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Abstract 

It is of great significance to identify the nonhomogeneous distribution of material 

properties in human tissues for different clinical and medical applications. This leads 

to the requirement of solving an inverse problem in elasticity. The virtual fields method 

(VFM) is a rather recent inverse method with remarkable computational efficiency 

compared with the optimization-based methods. In this study, we aim to identify 

nonhomogeneous hyperelastic material properties using the VFM. We propose two 

novel algorithms, RE-VFM and NO-VFM. In RE-VFM, the solid is partitioned in 

different regions and the elastic properties of each region are determined. In NO-VFM, 
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the distribution of elastic properties is completely reconstructed through the inverse 

problem without partitioning the solid. As the VFM requires to use virtual fields, we 

proposed an efficient way to construct them and implemented the approach in the 

FEniCS package. We validated the proposed methods on several examples, including a 

bilayer structure, a lamina cribosa (LC) model and a cube model embedded with a 

spherical inclusion. The numerical examples illustrate the feasibility of both RE-VFM 

and NO-VFM. Notably, the spatial variations of the Young’s modulus distribution can 

be recovered accurately within only 5 iterations. The obtained results reveal the 

potential of the proposed methods for future clinical applications such as estimating the 

risk of vision loss related to glaucoma and detecting tumors. 

 

Keywords: Virtual fields method, Nonhomogeneous elastic property identification, 

Hyperelasticity, FEniCS 
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Introduction 

Extensive studies have shown that distribution of material properties in human tissues 

varies with age or disease [1]–[3]. Therefore, the reconstruction of material parameters 

can provide valuable information for clinical diagnosis from the perspective of 

mechanics. To obtain the mechanical property of soft tissues, we should solve inverse 

problems in elasticity. Utilizing deformation fields provided by full-field measurement 

techniques such as Ultrasound [4], Magnetic Resonance Imaging (MRI) [5] and Optical 

Coherence Tomography (OCT) [6] has become more and more commonplace. 

The Virtual Fields Method is a typical inverse method based on the principle of virtual 

power. Compared with the prevalent optimization-based inverse method [7]–[9], the 

VFM is often more computationally efficient. Thus, the VFM has become more and 

more extensively used to solve inverse problems [2], [10]–[12]. 

For nonhomogeneous solids, the domain of interest is usually partitioned into a finite 

number of homogeneous regions.  It is assumed that the boundaries of these regions are 

known when the VFM is applied. Accordingly, only the biomechanical property of each 

region needs to be determined [13], [14]. However, if the boundary of each 

homogeneous region is unknown, the inverse problem becomes highly challenging to 

solve due to the large number of unknown elastic parameters. To address this issue, a 

novel scheme considering virtual work balance between neighborhood elements was 

recently proposed [15]. However, this previous study focused on a simple geometry. 

Besides, the choice of virtual fields was a key issue because virtual fields influence the 

accuracy of the estimation. For models with complex geometries, the construction of 

optimal virtual fields is usually non-trivial. Moreover, for nonlinear elastic solids with 

multiple material parameters, more virtual fields are required to avoid ill-conditioned 
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systems, which increases the difficulty of constructing the virtual fields. 

There are various suitable constitutive models to describe the mechanical behavior for 

different soft tissues, such as anisotropic hyperelastic models [16] [17] and viscoelastic 

models [18] [19]. In this paper, for the purpose of simplicity, we adopt the isotropic 

Neo-Hookean constitutive model for testing the proposed algorithms.  

In this study, we propose two VFM-based inverse methods to identify the 

nonhomogeneous distribution of hyperelastic solids: RE-VFM and NO-VFM methods. 

“RE” is short for “region”, namely the material parameters for every region are 

considered as unknowns. In the RE-VFM method, the boundary of each region is 

assumed to be known as a priori. To this end, regional material parameters are required 

to be estimated. And “NO” is short for “nodal”, namely, the material parameters for 

every node are considered as unknows. In the NO-VFM method, the boundary of each 

region is unknown, thus, all nodal material properties are demanded to estimate. In this 

paper, we also propose an efficient way to construct virtual fields for the identification 

problem, which is implemented in the open-source FEniCS platform [20] using Python. 

We eventually make the proof of concept of the proposed methods by several numerical 

examples. 

The paper is organized as follows: in the Method section, we elaborate the 

mathematical aspects of the proposed VFM inverse methods; in the FEniCS 

implementation section, we discuss the details of the implementation and of the 

algorithms; in the Results section, numerical tests are performed and results are shown; 

the Conclusions section closes the paper. 
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Method 

Inverse problem 

Suppose we have a hyperelastic solid   or part of it, in the reference configuration 

)(R  , under the given tractions t  on the traction boundary  t of  . We denote a 

material parameter vector 1 2, ,..., .,{ ,.. }T

q NP PP PP =  of  , which drives the nonlinear 

elastic response of  under the given tractions and boundary conditions.   undergoes 

a motion which can be described by a mapping P  from the reference configuration 

)(R   to the current configuration )(C  , 

 

( , ) ( , , )

( , ) ( , , )P

P t P t

t P t





= = +

 
= +

 

=

=

T

x X X u X

X u X
F I

X X

C F F

 (1) 

where x  and X are position vectors in the current configuration at time t and reference 

configuration, respectively, u  is the displacement field, F  is the deformation gradient 

tensor and C is the right Cauchy-Green tensor. 

We assume that an experimental measurement measu  of the actual displacement field 

( )tu X,  at time t  is obtained by a full-field measurement technique, possibly with some 

measurement noise. We can also derive the corresponding measF  and measC  by measu . 

The inverse problem is defined as: finding an estimated parameter vector P  such that 

the gap between measu  and ( , )P tu X,  is minimized. 

Definition of the intermediate configuration 

For solving the inverse problem, we define an intermediate configuration )(oP
   for 
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the solid  , where oP corresponds to an initial estimation of the unknown material 

parameters. The position vector in the intermediate configuration can be denoted as 

( , )o

o

P
t=x X , and the corresponding displacement ( , )o ot = −u X x X . 

 

Figure 1 Illustration of the intermediate configuration. 

In this intermediate configuration, we suppose a small displacement 
o x  superimposed 

upon 
ou , yielding the current position x  at time t for the material parameters P  at 

equilibrium. A small variation of displacements and parameters around the intermediate 

configuration is considered. 

