
HAL Id: hal-03836286
https://cnrs.hal.science/hal-03836286

Submitted on 2 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FEniCS implementation of the Virtual Fields Method
(VFM) for nonhomogeneous hyperelastic identification

Jianwei Deng, Xu Guo, Yue Mei, Stephane Avril

To cite this version:
Jianwei Deng, Xu Guo, Yue Mei, Stephane Avril. FEniCS implementation of the Virtual Fields
Method (VFM) for nonhomogeneous hyperelastic identification. Advances in Software Engineering,
inPress. �hal-03836286�

https://cnrs.hal.science/hal-03836286
https://hal.archives-ouvertes.fr

1

 FEniCS implementation of the Virtual Fields Method

(VFM) for nonhomogeneous hyperelastic identification

Jianwei Deng1,2, Xu Guo1,2,3, Yue Mei1,2,3,4 *, Stephane Avril5*

1State Key Laboratory of Structural Analysis for Industrial Equipment, Department of

Engineering Mechanics, Dalian University of Technology, Dalian 116023, P.R. China

2International Research Center for Computational Mechanics, Dalian University of

Technology, Dalian 116023, P.R. China

3Ningbo Institute of Dalian University of Technology, Ningbo, China

4DUT-BSU Joint Institute, Dalian University of Technology, 116023, P.R. China

5Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose,

42023, Saint-Étienne, France

Corresponding author*: meiyue@dlut.edu.cn (Yue Mei) and avril@emse.fr (Stephane

Avril)

Abstract

It is of great significance to identify the nonhomogeneous distribution of material

properties in human tissues for different clinical and medical applications. This leads

to the requirement of solving an inverse problem in elasticity. The virtual fields method

(VFM) is a rather recent inverse method with remarkable computational efficiency

compared with the optimization-based methods. In this study, we aim to identify

nonhomogeneous hyperelastic material properties using the VFM. We propose two

novel algorithms, RE-VFM and NO-VFM. In RE-VFM, the solid is partitioned in

different regions and the elastic properties of each region are determined. In NO-VFM,

mailto:meiyue@dlut.edu.cn
mailto:avril@emse.fr

2

the distribution of elastic properties is completely reconstructed through the inverse

problem without partitioning the solid. As the VFM requires to use virtual fields, we

proposed an efficient way to construct them and implemented the approach in the

FEniCS package. We validated the proposed methods on several examples, including a

bilayer structure, a lamina cribosa (LC) model and a cube model embedded with a

spherical inclusion. The numerical examples illustrate the feasibility of both RE-VFM

and NO-VFM. Notably, the spatial variations of the Young’s modulus distribution can

be recovered accurately within only 5 iterations. The obtained results reveal the

potential of the proposed methods for future clinical applications such as estimating the

risk of vision loss related to glaucoma and detecting tumors.

Keywords: Virtual fields method, Nonhomogeneous elastic property identification,

Hyperelasticity, FEniCS

3

Introduction

Extensive studies have shown that distribution of material properties in human tissues

varies with age or disease [1]–[3]. Therefore, the reconstruction of material parameters

can provide valuable information for clinical diagnosis from the perspective of

mechanics. To obtain the mechanical property of soft tissues, we should solve inverse

problems in elasticity. Utilizing deformation fields provided by full-field measurement

techniques such as Ultrasound [4], Magnetic Resonance Imaging (MRI) [5] and Optical

Coherence Tomography (OCT) [6] has become more and more commonplace.

The Virtual Fields Method is a typical inverse method based on the principle of virtual

power. Compared with the prevalent optimization-based inverse method [7]–[9], the

VFM is often more computationally efficient. Thus, the VFM has become more and

more extensively used to solve inverse problems [2], [10]–[12].

