duration 

of infection of individuals in this population with TSI w was modelled as 1 - e-0.3w. The 

predicted fraction of infections with estimated TSI up to w in this population, and the 

proportion of these that were incorrectly classified, were calculated using the false and true 

recency rates for the model at values of w between 3 and 36 months. Plotted is the number 

of recent infections out of the 1000 people depending on where the cut-off for recency is set. 

The model predictions (orange line) closely track the numbers expected from the simulated 

data (blue line) 

 

 
Figure 6: HIV-phyloTSI can predict recency at different cut-offs in a simulated population. 

Number of recent infections in a simulated population of 1000 individuals where average time 
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to treatment is 3 years, with the recency cut-off varied between 3 and 26 months. The blue 

line shows the true number; the orange line shows the number estimated by HIV-phyloTSI; 

the green line shows the subset of estimated recent infections that were falsely estimated to 

be recent (i.e., were in truth non-recent). 

 

Next, we applied the model to an independent dataset, namely the HPTN 071-02 (PopART) 

Phylogenetics ancillary study (“HPTN 071-02 Study Protocol” 2017) (Figure 7). The study 

generated HIV1 sequences from HPTN 071 trial participants in Zambia (Hayes et al. 2019). We 

sequenced samples from 204 participants who were HIV negative at enrolment and 

seroconverted both during the trial and less than one year after their last negative test, shown 

in orange, and 1041 participants who were positive at enrolment, shown in blue. Most, but 

not all of these participants were likely infected for more than a year before enrolment. HIV-

PhyloTSI results reveal a highly significant difference between the distribution of TSI for 

samples in the two groups (p<<0.001, Welch’s t-test). The median estimated TSI for baseline 

positives was 2.28 years (interquartile range 1.01-4.11) and for seroconverters 0.74 years (IQR 

0.47-0.94). Of the 204 seroconverters with known seroconversion intervals, 7 (3.4%) were 

incorrectly predicted based on a lower TSI limit of over 12 months. 
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Figure 7: HIV-phyloTSI is suitable for population-level predictions. Distribution of TSI 

estimates for members of the PopART Population Cohort (PC), by HIV status. ‘Baseline 

positive’ indicates individuals positive for HIV at enrolment (1041 samples); ‘seroconverter’ 

indicates individuals who acquired HIV during the study period (204 samples). Boxes show 

extent of first quartile from the median (line); whiskers extend to 1.5*IQR.  

 

In conclusion, HIV-phyloTSI is able to predict recency with sufficient accuracy in population-

level analyses. 

 

HIV-phyloTSI is able to predict recency of infection for all subtypes 

Recency assays based on MMAs have shown variable performance for different HIV-1 

subtypes (Longosz et al. 2014). We therefore tested whether the model performance showed 

bias in predictions for any subtype. Our dataset included at least 100 samples for each of 

subtypes A-D (A1, 138; B, 101; C, 232; D, 147) as well as small numbers of other subtypes and 

circulating recombinant forms, which we grouped for this analysis (“Other”, 113). Adjustment 

for TSI was required since model error increases with TSI regardless of subtype (Figure 8A and 

S9), and the over-representation of subtypes A1 and D among non-recent samples in our 
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dataset would otherwise inflate the error range for these subtypes. After adjusting for TSI, 

there was no difference in bias for any of the subtypes (Figure 8B and Table S3, p>0.05 for 

every pairwise comparisons, Tukey’s range test), indicating that model performance was 

independent of subtype. 

 

A 

 
B 

 
Figure 8: HIV-phyloTSI is unbiased with respect to subtype. A. Model bias (difference 

between real and estimated TSI value) by square-root transformed time since infection, 
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coloured by subtype. Circles indicate mean for groups of 0-1, 2-4, 5-9 and 10-16 years since 

infection, and vertical bars indicate the 95% bootstrap confidence interval in each group, for 

all subtypes. Lines connect group means to aid visualisation. B. Residuals from the linear 

model used to adjust for TSI of samples (Bias ~ TSI), shown by subtype, for subtypes with at 

least 5 samples in the dataset. Boxes extend to first quartile from the median (line) and 

whiskers to 1.5*IQR. Model bias increases with TSI for all subtypes, but is not significantly 

different between subtypes (p>0.05 for pairwise comparisons, Tukey range test). 