 
  ( )

  ( )

o o o o

o o o oP PPP P

 

 

= + 

= + 
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 (2) 

The deformation gradient with the mapping from the reference to the intermediate 

configuration o
F and the deformation gradient with the mapping from the intermediate 

configuration to the current configuration 
oF are given as: 

 .

( , )oo P

o
o

o
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X
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. (3) 

The relationship between the deformation gradients and the right Cauchy-Green tensor 
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between the successive motion can be written as: 
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Equilibrium equations 

In the absence of the body force, the quasi-static equilibrium equation of forces 

responsible for deformation F may be written in the reference configuration as: 

 
( ) 0 on 

( )  on 

 =

 = t

FS

FS n t
  (5) 

where   denotes the divergence operator in the reference configuration, S  is the 2nd 

Piola-Kirchoff stress tensor, n  is the unit exterior normal vector of  t  in the reference 

configuration, and t  is the applied traction in the reference configuration. 

Similarly, quasi-static equilibrium equation of forces responsible for deformation Fo 

may be written in the reference configuration as: 

 
0(

(
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 (6) 

The 2nd Piola-Kirchoff stress S  can be related to 
oS  by a first-order Taylor expansion. 

Substituting
o oP P P= + and 

o o= +C C C , S  can be expressed by: 

 1 ,:
q

o o o o N o

q q P

oP  =


 + + +


S
S S S S SC

C
 (7) 

where 
, , 2 2

q

o
o o oT o o
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q

o

P
  


= =


S F
S

C E ε F , ( ) )
1 1

(
2 2

o o o = − = − − −E EE CC I I . 

E  and o
E are the Green strain tensor in the current and intermediate configuration, 

respectively. And 
oε  is the infinitesimal strain induced by an infinitesimal variation 

of material properties. When 
oF  is small, 

oε can be written as 
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Yielding, 
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Next, we substitute 
o o= +S S S  and 

o o o= +F F FF  into Eq. (5). Considering the 

equilibrium of 
oS in Eq. (6), and neglecting the second-order small quantity 

o o F S

term, we finally have 

 
o.( .) )  n 
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 (10) 

Hyperelastic constitutive behavior 

In this part, although our approach can be generalized to any hyperelastic constitutive 

law, we introduce a typical hyperelastic constitutive law, the compressible Neo-

Hookean model with material parameters vector written as { , }TP E v=  where E  is the 

Young’s modulus and v  is the Poisson’s ratio. The strain energy density function   

and the 2nd Piola-Kirchoff stress tensor S  of a Neo-Hookean model can be written as 

[21]: 

 ( ) 2

1 ]
1

[ 3 2 ln( ) (ln )
2

I J J   = − − +  (11) 

 ( )1 12 (ln )J − −
= = + −


S C I C

C
 (12) 

where 1 trace( ), det( )I J= =C F , I is the 2-order identity tensor. 
2(1 )

E

v
 =

+
 and 

(1 )(1 2 )
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v v


+ −
= . 
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The sensitivity of the 2nd Piola-Kirchoff stress S  to q-th material parameter ,
qPS  can be 

written as: 

 

1

,

1

, (ln )J









−

−


= = −



= =


S
S I C

S
S C

 (13) 

Moreover, the elasticity tensor K  can be written as [21]: 

 1 1 1 12 2( ) ( ) ln( ))( ) )( (J  − − − −
−+


= =K

S
C C C C

C
 (14) 

where 
1

1 1( ) ( )
−

− −


= −

C
C C

C
 and   is the dyadic multiplication symbol. 

The Virtual fields method 

In this part, we use the principle of virtual power applied onto the 2nd Piola-Kirchhoff 

stress tensor (material form of the principle of virtual power) to rewrite Eq. (10) in its 

weak form: 

 ( ) ( ): ( ) :o o n o o o ndV dV    = − E FS S E  (15) 

where 
( )o nE  is the virtual Green strain field produced by a kinematically admissible 

virtual displacement field. The index n indicates that at least N virtual fields are 

necessary to construct the whole system of N equations for solving N unknown material 

properties NP . 

Next, we replace 
oF with 

oε as only the symmetric parts contribute to the product. 

Substituting Eq. (9) into Eq. (15), we have: 

 
( ) ( )

1 , : ( : ) :
o n

q

N o o o o o o o n

q Pq dV dVP      = = − + S KE E ε ES  (16) 
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Construction of virtual fields 

The choice of virtual fields is a critical issue in the VFM procedure. Herein we provide 

an efficient method of constructing N virtual strain fields 
( )o nE  for solving the inverse 

problem. 

For convenience, we introduce the linear operator L which transforms a second order 

tensor U into another second order tensor L:U such as: 

 
1: : ( ) ( )o o T o o− −= +L U K U F U F S  (17) 

Then we use the linear operator L to construct the virtual fields 
( )o nE  such as: 

 1

,

( ) 1( ) : ( ) :
q

o

P

n o − −= L SE L  (18) 

Yielding, 

 ( ) ( ) ( )1

, ,

1

1 ,

1( ) : : ( ) : : ( ) :
n nq

N o o o

Pq P P

o o

q dV dVP   − − −

= = − L S S EL L S  (19) 

Let us then introduce the following second order tensor 

 1

,, ( ) :
n n

o

P

o

P

−=E L S  (20) 

Assuming that the set of , n

o

PE  tensors constitutes a basis of the space of Green-

Lagrange strain fields, the whole VFM system of Eq. (16) could be written in a very 

concise and elegant way by substituting Eq. (20) into Eq. (19).  

In the resulting system written in Eq. (21), each component n of the unknown 

parameters variation { }oP  can be interpreted as the projection of 
oE onto the base 

tensor , n

o

PE , making them unique. This may be rewritten as 

 

1 1 1 1

1
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 (21) 

This equation can be summarized as [ ]{ } { }o o oPA b = and the material properties are 



11 

 

updated such as 
1[ ] { }o o oP P A b−= + . 

For a nonhomogeneous case, the domain of interest   in Eq. (21) could be defined as 

each homogeneous region or even as the nodal value of each finite element node. Thus, 

{ }oP  could be the variational parameter of a specific region or finite element node. 