For nonhomogeneous solids, the domain of interest is usually partitioned into a finite

number of homogeneous regions. It is assumed that the boundaries of these regions are

known when the VFM is applied. Accordingly, only the biomechanical property of each

region needs to be determined [13], [14]. However, if the boundary of each

homogeneous region is unknown, the inverse problem becomes highly challenging to

solve due to the large number of unknown elastic parameters. To address this issue, a

novel scheme considering virtual work balance between neighborhood elements was

recently proposed [15]. However, this previous study focused on a simple geometry.

Besides, the choice of virtual fields was a key issue because virtual fields influence the

accuracy of the estimation. For models with complex geometries, the construction of

optimal virtual fields is usually non-trivial. Moreover, for nonlinear elastic solids with

multiple material parameters, more virtual fields are required to avoid ill-conditioned

4

systems, which increases the difficulty of constructing the virtual fields.

There are various suitable constitutive models to describe the mechanical behavior for

different soft tissues, such as anisotropic hyperelastic models [16] [17] and viscoelastic

models [18] [19]. In this paper, for the purpose of simplicity, we adopt the isotropic

Neo-Hookean constitutive model for testing the proposed algorithms.

In this study, we propose two VFM-based inverse methods to identify the

nonhomogeneous distribution of hyperelastic solids: RE-VFM and NO-VFM methods.

“RE” is short for “region”, namely the material parameters for every region are

considered as unknowns. In the RE-VFM method, the boundary of each region is

assumed to be known as a priori. To this end, regional material parameters are required

to be estimated. And “NO” is short for “nodal”, namely, the material parameters for

every node are considered as unknows. In the NO-VFM method, the boundary of each

region is unknown, thus, all nodal material properties are demanded to estimate. In this

paper, we also propose an efficient way to construct virtual fields for the identification

problem, which is implemented in the open-source FEniCS platform [20] using Python.

We eventually make the proof of concept of the proposed methods by several numerical

examples.

The paper is organized as follows: in the Method section, we elaborate the

mathematical aspects of the proposed VFM inverse methods; in the FEniCS

implementation section, we discuss the details of the implementation and of the

algorithms; in the Results section, numerical tests are performed and results are shown;

the Conclusions section closes the paper.

5

Method

Inverse problem

Suppose we have a hyperelastic solid or part of it, in the reference configuration

)(R , under the given tractions t on the traction boundary t of . We denote a

material parameter vector 1 2, ,..., .,{ ,.. }T

q NP PP PP = of , which drives the nonlinear

elastic response of under the given tractions and boundary conditions. undergoes

a motion which can be described by a mapping P from the reference configuration

)(R to the current configuration)(C ,

(,) (, ,)

(,) (, ,)P

P t P t

t P t

= = +

= +

=

=

T

x X X u X

X u X
F I

X X

C F F

 (1)

where x and X are position vectors in the current configuration at time t and reference

configuration, respectively, u is the displacement field, F is the deformation gradient

tensor and C is the right Cauchy-Green tensor.

We assume that an experimental measurement measu of the actual displacement field

()tu X, at time t is obtained by a full-field measurement technique, possibly with some

measurement noise. We can also derive the corresponding measF and measC by measu .

The inverse problem is defined as: finding an estimated parameter vector P such that

the gap between measu and (,)P tu X, is minimized.

Definition of the intermediate configuration

For solving the inverse problem, we define an intermediate configuration)(oP
 for

6

the solid , where oP corresponds to an initial estimation of the unknown material

parameters. The position vector in the intermediate configuration can be denoted as

(,)o

o

P
t=x X , and the corresponding displacement (,)o ot = −u X x X .

Figure 1 Illustration of the intermediate configuration.

In this intermediate configuration, we suppose a small displacement
o x superimposed

upon
ou , yielding the current position x at time t for the material parameters P at

equilibrium. A small variation of displacements and parameters around the intermediate

configuration is considered.

 ()

 ()

o o o o

o o o oP PPP P

= +

= +

xx x x u
 (2)

The deformation gradient with the mapping from the reference to the intermediate

configuration o
F and the deformation gradient with the mapping from the intermediate

configuration to the current configuration
oF are given as:

 .