Discussion 

In this study, we present a method that uses viral genetic diversity (MAF) and divergence 

(LRTT) to estimate a continuous measure of time since infection (TSI) from a single HIV-1 NGS 

sequencing sample per patient. Any value of TSI can be chosen as a threshold to give a binary 

recency assay, with an accuracy of up to 89%. Additional metadata can be used if available 

for a specific setting, but is not required to make predictions. The method works equally well 

on HIV-1 subtypes A-D and is accurate enough for population-level estimates of incidence. 

 

HIV-phyloTSI is a generic method derived using samples from a range of populations in 

Western Europe and Eastern and Southern Africa. It was developed for population-level 

analyses performed in the PANGEA-HIV consortium (Abeler-Dörner et al. 2019). When used 

as a standalone tool, it enables the inference of epidemiological information without 

requiring extra participant data. The model can be further extended to incorporate 

moderately informative variables such as CD4 cell count and viral load. For sequences 

obtained with veSeq-HIV, viral load estimates can be obtained directly from counts of 

uniquely mapped sequencing reads, offering an additional sequence-derived parameter 

without the need for additional testing (Bonsall et al. 2020; Fogel et al. 2020). Although CD4 

cell count and viral load provided no substantial gain in accuracy with our training dataset, 

these could offer higher gains for studies where these data are available from the same date 

as the sequencing samples. Lundgren et al recently explored the use of biomarkers to 

augment phylogenetic TSI estimates (Lundgren et al. 2021). 

  

There was a slight (<1 percentage point in r2) improvement when the model was extended 

with the addition of age at sampling, but there are good reasons to avoid including 
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demographic markers in a generic model, as this may bias the model towards the type of 

population used for training. In our case, the training data contained two large seroconverter 

cohorts (BEE, UWP) and the association with age was only evident in the population cohorts 

(RAK, MRC). Likewise, we did not include subtype in the model, to avoid spurious association 

with subtypes preferentially represented in the seroconverter cohorts and to maintain the 

generalisability of the model. 

 

HIV-phyloTSI performs best when used for population-level predictions, where its accuracy is 

sufficiently high that the total number of infections identified with any given TSI corresponds 

closely with the expected number of infections at that TSI. The close correspondence 

between expected and observed population-wide estimates of recency is particularly useful, 

as it allows the identification of recent infections not only in growing epidemics in which 

recent infections are common, but also in declining epidemics where recent infections are 

substantially outnumbered by non-recent infections.  Although HIV-phyloTSI can be used to 

give an estimate of the duration of infection on an individual level, the uncertainty on 

individual level is likely to be too high for clinical applications. The level of intrahost diversity 

as a proxy for duration of infection however is informative on an individual level and might 

become relevant for clinical management and potential HIV cure once treatment goes beyond 

classical ART. The size of the viral reservoir is lower in recently infected individuals compared 

to those in the chronic stage of infection, and thus easier to eradicate the virus (Jain et al. 

2013). The utility of knowing the duration of infection at an individual level is useful for HIV 

cure protocols (Richman et al. 2009), and staging of individuals with recent infection is 

currently being used in clinical HIV cure trials (Fidler et al. 2020). 

 

The method has limitations. Any machine-learning model depends on how well classified the 

training data set is, and the large uncertainties in the seroconversion dates of non-recent 

samples in our training datasets necessarily limit the accuracy of the model. The training data 

was selected from different cohorts in sub-Saharan Africa, but validation is still needed to 

establish that the results are further generalisable. The method also requires sufficient virus 

from an infection to generate not only a consensus genome but also accurately represent 

intrahost diversity. Viral loads in this study (2-7 log10 copies per mL) are representative of the 

majority of viraemic individuals. However, in a real population in the era of universal testing 
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and treatment, a substantial number of individuals will be virally suppressed, and a 

substantial proportion of these may be incident infections. At present, incidence surveys such 

as PHIA (Saito et al. 2017) assume that all virally suppressed infections are non-recent, which 

tends to underestimate incidence in settings where ART may be initiated early in infection. 

Ideally, recency estimates from viraemic individuals would be combined with multi-assay 

algorithms (MAA) that generate recency estimates of individuals with viral suppression, to 

yield more robust population estimates of incidence, as pioneered by Ragonnet-Cronin et al 

(Ragonnet-Cronin et al. 2021). We and others are currently working on methods to obtain 

full-length or near-full-length HIV-1 genomes from samples with a low viral load. Finally, the 

requirement for deep-sequence data carries a substantial laboratory and computational cost. 