We denote RE-VFM and NO-VFM for the regional inverse scheme and for the nodal 

inverse scheme, respectively. Thus, we solve M times the [ ]{ } { }o o oPA b = equation 

systems (M could be the total number of regions for RE-VFM and the number of finite 

element nodes for NO-VFM) and finally recover the entire nonhomogeneous 

distribution. 

Nonlinear FEM algorithm 

Our method requires achieving a number of forward finite element calculations. We 

performed them in FEniCS. We adopted the Newton Raphson method for solving the 

nonlinear variational problem [21] [22] and MUMPS (multifrontal massively parallel 

sparse direct solver) package [23] to solve the linear algebraic equations. 

FEniCS implementation 

In this section, we elaborate step by step the novel VFM algorithms implemented in the 

FEniCS platform using Python scripts, and describe the corresponding main.py given 

in Appendix for a bilayer cubic structure. 

In the proposed VFM-based inverse scheme, we construct a series of intermediate 

configurations for approaching the current configuration by updating the initial 

parameter vector oP . The flowchart of the inverse algorithm is shown in Figure 2. 
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Figure 2 Flowchart of the proposed VFM-based inversion algorithm 

FEM forward problem (lines 7-22) 

In this section, we describe the resolution of the forward problem with function 

forward. The input is the Neo-Hookean constitutive parameters E and v , tractions 

and boundary conditions. In the absence of body force, the objective function of this 

nonlinear problem   is written as Eq. (22). We adopt a Newton’s method with a 

mumps solver and return the displacement field u  in this case. 

 * *: dV dSv v   − =  FS t  (22) 

where 
*v  is the test function. 

Constitutive model (lines 23-49) 

In this section, we establish the constitutive model in the stress_nh and 

stress_grad_nh functions. The inputs of both functions are the displacement field 

u  and constitutive parameters E , v . The stress_nh function returns the 1st Piola-
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Kirchoff stress tensor in Eq. (12) for solving the forward problem. The 

stress_grad_nh function returns the sensitivity of the 2nd Piola-Kirchoff stress in 

Eq. (13) and the 4-order tensor L  in Eq. (17) for formulating the VFM solving system 

in Eq. (21). Performing the tensor symbolic calculation is rather easy thanks to the 

FEniCS package UFL. 

VFM updating algorithm (lines 50-154) 

In this section, we introduce the VFM updating algorithm consisting of functions VFM, 

calc_VF, and solve_VFM. 

Function VFM is the main loop function with the initial guess of material parameters as 

input. We set the initial guess of material parameters to the model in lines 54-59. Then, 

we call the forward function to calculate 
ou  in the intermediate configuration. 

The convergence criterion of this paper is: the relative error between 
ou and measu  is 

less than 
610−

). The error between the computed displacement field 
ou  and the 

measured displacement field measu  in line 61 is defined as in Eq. (23). In lines 69-71 

we calculate the deformation gradient tensor o
F , right Cauchy-Green tensor 

oC  and 

the Green strain tensor o
E  in the intermediate configuration. 

 

2

2

( )

( )

o

meas

meas

dV
error

dV





−
=




u u

u
 (23) 

Next, we call the stress_grad_nh function to calculate L , ,ES  and ,vS . It is not 

easy to obtain the inverse of a 4-order tensor in Eq. (20). To address this issue, we 

project all these tensor field to each node so that we can transform the data type from 

Tensor to NumPy.array in lines 74-75. In RE-VFM, we call solve_VFM to solve 

the assembled Eq. (21) and update oP  in lines 77-94. 
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Function clac_VF in lines 134-154 is used to calculate the virtual fields in Eq. (20). 

We input the NumPy.array type ,ES , ,vS , o
E , measE and L  written in the nodal-

value form and return N (two in this case) virtual strain fields ,

o

EE , ,

o

vE  and the Green-

Lagrange strain fields o
E , measE . Due to the symmetry, we rewrite the 2-order tensor 

from shape([3,3]) to (6,1) and 4-order tensor from shape([3,3,3,3]) to 

(6,6). 

Function solve_VFM in lines 95-133 is used to solve the VFM system in Eq. (21) by 

RE-VFM. In lines 97-104, we group the nodes into top_dof_list and 

bottom_dof_list, where the vertices index 0-243 belongs to the top layer and the 

rest belong to the upper layer. We should index the sequence by dof2vtx, translating 

the sequence arrangement from dof to vertices order. In lines 105-133, we assemble 

and solve two VFM updating systems for each layer of the bilayer structure for RE-

VFM. 

For NO-VFM, we can modify the solve_VFM function in lines 95-133 and the 

corresponding updating code in lines 77-93. The modified solve_VFM function for 

NO-VFM can be rewritten as: 

1. def solve_VFM(dS_dE_array,dS_dnu_array,E_array,E_meas_array,L_array): 
2.     Beta = np.zeros([num_vertices,2])     
3.     for ii in range(num_vertices): 
4.         B = np.zeros([2,1]) 
5.         A = np.zeros([2,2]) 
6.         Vir_E1,Vir_E2,E_o,E_meas = calc_VF(dS_dE_array,dS_dnu_array,E_array,E_meas_array,L_array,ii) 
7.         A[0,0] = np.dot(Vir_E1.T,Vir_E1)[0][0] 
8.         A[0,1] = np.dot(Vir_E2.T,Vir_E1)[0][0] 
9.         A[1,0] =np.dot(Vir_E1.T,Vir_E2)[0][0] 
10.         A[1,1] = np.dot(Vir_E2.T,Vir_E2)[0][0] 
11.         B[0] = -np.dot((E_meas-E_o).T,Vir_E1)[0][0] 
12.         B[1] = -np.dot((E_meas-E_o).T,Vir_E2)[0][0] 
13.         cond = np.linalg.cond(A) 
14.         if cond>=1e6: 
15.             temp_beta = np.linalg.lstsq(A,B)[0] 
16.         else: 
17.             temp_beta = np.linalg.solve(A,B)       
18.         Beta[ii,0] = temp_beta[0] 
19.         Beta[ii,1] = temp_beta[1]     
20.     return Beta 

Main part (lines 155-213) 

In this section, we elaborate the entire procedure of the inverse algorithm. In lines 156-
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160, we import the geometry mesh file. In lines 162-172, we define functions and 

function spaces in FEniCS. In lines 173-186, we apply the displacement and traction 

boundary conditions. 