(,)oo P

o
o

o

t

=

=

F
X

x

X

x
F

. (3)

The relationship between the deformation gradients and the right Cauchy-Green tensor

7

between the successive motion can be written as:

(

)(

)

o o o o o

o o

o o T o

= + = +

= +

=

F

C

F F F F F

F

I

C

C F

C (4)

Equilibrium equations

In the absence of the body force, the quasi-static equilibrium equation of forces

responsible for deformation F may be written in the reference configuration as:

() 0 on

() on

 =

 = t

FS

FS n t
 (5)

where denotes the divergence operator in the reference configuration, S is the 2nd

Piola-Kirchoff stress tensor, n is the unit exterior normal vector of t in the reference

configuration, and t is the applied traction in the reference configuration.

Similarly, quasi-static equilibrium equation of forces responsible for deformation Fo

may be written in the reference configuration as:

0(

(

) on

) on

o o

o o

 =

=
t

S

t

F

nF S
 (6)

The 2nd Piola-Kirchoff stress S can be related to
oS by a first-order Taylor expansion.

Substituting
o oP P P= + and

o o= +C C C , S can be expressed by:

 1 ,:
q

o o o o N o

q q P

oP =

 + + +

S
S S S S SC

C
 (7)

where
, , 2 2

q

o
o o oT o o

P

q

o

P

= =

S F
S

C E ε F , ())
1 1

(
2 2

o o o = − = − − −E EE CC I I .

E and o
E are the Green strain tensor in the current and intermediate configuration,

respectively. And
oε is the infinitesimal strain induced by an infinitesimal variation

of material properties. When
oF is small,

oε can be written as

8

)
1

(
2

o o oT = +ε F F (8)

Yielding,

1 ,:

2

q

o o o N o

q q P

o

o
o

o

P ==

+

=

KS E

S
K

C

S

 (9)

Next, we substitute
o o= +S S S and

o o o= +F F FF into Eq. (5). Considering the

equilibrium of
oS in Eq. (6), and neglecting the second-order small quantity

o o F S

term, we finally have

o.(.)) n

). ().

(

 on (

o o o o o

o o o o o

= −

= −

t

FS S

S

F F

F S nF n F
 (10)

Hyperelastic constitutive behavior

In this part, although our approach can be generalized to any hyperelastic constitutive

law, we introduce a typical hyperelastic constitutive law, the compressible Neo-

Hookean model with material parameters vector written as { , }TP E v= where E is the

Young’s modulus and v is the Poisson’s ratio. The strain energy density function

and the 2nd Piola-Kirchoff stress tensor S of a Neo-Hookean model can be written as

[21]:

 () 2

1]
1

[3 2 ln() (ln)
2

I J J = − − + (11)

 ()1 12 (ln)J − −
= = + −

S C I C

C
 (12)

where 1 trace(), det()I J= =C F , I is the 2-order identity tensor.
2(1)

E

v
 =

+
 and

(1)(1 2)

Ev

v v

+ −
= .

9

The sensitivity of the 2nd Piola-Kirchoff stress S to q-th material parameter ,
qPS can be

written as:

1

,

1

, (ln)J

−

−

= = −

= =

S
S I C

S
S C

 (13)

Moreover, the elasticity tensor K can be written as [21]:

 1 1 1 12 2() () ln())())((J − − − −
−+

= =K

S
C C C C

C
 (14)

where
1

1 1() ()
−

− −

= −

C
C C

C
 and is the dyadic multiplication symbol.

The Virtual fields method

In this part, we use the principle of virtual power applied onto the 2nd Piola-Kirchhoff

stress tensor (material form of the principle of virtual power) to rewrite Eq. (10) in its

weak form:

 () (): () :o o n o o o ndV dV = − E FS S E (15)

where
()o nE is the virtual Green strain field produced by a kinematically admissible

virtual displacement field. The index n indicates that at least N virtual fields are

necessary to construct the whole system of N equations for solving N unknown material

properties NP .