However, sequencing is rapidly becoming more available and affordable in low-income 

countries, and the cost of computational power is declining. 

 

We did not test HIV-phyloTSI on sequences obtained by proviral sequencing from individuals 

with natural or ART-induced viral suppression. The effects of ART on within-host HIV-1 

diversification and divergence are not well studied, but it is to be expected that both will be 

profoundly reduced. A similar effect has been described for PreP in two small-scale studies, 

one in macaques and one in humans (Zheng et al. 2012; Ruone et al. 2016). Both studies find 

reduced diversity in the HIV viral population four and ten months after infection while taking 

PreP, respectively. More research is needed to adjust sequence-based methods for 

determining TSI in virally suppressed persons and for estimating HIV incidence in populations 

with high levels of viral suppression. 

 

It will be important to test the performance of HIV-phyloTSI in different settings with different 

infection dynamics. If performance remains comparable to results obtained for the PopART 

Phylogenetics samples, the method could be used to measure HIV-1 incidence in a new 

population using a relatively small-scale phylogenetic cross-sectional survey. By sampling at 

least 1000 participants in an area with medium-level prevalence and incidence, it should soon 

be possible to estimate incidence using a mathematical model taking into account the fraction 

of HIV-positive participants, the fraction of viraemic participants and the TSI for viraemic 

participants. This approach for measuring incidence would require minimal data collection 
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from participants and would be much less costly than measuring HIV incidence through 

repeated follow-up data collection in longitudinal cohorts. 

 

In summary, HIV-phyloTSI is a powerful tool for estimating TSI, obtaining population-level 

recency estimates and estimating population-level incidence. Further work is required, but if 

performance is maintained in different settings, an improved HIV-phyloTSI tool has the 

potential to become a stepping stone in transforming HIV epidemiology in areas with 

generalised epidemics. This work would not have been possible without data contribution 

from multiple cohorts and consortia and highlights the importance of collaboration and data 

sharing in the area of HIV research. 
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Data availability 

Model, example data, and code to obtain estimates from input data are freely available at 

https://github.com/BDI-pathogens/HIV-phyloTSI to facilitate application of HIV-phyloTSI to 

external datasets. Sequencing data and metadata are available by application to the PANGEA 

consortium, https://www.pangea-hiv.org.  
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Methods 

Sample collection and sequencing 

Samples were collected from venous blood of HIV-1 viraemic individuals, and 0.5 ml of plasma 

was used for sequencing. All samples were sequenced using veSEQ-HIV (Bonsall et al. 2020) 

except samples from MRC Uganda/UVRI which were generated by pooling four overlapping 

PCR amplicons as described in Gall 2012 (Gall et al. 2012). 
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Bioinformatic processing 

Sequence reads were filtered to remove human and bacterial sequences using Kraken (Wood 

and Salzberg 2014), and assembled into contigs using SPAdes v3.10.1 (setting --meta) (Nurk 

et al. 2013). The resulting contigs were aligned to a curated alignment of 165 representative 

HIV genomes from the LANL HIV database (Kuiken, Korber, and Shafer 2003) to identify HIV 

contigs and generate a consensus sequence, followed by mapping the HIV reads onto the 

consensus. HIV genomes were assembled with shiver v1.3 (Wymant, Blanquart, et al. 2018), 

which generated a custom consensus sequence for each HIV sample. Shiver was run with 

Picard deduplication enabled (“Picard”), to eliminate duplicate reads that arise during the 

sequencing process. The final BAM files and base frequencies were coordinate-translated by 

shiver to bring them into alignment with the standard HXB2 HIV reference genome, RefSeq 

accession NC_001802. The reference alignment and primer sequences are available from the 

shiver GitHub repository (Shiver: Sequences from HIV Easily Reconstructed). 

 

Estimation of within-host diversity (MAF) 

Within-host diversity was estimated as the cumulative minor allele frequency (MAF) at each 

genomic position: 

MAF = (1 – proportion of majority base) / depth 

at each position, where depth was the number of unique (deduplicated) reads observed at 

that position. MAF values at first and second codon position were termed ‘MAF12c’, and MAF 

at third codon position was termed ‘MAF3c’. 