Next, we use a finite element simulation as experimental measurement for the sake of 

verification. In lines 187-195, we define the target distribution of Young’s modulus and 

Poisson’s ratio for the finite element model. From lines 196-201, we calculate measu , 

measF , measC  and measE  successively in the current configuration. 

In lines 202-209, we make preparations for the VFM iteration and set the initial guess 

of parameters in the intermediate configuration. In lines 211-213, we call the VFM 

algorithm to finish the identification and post-process the reconstructed results by 

post_plot. The identification results of the cases are discussed in the Results section 

in details. 

Results 

Bilayer Structure Problem 

We first considered a bilayer structure as shown in Figure 3, the model is divided into  

9×9×5 nodes and 1280 tetrahedrons. We fixed the bottom surface and applied the 

constant traction on the top surface of the model. The whole model was equally divided 

into two layers. The target Young’s moduli of the top layer and the bottom layer were 

10MPa and 20MPa, respectively. The Poisson’s ratio was 0.3 for both layers. Firstly, 

we applied the RE-VFM to solve this identification problem. In this case, the initial 

guess of Young’s moduli and Poisson’s ratios of both the top layer and bottom layer 

are 15 MPa and 0.2, respectively. The estimated material properties and the error of the 

displacement fields with respect to the iteration number are plotted in Figure 4 and 
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Figure 5, respectively. The relative error between the estimated and target material 

properties is reported in Table 1. We observed that both values of Young’s modulus and 

Poisson’s ratio were identified accurately. Moreover, the displacement error is less than 

the tolerance after 16 iterations. 

 

Figure 3 The finite element bilayer structure model and target material parameter distributions.  

(a) the finite element model and the boundary conditions; (b) target Young’s modulus distribution; 

(c) target distribution of the Poisson’s ratio. 

Table 1 Relative error of the estimated parameters of the bilayer model 

 Target Initial guess Estimation Relative error 

topE  10.00 (MPa) 15.00 (MPa) 9.9675 (MPa) 0.32% 

bottomE  20.00 (MPa) 15.00 (MPa) 20.0440 (MPa) 0.22% 

topv  0.30 0.20 0.3015 0.49% 

bottomv  0.30 0.20 0.2992 0.27% 
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Figure 4 Estimated values of material properties versus the iteration number. 

 

Figure 5. Error between measu  and 
ou  of the bilayer case by RE-VFM. (The log10 of the error is 

adopted) 
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Subsequentially, we tested the NO-VFM method with the bilayer structure case. The 

initial guess of Young’s moduli and Poisson’s ratios for all nodes are set to 15 MPa and 

0.2, respectively. In Figure 6 and Figure 7, we present the reconstructed results and the 

displacement error of the bilayer case by the NO-VFM method. Since this is a large-

scale inverse problem, more minimization iteration numbers are required to satisfy the 

convergence criteria. Additionally, both the Young’s modulus and Poisson’s ratio 

distributions were well recovered, as shown in Figure 6. The average relative error of 

the Young’s moduli and Poisson’s ratios is 11.62% and 4.51%, respectively. 

 

Figure 6 Reconstructed results of the bilayer case by NO-VFM. 1st row: the reconstruction result 

and relative error distribution of Young’s modulus; 2nd row: the reconstruction result and relative 

error distribution of Poisson’s ratio. 
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Figure 7 Error between measu  and 
ou of the bilayer case by NO-VFM. (The log10 of the error is 

adopted) 

Next, we test the situation when the initial guesses are far from the target values for 

both RE-VFM and NO-VFM using the bilayer model. For RE-VFM, the initial guess 

of Young’s moduli and Poisson’s ratios of both the top layer and bottom layer are set 

to 1 MPa and 0.2, respectively. The relative error between the estimated and target 

material properties is reported in Table 2. The estimated material properties and the error 

of the displacement fields with respect to the iteration number are plotted in  
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Figure 8 and Figure 9, respectively. We observe that the accurate values are obtained 

after 19 iterations, even the initial guess is far away from the target parameter values. 

 

 

 

 

Table 2 Relative error of the estimated parameters of the bilayer model 

 Target Initial guess Estimation Relative error 

topE  10.00 (MPa) 1.00 (MPa) 9.9627 (MPa) 0.37% 

bottomE  20.00 (MPa) 1.00 (MPa) 20.0522 (MPa) 0.26% 

topv  0.30 0.20 0.3017 0.56% 

bottomv  0.30 0.20 0.2990 0.33% 

 

 

 



21 

 

 

 

Figure 8 Estimated values of material properties versus the iteration number. 
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Figure 9 Error between measu  and 
ou  of the bilayer case by RE-VFM. (The log10 of the error is 

adopted) 

In NO-VFM, the initial guess of Young’s moduli and Poisson’s ratios for all nodes are 

set to 1 MPa and 0.2, respectively. In Figure 10 and Figure 11, we present the 

reconstructed results and the displacement error. As shown in Figure 10, both the 

Young’s modulus and Poisson’s ratio distributions were well recovered even the initial 

guesses are far away from the target values. After 71 iterations, the average relative 

error of the Young’s moduli and Poisson’s ratios are 9.89% and 5.97%, respectively. 

 

Figure 10 Reconstructed results of the bilayer case by NO-VFM. 1st row: the reconstruction result 

and relative error distribution of Young’s modulus; 2nd row: the reconstruction result and relative 

error distribution of Poisson’s ratio. 
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Figure 11 Error between measu  and 
ou of the bilayer case by NO-VFM. (The log10 of the error is 

adopted) 

Lamina Cribosa (LC) Model 

Next, we tested the NO-VFM algorithm for a three-layered lamina cribosa (LC) model, 

with 6581 nodes and 33451 tetrahedral elements. Lamina cribosa is a connective tissue 

in the optic nerve head (ONH), whose mechanical properties could provide important 

information of studying the cause of glaucoma. This geometric model was previously 

used for other studies [14][24]. As boundary conditions, we fixed the posterior and 

lateral surfaces and applied pressure on the upper surface. We assumed that the LC was 

nearly incompressible and the Poisson’s ratio was set as 0.46. The target Young’s 

modulus distribution is shown in Figure 12. The initial guess of Young’s modulus is 0.4 

MPa for all nodes. The mean relative error between the target and recovered Young’s 
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moduli is 0.11%. In Figure 13, we observed that the three-layer structure was well 

reconstructed by the NO-VFM. In Figure 14, the error of the displacement fields reduced 

to 10-6 after 5 iterations. 