Next, we replace
oF with

oε as only the symmetric parts contribute to the product.

Substituting Eq. (9) into Eq. (15), we have:

() ()

1 , : (:) :
o n

q

N o o o o o o o n

q Pq dV dVP = = − + S KE E ε ES (16)

10

Construction of virtual fields

The choice of virtual fields is a critical issue in the VFM procedure. Herein we provide

an efficient method of constructing N virtual strain fields
()o nE for solving the inverse

problem.

For convenience, we introduce the linear operator L which transforms a second order

tensor U into another second order tensor L:U such as:

1: : () ()o o T o o− −= +L U K U F U F S (17)

Then we use the linear operator L to construct the virtual fields
()o nE such as:

 1

,

() 1() : () :
q

o

P

n o − −= L SE L (18)

Yielding,

 () () ()1

, ,

1

1 ,

1() : : () : : () :
n nq

N o o o

Pq P P

o o

q dV dVP − − −

= = − L S S EL L S (19)

Let us then introduce the following second order tensor

 1

,, () :
n n

o

P

o

P

−=E L S (20)

Assuming that the set of , n

o

PE tensors constitutes a basis of the space of Green-

Lagrange strain fields, the whole VFM system of Eq. (16) could be written in a very

concise and elegant way by substituting Eq. (20) into Eq. (19).

In the resulting system written in Eq. (21), each component n of the unknown

parameters variation { }oP can be interpreted as the projection of
oE onto the base

tensor , n

o

PE , making them unique. This may be rewritten as

1 1 1 1

1

, , , , ,
1

, , , ,

: : :

: : :

N

N N N N

o o o o o o
o

P P P P P

oo o o o o o
NP P P P P

dV dV dVP

PdV dV dV

 = −

E E E E E E

E E E E E E

 (21)

This equation can be summarized as []{ } { }o o oPA b = and the material properties are

11

updated such as
1[] { }o o oP P A b−= + .

For a nonhomogeneous case, the domain of interest in Eq. (21) could be defined as

each homogeneous region or even as the nodal value of each finite element node. Thus,

{ }oP could be the variational parameter of a specific region or finite element node.

We denote RE-VFM and NO-VFM for the regional inverse scheme and for the nodal

inverse scheme, respectively. Thus, we solve M times the []{ } { }o o oPA b = equation

systems (M could be the total number of regions for RE-VFM and the number of finite

element nodes for NO-VFM) and finally recover the entire nonhomogeneous

distribution.

Nonlinear FEM algorithm

Our method requires achieving a number of forward finite element calculations. We

performed them in FEniCS. We adopted the Newton Raphson method for solving the

nonlinear variational problem [21] [22] and MUMPS (multifrontal massively parallel

sparse direct solver) package [23] to solve the linear algebraic equations.

FEniCS implementation

In this section, we elaborate step by step the novel VFM algorithms implemented in the

FEniCS platform using Python scripts, and describe the corresponding main.py given

in Appendix for a bilayer cubic structure.

In the proposed VFM-based inverse scheme, we construct a series of intermediate

configurations for approaching the current configuration by updating the initial

parameter vector oP . The flowchart of the inverse algorithm is shown in Figure 2.

12

Figure 2 Flowchart of the proposed VFM-based inversion algorithm

FEM forward problem (lines 7-22)

In this section, we describe the resolution of the forward problem with function

forward. The input is the Neo-Hookean constitutive parameters E and v , tractions

and boundary conditions. In the absence of body force, the objective function of this

nonlinear problem is written as Eq. (22). We adopt a Newton’s method with a

mumps solver and return the displacement field u in this case.

 * *: dV dSv v − = FS t (22)

where
*v is the test function.