  

Estimation of within-host divergence (LRTT) 

To estimate the extent of within-host divergence, each individual’s HIV sub-population was 

examined in a series of overlapping windows positioned every 10 bp along the entire length 

of the HIV genome, excluding the terminal repeat regions. For each 250 bp window, a 

maximum likelihood phylogeny was estimated using IQ-TREE (Nguyen et al. 2015) with the 

GTR+F+R6 model (generalised time reversible model with FreeRate with six categories of rate 

variation). Trees were processed in phyloscanner (Wymant, Hall, et al. 2018) with the settings 

-sks -ow -rda -swt 0.5 -amt -sat 0.33 -rcm -blr -pbk 15 -rtt 0.005 -rwt 3 -m 1E-5, and all statistics 

relating to the depth of the tree were extracted from the output of that package. Statistics 

related to tree depth and branch lengths were assessed for strength of correlation with the 
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known time since infection (TSI) of the training data. These included LRTT, reported by 

phyloscanner as the field ‘normalised.largest.rtt’ within its patStats.csv output file; overall 

root-to-tip distance (‘normalised.overall.rtt’) and pairwise distance 

(‘subgraph.mean.patristic.distance’). The LRTT variable corresponds to the maximum 

evolutionary distance from the most recent common ancestor of the virus within the host, as 

observable in that window, normalised by genetic divergence at this genomic locus in the 

global HIV phylogeny. LRTT values at each window centre were collected for each sample. In 

addition, two other statistics that relate to the phylogenetic estimates were collected: 

‘solo.dual.count’, representing the probability that the sample has come from a dual 

infection, and ‘tips’, representing the number of tips in the given window. 

  

Generation of aggregate statistics (feature engineering) 

MAF3c, MAF12c and LRTT were calculated for the centre of each 250bp genomic window, 

averaged for each major gene (gag, pol, gp120 and gp41) and across the whole genome. The 

mean number of tips was likewise calculated per gene and for the whole genome. A single 

genome-wide measure of number of windows supporting dual infection was generated by 

taking the mean of phyloscanner variable ‘solo.dual.count’ over all genomic windows, for 

each sample. 

 

Imputation of missing data 

Where data were missing, for example because there were insufficient reads to determine 

the tree for that window, we tested two imputation strategies: zero-filling (on the assumption 

that lack of variation resulted in absence of an LRTT value), versus a more complex strategy 

of using the K-nearest neighbours (KNN) as implemented in TensorFlow, with the python 

package fancyimpute (Rubinsteyn). In order to enable robust calculation of Euclidean 

distances by fancyimpute, the features were first standardised to a mean of zero and standard 

deviation of 1. To guard against over-imputing, which can cause model over-fitting, we 

excluded windows where over 40% of samples had missing data, and excluded samples over 

40% of windows had missing data. In addition, windows that included the position of the 

amplicon HIV-1 primers used for sequencing in the MRC cohort were excluded, as variation 

at these positions would be expected to be uninformative in the amplicon data. This resulted 

in a dataset containing 527 samples, with data at 820 genomic windows. We found that both 
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imputation strategies had performed similarly on these samples, and chose KNN as the more 

robust method for the final model. 

 

Regression method selection 

To select a regression method for predicting the midpoint time since infection (TSI), three 

different strategies were tested: ordinary least squares regression, gradient boosted 

regression, and random forest regression, as implemented in the scikit-learn package (Scikit-

Learn). The midpoint is commonly used for estimating incidence, an alternative measure 

would have been a random-point estimate (Vandormael et al. 2018). Models were fitted using 

combinations of the MAF3c, MAF12c and LRTT aggregated predictors (Table S1). For each 

combination of predictors, the dataset was split into 75% training: 25% test data, and 

performance of each regression method was assessed as the r2 on the same fold of test data, 

for each combination of features. This procedure was repeated 10 times for cross-validation. 

Maximum depth of decision trees was constrained to 7 to prevent overfitting, and the random 

forest contained 1000 decision trees. 

 

Identification of most informative windows 

The LRTT, MAF3c and MAF12c values within all genomic windows were individually assessed 

in univariate OLS regression models for prediction of TSI. The LRTT and MAF3c values at the 

most informative windows, defined as r2 of 0.3 or above, were used as one of the feature 

combinations for model selection (‘LRTT_MAF3c_topwin’). 