 

Figure 12 Target Young’s modulus distribution of the LC case. 

 

Figure 13 Reconstructed results of the LC case by NO-VFM 
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Figure 14 Error between measu  and 
ou   of the LC case by NO-VFM. (The log10 of the error is 

adopted) 

Inclusion Problem 

Lastly, we tested the NO-VFM for an 1mm×1mm×1mm cubic model with a spherical 

inclusion (radius is 0.3mm) in the center. The geometric model is shown in Figure 15, 

which is discretized with 8092 tetrahedral elements. We applied the pressure on the top 

surface and fixed the bottom surface to avoid rigid motion. The target distributions of 

Young’s modulus and Poisson’s ratio are shown in Figure 15. The target Young’s 

modulus values are 5 MPa for the inclusion and 1 MPa for the background, respectively. 

The target Poisson’s ratio is 0.45 for the inclusion and 0.35 for the background, 

respectively. The initial guesses of Young’s modulus and Poisson’s ration are set as 1 

MPa and 0.4 for all nodes. The mean relative error between the target and recovered 

Young’s moduli is 8.60%. Moreover, the mean relative error between the target and 

recovered Poisson’s ratios is 3.41%. We observed that the inclusion was well 
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reconstructed by the NO-VFM method (see Figure 16) and the relative error reduced to 

10-6 after 45 iterations (see Figure 17). 

 

Figure 15 The finite element model of the inclusion problem and target material parameter 

distributions. (a) the finite element model; (b) target distribution of Young’s modulus; (c) target 

distribution of the Poisson’s ratio. 

 

Figure 16 Reconstructed results of the inclusion problem by NO-VFM. 1st row: the reconstruction 

result and relative error distribution of Young’s modulus; 2nd row: the reconstruction result and 
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relative error distribution of Poisson’s ratio. 

 

 

Figure 17 Error between measu  and 
ou   of the inclusion problem by NO-VFM. (The log10 of the 

error is adopted) 

We ran all these examples with a personal Laptop (Intel 11800H CPU, with 8 cores 16 

threads, 4.2 GHz, 32G RAM). The FEniCS environment was configurated in Python 

3.8 on Ubuntu18.04 (WSL, Windows Subsystem for Linux). The average 

computational time of the forward, transformation and VFM parts are reported in Table 

3, respectively. Table 3 demonstrates that most of the computation time is used to 

transform the Tensor to Numpy.  

Table 3 Average computational times of an iteration step 

 

 

 

 

Model Algorithm Forward Transformation VFM Total 

Bilayer 
RE-VFM 0.5s 20.2s 0.4s 21.1s 

NO-VFM 0.5s 19.5s 0.2s 20.2s 

LC NO-VFM 144.2s 485.2s 27.8s 657.2s 

Inclusion NO-VFM 9.1s 185.4s 0.2s 194.7s 
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Discussion 

In this paper, we have implemented two VFM methods in the open-source finite 

element package FEniCS. Choosing FEniCS was motivated by the relative simplicity 

of implementing a finite element code with the intrinsic high-level language in FEniCS. 

This makes the proposed method highly flexible and convenient to introduce user-

defined material constitutive models.  

In this study, the isotropic Neo-Hookean hyperelastic constitutive model was chosen to 

test the proposed VFM-based inverse methods. Numerical examples have shown the 

feasibility of the proposed methods, even when the initial guesses are far from the target 

values. However, we should also test the feasibility of the proposed methods by other 

types of constitutive models considering exponentially nonlinear, anisotropic and 

viscoelastic behaviors. 

A recurrent difficulty in inverse method is related to the uncertainty about the boundary 

conditions. The inaccurate boundary might affect the accuracy of the identification 

results. In this paper, the traction t is applied in the reference configuration. Eq 5 is the 

quasi-static equilibrium equation of forces responsible for deformation F and Eq 6 is 

the quasi-static equilibrium equation of forces responsible for deformation F , both 

written in the reference configuration. As they are written in the reference configuration, 

both equations have the same t traction vector. This means that there are no assumptions 

on the boundary conditions in our method. 

A bottleneck of VFM methods compared to the optimization-based methods is that 

artificial virtual fields should be introduced. With the increasing number of unknown 

material parameters, the total number of virtual fields should be increased accordingly 

to ensure the uniqueness of the inverse solution. To address this issue, RE-VFM method 
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was firstly proposed in [14] and can be used to solve for the regional material properties 

without introducing artificial virtual fields. However, the virtual fields in [14] are 

obtained by solving another constructed forward problem, which requires more time. 

In this paper, a novel way to construct virtual fields is proposed. Based on the proposed 

method, we further develop the NO-VFM method, which is capable of identifying the 

spatial variation of the nonhomogeneous elastic property distribution of soft solids. 

Compared to [15], the NO-VFM method can be used to identify the material properties 

for a hyperelastic solid with a complex geometry. The feasibility of the proposed 

method has been successfully tested by several numerical examples were shown in the 

Results Section. The simulated displacement datasets utilized to test the feasibility of 

the proposed VFM methods illustrate different possible applications. In the future, the 

performance of the proposed methods should be tested with actual datasets obtained 

from medical images.  

Conclusions 

In this study, we have proposed two efficient VFM methods for identifying the 

distribution of hyperelastic material parameters in soft tissues. The details of the 

implementation of the proposed methods in the FEniCS platform were presented. From 

the observation of the numerical examples, we have found that both the RE-VFM and 

NO-VFM methods are capable of reconstructing the hyperelastic nonhomogeneous 

material distribution accurately. In particular, the NO-VFM shows the potential of 

reconstructing the material distribution without the partition information. This study 

has demonstrated that the proposed methods have great potential in identifying regional 

variations of material properties in soft tissues due to diseases and aging. 
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Appendix 

We present the main.py and util.py files of the double-layered structural model 

below. main.py is utilized to implement the VFM-based inverse algorithm. util.py 

is used to store the auxiliary code pieces such as project and post_plot.  

main.py 

1. #%%  VFM-based inverse algorithm by FeniCS2019 
2. from fenics import * 
3. import ufl as uf  
4. import os 
5. import numpy as np 
6. from utils import proj_tensor2,proj_tensor4,post_plot 
7. def forward(E,nu,Trac,bcs):    
8.     P= stress_nh(u,E,nu)     
9.     FV = inner(P, grad(v))*dx  
10.     # Traction at boundary 
11.     T=Trac 
12.     FT=dot(T,v)*ds1     
13.     # Whole system and its Jacobian 
14.     FF = FV-FT 
15.     JJ = derivative(FF, u)    
16.     # Initialize solver 
17.     problem = NonlinearVariationalProblem(FF, u, bcs=bcs, J=JJ) 
18.     solver = NonlinearVariationalSolver(problem) 
19.     solver.parameters['newton_solver']['relative_tolerance'] = 1e-10 
20.     solver.parameters['newton_solver']['linear_solver'] = 'mumps' 
21.     solver.solve() 
22.     return u 
23. def stress_nh(u,E,nu): 
24.     """Returns 1st Piola-Kirchhoff stress and (local) mass balance for given u, p."""     
25.     mu = E/(2.0*(1.0 + nu)); lam= E*nu/((1.0 + nu)*(1.0 - 2.0*nu)) 
26.     F = I + grad(u) 
27.     J = det(F) 
28.     C = F.T * F 
29.     S = mu*(I-inv(C))+lam*ln(J)*inv(C) # 2nd Piola-Kirchoff stress 
30.     P = F*S # 1st Piola-Kirchhoff stress 
31.     return P 
32. def stress_grad_nh(u,E,nu): 
33.     i,j,k,l,m=uf.indices(5) 
34.     mu = E/(2.0*(1.0 + nu)) 
35.     lam= E*nu/((1.0 + nu)*(1.0 - 2.0*nu)) 
36.     dmu_dE = 1.0/(2.0*(1.0 + nu)) 
37.     dlam_dE= 1.0*nu/((1.0 + nu)*(1.0 - 2.0*nu)) 
38.     dmu_dnu = -1.0*E/(2.0*(1.0 + nu)*(1.0 + nu)) 
39.     dlam_dnu= E*(2.0*nu*nu+1.0)/((1.0 + nu)*(1.0 - 2.0*nu)) /((1.0 + nu)*(1.0 - 2.0*nu))     
40.     F = I + grad(u) 
41.     J = det(F) 
42.     C=(F.T)*F 
43.     C_inv=inv(C) 
44.     S = mu*(I-inv(C))+lam*ln(J)*inv(C) # 2nd Piola-Kirchhoff stress 
45.     dS_dE=dmu_dE*(I-inv(C))+dlam_dE*ln(J)*inv(C) # 2nd Piola-Kirchhoff stress 
46.     dS_dnu=dmu_dnu*(I-inv(C))+dlam_dnu*ln(J)*inv(C) # 2nd Piola-Kirchhoff stress     
47.     K_tan=as_tensor(lam*C_inv[i,j]*C_inv[k,l]+(mu-
lam*ln(J))*(C_inv[i,k]*C_inv[j,l]+C_inv[i,l]*C_inv[j,k]),(i,j,k,l)) 

48.     L = as_tensor(K_tan[i,j,k,l]+inv(F)[k,i]*inv(F)[l,m]*S[m,j],(i,j,k,l)) 
49.     return dS_dE,dS_dnu,L 
50. def VFM(E_top_gue,E_bottom_gue,nu_top_gue,nu_bottom_gue): 
51.     u_o = Function(V) 
52.     iter = 0 
53.     while True: 
54.         E_top_list.append(E_top_gue);E_bottom_list.append(E_bottom_gue) 
55.         nu_top_list.append(nu_top_gue);nu_bottom_list.append(nu_bottom_gue) 
56.         E_o = interpolate(Expression('x[2]>-
0.19635? E_top:E_bottom',degree=1,E_top=E_top_gue,E_bottom=E_bottom_gue), M) 

57.         nu_o = interpolate(Expression('x[2]>-
0.19635? nu_top:nu_bottom',degree=1,nu_top=nu_top_gue,nu_bottom=nu_bottom_gue), M) 

58.         File("output/{}/{}/Parameters/Eo_iter{}.pvd".format(case_name,initial_name,iter)) << E_o 
59.         File("output/{}/{}/Parameters/nuo_iter{}.pvd".format(case_name,initial_name,iter)) << nu_o 
60.         u_o.assign(forward(E_o,nu_o,traction1,bcs))     
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61.         error = assemble((inner(u_o-u_meas,u_o-u_meas)*dx))/assemble((inner(u_meas,u_meas)*dx)) 
62.         error_list.append(error) 
63.         if error < tol: 
64.             break 
65.         if iter >MAX_ITER: 
66.             break 
67.         iter += 1  
68.         # kinematics in the intermediate configuration 
69.         F=I+grad(u_o) 
70.         C=(F.T)*F 
71.         Strain_E = (C-I)/2 
72.         # formulating Eq.(21)  
73.         dS_dE,dS_dnu,L = stress_grad_nh(u_o,E_o,nu_o) 
74.         dS_dE_array,dS_dnu_array,Strain_E_array = proj_tensor2(dS_dE,dS_dnu,Strain_E,TT) 
75.         L_array = proj_tensor4(L,TT_4)      
76.         # solve VFM equation systems  
77.         dE_top,dE_bottom,dnu_top,dnu_bottom  = solve_VFM(dS_dE_array,dS_dnu_array,Strain_E_array,E_meas_array,L
_array) 