 

Feature selection 

A table of possible feature combinations was generated for testing the predictive power of 

genome-wide values of MAF12c, MAF3c and LRTT, with or without the additional 

phylogenetic statistics of dual count and tip count. Feature combinations that used all or a 

subset of individual genomic windows were labelled as “FULL”, while aggregated features 

(averaged across each major HIV gene一gag, pol, gp120 and gp41一and for the whole 

genome) were labelled “MEANS”. A binary indicator variable for the sequencing method 

(amplicons or veSeq) was always included. For each feature combination, predictive power 

was assessed with k-fold cross-validation. Random forest regression models, set up as 

described in ‘Regression method selection’, were trained on 75% of the data, leaving 25% as 
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the test dataset; this procedure was repeated 20 times for cross-validation, each time 

assessing performance on the test dataset using the model r2 on test data, precision (width 

of 95% CI of the distribution of estimates returned from the 1000 decision trees within the 

forest), and mean absolute error (absolute difference between the expected and estimated 

TSI). Additionally, the expected accuracy and false recency rates were calculated, 

respectively, as the proportion of decision trees in the model that correctly returned 

estimates that fell below/above 1 year, and estimates below 1 year when the known midpoint 

TSI was above 1 year. Feature sets were preferred if they had a higher r2, accuracy and 

precision; where values were similar, the feature set with the lower expected false recency 

rate was chosen. The final feature set (designated ‘MEANS_feats_LRTT’) comprised: mean 

LRTT in each of gag, pol and gp120, MAF3c in gag and gp41, MAF12c in gp41, and the mean 

number of tips in each of gag, gp41, and gp120. 

 

TSI estimates for all samples 

A leave-one-out strategy was used to obtain estimates of TSI for all samples, iterating over 

the full sample set, each time dropping the sample of interest, building a new random forest 

regression model on the remaining samples using the MEANS_feats_LRTT feature set, and 

obtaining a point estimate together with the full distribution of estimates from each of the 

1000 decision trees in the forest. A separate random forest regression model was trained on 

the mean absolute errors from the base model, to generate 95% prediction intervals around 

the point estimates. 

 

Performance assessment by subtype  

To check for evidence of subtype-dependent bias in model performance, we compared the 

mean absolute error (MAE) for all samples aggregated by subtype, after adjusting for TSI to 

account for the increase in MAE with increasing TSI. We fitted a linear model of MAE by TSI 

(MAE ~ TSI) and compared the residuals by subtype, using Tukey’s range test for multiple 

comparison of means as implemented in the Python statsmodels library 

(statsmodels.stats.multicomp.pairwise_tukeyhsd), with alpha set to 0.05. 

 

Model performance in a simulated population 
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We simulated a population sample of 1000 HIV-infected individuals under the assumptions 

that the mean time to viral suppression in this population was 3 years. The duration of 

infection of individuals in this population with TSI w was modelled as 1 - e-0.3w. The predicted 

fraction of infections with estimated TSI up to w in this population, and the proportion of 

these that were incorrectly classified, were calculated using the false and true recency rates 

for the model at values of w between 3 and 36 months. 

 

Application to an independent dataset: PopART population cohort 

The HPTN 071-02 Phylogenetics ancillary study to the HPTN 071 (PopART) trial collected 

samples from HIV-positive study participants in nine communities in Zambia between 2014 

and 2019 (“HPTN 071-02 Study Protocol” 2017). Unused samples from vials collected to 

assess the main trial outcome were sequenced using veSeq-HIV. Sequences were assembled 

using shiver, and MAF values generated in the same way as for the training data. Sequences 

were batched in randomly allocated groups of 100 to build trees and obtain LRTT values, 

which were then used as inputs for the HIV-phyloTSI predictive model. Model outputs were 

TSI and estimated prediction interval. For the subset of 204 samples for which a last negative 

test date was available, midpoint predictions from HIV-phyloTSI were compared with 

midpoints of the known seroconversion interval, as was done for the training data. 
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Supplement 
 

 
Figure S1: Genetic divergence (LRTT) and genetic diversity (MAF3c, MAF2c) for individual 
windows plateau at longer duration of infection. Vertical bars indicate 95% bootstrap 
confidence interval for the mean of each predictor, aggregated across the entire genome 
(first column, shaded) or within each of gag, pol, gp120 and gp41 HIV genes, for all samples. 
 