78.         E_top_gue += dE_top  
79.         E_bottom_gue += dE_bottom  
80.         nu_top_gue += dnu_top 
81.         nu_bottom_gue += dnu_bottom    
82.         if E_top_gue <= 0: 
83.             E_top_gue = 0.1 
84.         if nu_top_gue<=0: 
85.             nu_top_gue = 0.2 
86.         if nu_top_gue >=0.5: 
87.             nu_top_gue = 0.48 
88.         if E_bottom_gue <= 0: 
89.             E_bottom_gue = 0.1 
90.         if nu_bottom_gue<=0: 
91.             nu_bottom_gue = 0.2 
92.         if nu_bottom_gue >=0.5: 
93.             nu_bottom_gue = 0.48 
94.         print('This is the {} iter, error is {}'.format(iter,error)) 
95. def solve_VFM(dS_dE_array,dS_dnu_array,E_array,E_meas_array,L_array):     
96.     # turn the node list aranged by dof to node list aranged by nodes 
97.     top_dof_list = [] 
98.     bottom_dof_list = [] 
99.     for i in range(num_vertices): 
100.         node_index =  dof2vtx[i] 
101.         if node_index < 243: 
102.             top_dof_list.append(i) 
103.         else: 
104.             bottom_dof_list.append(i) 
105.     def solve_system(part_list): 
106.         """ part_list is all nodal index of a specific part """ 
107.         A_11_total = 0; A_12_total = 0; A_21_total = 0; A_22_total = 0 
108.         B_1_total = 0; B_2_total =0 
109.         for el in part_list: 
110.             B = np.zeros([2,1]) 
111.             A = np.zeros([2,2]) 
112.             Vir_E1,Vir_E2,E_o,E_meas = calc_VF(dS_dE_array,dS_dnu_array,E_array,E_meas_array,L_array,el)      
       

113.             A[0,0] = np.dot(Vir_E1.T,Vir_E1)[0][0] 
114.             A[0,1] = np.dot(Vir_E2.T,Vir_E1)[0][0] 
115.             A[1,0] = np.dot(Vir_E1.T,Vir_E2)[0][0] 
116.             A[1,1] = np.dot(Vir_E2.T,Vir_E2)[0][0] 
117.             B[0] = -np.dot((E_meas-E_o).T,Vir_E1)[0][0] 
118.             B[1] = -np.dot((E_meas-E_o).T,Vir_E2)[0][0] 
119.             A_11_total += A[0,0];A_12_total+=A[0,1];A_21_total+=A[1,0];A_22_total+=A[1,1] 
120.             B_1_total+=B[0];B_2_total+=B[1] 
121.         A_total = np.zeros([2,2]); B_total = np.zeros([2,1]) 
122.         A_total[0,0] = A_11_total;A_total[0,1] = A_12_total;A_total[1,0] = A_21_total;A_total[1,1] = A_22_tota
l 

123.         B_total[0] = B_1_total;B_total[1] = B_2_total 
124.         cond = np.linalg.cond(A_total)         
125.         if cond>=1e6: 
126.             temp_beta = np.linalg.lstsq(A_total,B_total)[0] 
127.         else: 
128.             temp_beta = np.linalg.solve(A_total,B_total)   
129.         return temp_beta[0,0],temp_beta[1,0] 
130.     dE_top,dnu_top = solve_system(top_dof_list) 
131.     dE_bottom,dnu_bottom = solve_system(bottom_dof_list) 
132.  
133.     return dE_top,dE_bottom,dnu_top,dnu_bottom 
134. def calc_VF(dS_dE_array,dS_dnu_array,E_array,E_meas_array,L_array,index): 
135.     dS_dE_np = ((dS_dE_array[index].reshape([3,3]))) 
136.     dS_dnu_np = ((dS_dnu_array[index].reshape([3,3]))) 
137.     E = E_array[index].reshape([3,3]) 
138.     E_m = E_meas_array[index].reshape([3,3]) 
139.     L_np = (L_array[index].reshape([3,3,3,3])) 
140.     index2D1=[0,1,2,1,0,0];index2D2=[0,1,2,2,2,1] 
141.     S_E=np.zeros([6,1]);S_nu=np.zeros([6,1]);E_meas=np.zeros([6,1]);E_o=np.zeros([6,1]);LL=np.zeros([6,6]) 
142.     for i in range(6): 
143.         for j in range(0,3): 
144.             LL[i,j] = L_np[index2D1[i],index2D2[i],index2D1[j],index2D2[j]] 
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145.         for j in range(3,6): 
146.             LL[i,j] = 2*L_np[index2D1[i],index2D2[i],index2D1[j],index2D2[j]] 
147.         S_E[i] = dS_dE_np[index2D1[i],index2D2[i]] 
148.         S_nu[i] = dS_dnu_np[index2D1[i],index2D2[i]] 
149.         E_o[i] = E[index2D1[i],index2D2[i]] 
150.         E_meas[i] = E_m[index2D1[i],index2D2[i]] 
151.     inv_LL = np.linalg.inv(LL)     
152.     Vir_E1 = np.dot(inv_LL,S_E) 
153.     Vir_E2 = np.dot(inv_LL,S_nu) 
154.     return Vir_E1,Vir_E2,E_o,E_meas 
155. #%% Model setup  
156. case_name = 'Case_2layer'  
157. mesh_path = 'model/2layer'  
158. meshfile = '2layer.xml' 
159. # Geometry mesh 
160. mesh = Mesh(os.path.join(os.curdir,mesh_path,meshfile))  
161. num_vertices = mesh.num_vertices() 
162. #%% FEniCS Functionspaces  
163. V = VectorFunctionSpace(mesh, 'P', 1) 
164. u = Function(V) 
165. v = TestFunction(V) 
166. M = FunctionSpace(mesh, "CG", 1)   
167. TT = TensorFunctionSpace(mesh,'P',1) 
168. shape = 4*(mesh.geometry().dim(),) 
169. TT_4 = TensorFunctionSpace(mesh,'P',1,shape = shape) 
170. I = Identity(3) 
171. dof = vertex_to_dof_map(M) 
172. dof2vtx = vertex_to_dof_map(M).argsort() 
173. # Boundary definition 
174. boundary_parts = MeshFunction('size_t', mesh, mesh.topology().dim()-1) 
175. bottom  = AutoSubDomain(lambda x: near(x[2], -0.3972)) 
176. top = AutoSubDomain(lambda x: near(x[2], 0)) 
177. bottom.mark(boundary_parts, 1) 
178. top.mark(boundary_parts, 2) 
179. dx = Measure("dx",mesh) 
180. ds1 = Measure("ds", mesh,subdomain_data=boundary_parts, subdomain_id=2) 
181. bc0 = DirichletBC(V.sub(0), Constant(0), boundary_parts, 1) 
182. bc1 = DirichletBC(V.sub(1), Constant(0), boundary_parts, 1) 
183. bc2 = DirichletBC(V.sub(2), Constant(0), boundary_parts, 1) 
184. bcs = [bc0,bc1,bc2]  
185. normal_vector = FacetNormal(mesh) 
186. traction1 = Constant((0.0, 0.0, -0.1)) 
187. #%% Synthetic Umeas   
188. E_target = Function(M) 
189. nu_target = Function(M) 
190. u_meas = Function(V) 
191. # Set target parameter value by Expression 
192. E_top = 10; E_bottom = 20 
193. E_target = interpolate(Expression('x[2]>-0.19635? E_top:E_bottom',degree=1,E_top=E_top,E_bottom=E_bottom), M) 
194. nu_top = 0.3; nu_bottom = 0.3 
195. nu_target = interpolate(Expression('x[2]>-
0.19635? nu_top:nu_bottom',degree=1,nu_top=nu_top,nu_bottom=nu_bottom), M) 