 

 
Figure S2. Phylogenetic metrics reported by phyloscanner are correlated with TSI. LRTT, 
largest subgraph root-to-tip distance; ORTT, overall root-to-tip distance; SMP, subgraph 
mean patristic distance. All three metrics are corrected with TSI, and are strongly correlated 
with one another, with some noisier estimates particularly for ORTT where a sample had 
multiple subgraphs due to e.g., contaminating reads in the window. For this analysis LLRT 
was selected, as this metric is most robust to presence of multiple subgraphs (i.e., 
individuals infected with multiple viral strains). 
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Figure S3: Mean divergence (LRTT) and diversity (MAF3c, MAF12c) measures increase with 
duration of infection in both veSeq-HIV and amplicon sequence data. Vertical bars indicate 
95% bootstrap confidence interval for the mean of each predictor, aggregated across the 
entire genome (first column, shaded axes) or within each of gag, pol, gp120 and gp41 HIV 
genes, separately for veSeq-HIV sequences (light violins) and amplicon sequences (dark 
violins). 
 

 
Figure S4. Correlations with TSI for predictors across the HIV-1 genome. Univariate linear 
regression models (OLS) were fitted independently for LRTT, MAF3c and MAF12c in 
overlapping 250b genomic windows, using the square root of the estimated duration of 
infection as the target variable. Missing data were zero-filled. Shown is the r2 within each 
window, with the window centre plotted on the x-axis. 
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Table S1: Cross-validated scores (mean r2 values in 10 folds) for different sets of LRTT, 
MAF3c and/or MAF12c feature combinations, computed using ordinary least squares 
(OLS), gradient boosted and random forest regression.    

Regression Method 

Feature set Predictors 
Number 

of 
predictors 

Linear 
OLS 

Gradient 
boosted 

Random 
forest 

genome_LRTT_MEAN is_mrc, genome_lrtt 2 0.409 0.446 0.455 

genome_MAF12c_MEAN is_mrc, genome_maf12c 2 0.304 0.185 0.218 

genome_MAF3c_MEAN is_mrc, genome_maf3c 2 0.219 0.248 0.322 

gag_LRTT_MEAN is_mrc, gag_lrtt 2 0.377 0.412 0.412 

gag_MAF3c_MEAN is_mrc, gag_maf3c 2 -0.038 0.388 0.452 

gp120_LRTT_MEAN is_mrc, gp120_lrtt 2 0.335 0.312 0.323 

gp120_MAF3c_MEAN is_mrc, gp120_maf3c 2 0.252 0.341 0.349 

gp41_LRTT_MEAN is_mrc, gp41_lrtt 2 0.294 0.221 0.229 

gp41_MAF3c_MEAN is_mrc, gp41_maf3c 2 0.107 0.211 0.226 

pol_LRTT_MEAN is_mrc, pol_lrtt 2 0.334 0.290 0.302 

pol_MAF3c_MEAN is_mrc, pol_maf3c 2 0.051 0.291 0.310 

genome_MAF_MEANS is_mrc, genome_maf3c, 
genome_maf12c 

3 0.206 0.248 0.329 

LRTT_MEANS is_mrc, gag_lrtt, pol_lrtt, 
gp120_lrtt, gp41_lrtt, 
genome_lrtt 

6 0.406 0.517 0.558 

MAF12c_MEANS is_mrc, gag_maf12c, 
pol_maf12c, 
gp120_maf12c, 
gp41_maf12c, 
genome_maf12c 

6 0.267 0.375 0.434 

MAF3c_MEANS is_mrc, gag_maf3c, 
pol_maf3c, 
gp120_maf3c, 
gp41_maf3c, 
genome_maf3c 

6 0.060 0.449 0.463 

genome_LRTT_MAF_MEANS is_mrc, genome_tips, 
genome_dual, 
genome_lrtt, 

6 0.522 0.500 0.532 
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genome_maf3c, 
genome_maf12c 

genome_MEANS is_mrc, genome_tips, 
genome_dual, 
genome_lrtt, 
genome_maf3c, 
genome_maf12c 

6 0.522 0.500 0.532 

MEANS_feats is_mrc, genome_lrtt, 
genome_maf3c, gag_lrtt, 
gag_maf3c, pol_lrtt, 
gp41_lrtt, pol_maf12c 

8 0.383 0.594 0.598 

MEANS_feats_LRTT is_mrc, gag_lrtt, pol_lrtt, 
gp120_lrtt, gag_maf3c, 
gp41_maf3c, 
gp41_maf12c, gag_tips, 
gp41_tips, gp120_tips 