196. u_meas.assign(forward(E_target,nu_target,traction1,bcs)) 
197. F_meas=I+grad(u_meas) 
198. C_meas=(F_meas.T)*F_meas 
199. E_meas=(C_meas-I)/2 
200. E_meas_proj =  project(E_meas,TT) 
201. E_meas_array = np.array(E_meas_proj.vector()).reshape([-1,9]) 
202. #%% Intermediate configurations  
203. E_top_gue=15; E_bottom_gue=15 
204. nu_top_gue=0.2; nu_bottom_gue=0.2 
205. E_top_list = [];E_bottom_list = [] 
206. nu_top_list = [];nu_bottom_list = [] 
207. initial_name = 'E_top{:.2f}_E_bot{:.2f}_nu_top{:.2f}_nu_bot{:.2f}'.format(E_top_gue,E_bottom_gue,nu_top_gue,nu
_bottom_gue) 

208. error_list = [] 
209. MAX_ITER = 100; tol = 1e-6 
210. ## VFM iteration loop 
211. VFM(E_top_gue,E_bottom_gue,nu_top_gue,nu_bottom_gue) 
212. #%% post_plot 
213. post_plot(case_name,initial_name,E_top_list,E_bottom_list,nu_top_list,nu_bottom_list,error_list) 

214.  
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util.py 

1. from fenics import * 
2. import numpy as np 
3. import os  
4. import matplotlib.pyplot as plt 
5. class PinPoint(SubDomain): 
6.   def __init__(self,p): 
7.     self.p = p 
8.     SubDomain.__init__(self) 
9.   def inside(self, x, on_boundary): 
10.     return np.linalg.norm(x-self.p) < DOLFIN_EPS 
11. class K(UserExpression): 
12.     def __init__(self, marker_domain, k_0, k_1,k_2, **kwargs): 
13.         super().__init__(**kwargs) 
14.         self.marker_domain = marker_domain 
15.         self.k_0 = k_0 
16.         self.k_1 = k_1 
17.         self.k_2 = k_2 
18.  
19.     def eval_cell(self, values, x, cell): 
20.             if self.marker_domain[cell.index] ==0: 
21.                 values[0] = self.k_0 
22.             elif self.marker_domain[cell.index] ==1: 
23.                 values[0] = self.k_1 
24.             else: 
25.                 values[0] = self.k_2 
26.                  
27.     def value_shape(self): 
28.         return ()    
29.  
30.  
31. def proj_tensor2(dS_dE,dS_dnu,E,TT): 
32.     ## 2 order Tensor  
33.     dS_dE_proj = project(dS_dE,TT) 
34.     dS_dE_array = np.array(dS_dE_proj.vector()).reshape([-1,9]) 
35.     dS_dnu_proj = project(dS_dnu,TT) 
36.     dS_dnu_array = np.array(dS_dnu_proj.vector()).reshape([-1,9]) 
37.     E_proj =  project(E,TT) 
38.     E_array = np.array(E_proj.vector()).reshape([-1,9]) 
39.     return dS_dE_array,dS_dnu_array,E_array 
40. def proj_tensor4(L,TT_4): 
41.     L_proj = project(L,TT_4,solver_type='cg') 
42.     L_array = np.array(L_proj.vector()).reshape([-1,81]) 
43.     return L_array 
44.  
45. def post_plot(case_name,initial_name,E_top_list,E_bottom_list,nu_top_list,nu_bottom_list,error_list): 
46.     os.makedirs('./output/{}/{}/Figure/'.format(case_name,initial_name),exist_ok=True) 
47.     print('E_top',E_top_list) 
48.     print('nu_top',nu_top_list) 
49.     print('E_bottom',E_bottom_list) 
50.     print('nu_bottom',nu_bottom_list) 
51.     print('error',error_list) 
52.  
53.     plt.figure() 
54.     plt.subplot(1,2,1) 
55.     plt.plot(E_top_list,label=r"$E_{top}$") 
56.     plt.plot(E_bottom_list,label=r"$E_{bottom}$") 
57.     plt.xlabel('Iteration number') 
58.     plt.legend() 
59.  
60.     plt.subplot(1,2,2) 
61.     plt.plot(nu_top_list,label=r"$v{top}$") 
62.     plt.plot(nu_bottom_list,label=r"$v{bottom}$") 
63.     plt.xlabel('Iteration number') 
64.     plt.legend() 
65.  
66.     plt.tight_layout()  
67.     plt.savefig('./output/{}/{}/Figure/iter.jpg'.format(case_name,initial_name),dpi=2000) 
68.  
69.     plt.figure() 
70.     plt.plot(np.log10(error_list)) 
71.     plt.title('error') 
72.     plt.ylabel('log(10)') 
73.     plt.savefig('./output/{}/{}/Figure/error.jpg'.format(case_name,initial_name)) 
74.  
75.     np.savetxt('./output/{}/{}/Figure/E_top_list.txt'.format(case_name,initial_name),E_top_list) 
76.     np.savetxt('./output/{}/{}/Figure/nu_top_list.txt'.format(case_name,initial_name),nu_top_list) 
77.     np.savetxt('./output/{}/{}/Figure/E_bottom_list.txt'.format(case_name,initial_name),E_bottom_list) 
78.     np.savetxt('./output/{}/{}/Figure/nu_bottom_list.txt'.format(case_name,initial_name),nu_bottom_list)  
79.     np.savetxt('./output/{}/{}/Figure/error_list.txt'.format(case_name,initial_name),error_list) 
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