10 0.489 0.640 0.650 

MEANS_notips_nodual is_mrc, gag_lrtt, 
gag_maf3c, gag_maf12c, 
pol_lrtt, pol_maf3c, 
pol_maf12c, gp120_lrtt, 
gp120_maf3c, 
gp120_maf12c, 
gp41_lrtt, gp41_maf3c, 
gp41_maf12c, 
genome_lrtt, 
genome_maf3c, 
genome_maf12c 

16 0.320 0.614 0.630 

GPE_MEANS is_mrc, genome_tips, 
genome_dual, gag_lrtt, 
gag_tips, gag_maf3c, 
gag_maf12c, pol_lrtt, 
pol_tips, pol_maf3c, 
pol_maf12c, gp120_lrtt, 
gp120_tips, 
gp120_maf3c, 
gp120_maf12c, 
gp41_lrtt, gp41_tips, 
gp41_maf3c, 
gp41_maf12c 

19 0.452 0.636 0.638 
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Figure S5. Scatterplots of known versus estimated square root-transformed time since 
infection for aggregate regression models in Table S2, derived using random forest 
regression. Models are named in correspondence with Table S2. Shown are scatterplots for 
the same set of training:test data (fold) for all models. 
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Figure S6. Mean absolute error (MAE) and estimated false recency rate (FRR). In all panels, 
circles show mean and lines show 95% bootstrap CI over 20-fold cross-validation. A. MAE, 
calculated as absolute difference between known and estimated TSI in square-root space. B. 
D. FRR, computed as the fraction of samples with known TSI over 12 months (circles, blue) 
or 18 months (triangles, orange) for which TSI was incorrectly estimated as being below 12 
or 18 months, respectively. 
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Figure S7. Accuracy and False Recency Rate (FRR) of classification models. Points show 
mean score; vertical lines indicate 95% CI over 20-fold cross-validation. A. Accuracy was 
calculated as the proportion of samples correctly predicted at a threshold of 12 months 
(blue circles) or 18 months (orange triangles), out of the total number of samples. B. False 
recency rate was calculated as the proportion of non-recent samples (with TSI above 
threshold) incorrectly classified as being recent with TSI < threshold at either 12 months 
(blue circles) or 18 months (orange crosses). 
 

 
 
Figure S8. Feature importances (mean decrease in impurity among 1000 decision trees) for 
feature set MEANS_feats_LRTT. Contribution of each feature (proportional to variance 
explained) for the ten features in the best-performing regression models. Feature 
importances were extracted from the random forest model feature_importances_ attribute, 
computed within scikit-learn as the mean of accumulation of the impurity decrease within 
each tree. 
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Figure S9. Model bias is low for infections <9 years. Boxplots show the median and 
quartiles for each TSI category; whiskers extend to 1.5 IQR. The difference between known 
and estimated TSI increases for non-recent infections. TSI for recent infections (under 1 
year) tends to be slightly overestimated, while TSI for long-term infections is increasingly 
underestimated. 
 
Table S2. Accuracy, false recency rate and true recency rate for simulated population data, 
with recency defined variously as infections occurring in the preceding 3, 6, 12, 18 and 24 
months. One thousand individuals were drawn from a population with an average interval 
of three years from infection to treatment. 
Months Accuracy False recency rate True recency rate 

3 93.0 2.2 49.7 

6 86.6 4.7 65.9 

12 80.1 11.6 74.0 

18 86.1 10.3 84.6 

24 89.6 5.8 88.4 
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Table S3. Tukey range test result for pairwise subtype comparisons of model bias. Mean 
bias of model predictions for all samples, adjusted for time since infection, compared using 
the Tukey range test for pairwise comparison of means, as implemented in the statsmodels 
python library. None of the subtypes differed at p<0.05 (reject=False). 
  

Group 1 Group 2 Mean between-group difference Lower Upper Reject 
(p<0.05) 

A1 B -0.0079 -0.1575 0.1417 FALSE 

A1 C 0.0188 -0.104 0.1416 FALSE 

A1 D -0.0015 -0.1369 0.1339 FALSE 

A1 Other -0.0251 -0.17 0.1198 FALSE 

B C 0.0267 -0.1095 0.1629 FALSE 

B D 0.0064 -0.1413 0.154 FALSE 

B Other -0.0171 -0.1736 0.1393 FALSE 

C D -0.0203 -0.1407 0.1001 FALSE 

C Other -0.0438 -0.1749 0.0872 FALSE 

D Other -0.0235 -0.1664 0.1194 FALSE 
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