Constitutive model (lines 23-49)

In this section, we establish the constitutive model in the stress_nh and

stress_grad_nh functions. The inputs of both functions are the displacement field

u and constitutive parameters E , v . The stress_nh function returns the 1st Piola-

13

Kirchoff stress tensor in Eq. (12) for solving the forward problem. The

stress_grad_nh function returns the sensitivity of the 2nd Piola-Kirchoff stress in

Eq. (13) and the 4-order tensor L in Eq. (17) for formulating the VFM solving system

in Eq. (21). Performing the tensor symbolic calculation is rather easy thanks to the

FEniCS package UFL.

VFM updating algorithm (lines 50-154)

In this section, we introduce the VFM updating algorithm consisting of functions VFM,

calc_VF, and solve_VFM.

Function VFM is the main loop function with the initial guess of material parameters as

input. We set the initial guess of material parameters to the model in lines 54-59. Then,

we call the forward function to calculate
ou in the intermediate configuration.

The convergence criterion of this paper is: the relative error between
ou and measu is

less than
610−

). The error between the computed displacement field
ou and the

measured displacement field measu in line 61 is defined as in Eq. (23). In lines 69-71

we calculate the deformation gradient tensor o
F , right Cauchy-Green tensor

oC and

the Green strain tensor o
E in the intermediate configuration.

2

2

()

()

o

meas

meas

dV
error

dV

−
=

u u

u
 (23)

Next, we call the stress_grad_nh function to calculate L , ,ES and ,vS . It is not

easy to obtain the inverse of a 4-order tensor in Eq. (20). To address this issue, we

project all these tensor field to each node so that we can transform the data type from

Tensor to NumPy.array in lines 74-75. In RE-VFM, we call solve_VFM to solve

the assembled Eq. (21) and update oP in lines 77-94.

14

Function clac_VF in lines 134-154 is used to calculate the virtual fields in Eq. (20).

We input the NumPy.array type ,ES , ,vS , o
E , measE and L written in the nodal-

value form and return N (two in this case) virtual strain fields ,

o

EE , ,

o

vE and the Green-

Lagrange strain fields o
E , measE . Due to the symmetry, we rewrite the 2-order tensor

from shape([3,3]) to (6,1) and 4-order tensor from shape([3,3,3,3]) to

(6,6).

Function solve_VFM in lines 95-133 is used to solve the VFM system in Eq. (21) by

RE-VFM. In lines 97-104, we group the nodes into top_dof_list and

bottom_dof_list, where the vertices index 0-243 belongs to the top layer and the

rest belong to the upper layer. We should index the sequence by dof2vtx, translating

the sequence arrangement from dof to vertices order. In lines 105-133, we assemble

and solve two VFM updating systems for each layer of the bilayer structure for RE-

VFM.

For NO-VFM, we can modify the solve_VFM function in lines 95-133 and the

corresponding updating code in lines 77-93. The modified solve_VFM function for

NO-VFM can be rewritten as:

1. def solve_VFM(dS_dE_array,dS_dnu_array,E_array,E_meas_array,L_array):
2. Beta = np.zeros([num_vertices,2])
3. for ii in range(num_vertices):
4. B = np.zeros([2,1])
5. A = np.zeros([2,2])
6. Vir_E1,Vir_E2,E_o,E_meas = calc_VF(dS_dE_array,dS_dnu_array,E_array,E_meas_array,L_array,ii)
7. A[0,0] = np.dot(Vir_E1.T,Vir_E1)[0][0]
8. A[0,1] = np.dot(Vir_E2.T,Vir_E1)[0][0]
9. A[1,0] =np.dot(Vir_E1.T,Vir_E2)[0][0]
10. A[1,1] = np.dot(Vir_E2.T,Vir_E2)[0][0]
11. B[0] = -np.dot((E_meas-E_o).T,Vir_E1)[0][0]
12. B[1] = -np.dot((E_meas-E_o).T,Vir_E2)[0][0]
13. cond = np.linalg.cond(A)
14. if cond>=1e6:
15. temp_beta = np.linalg.lstsq(A,B)[0]
16. else:
17. temp_beta = np.linalg.solve(A,B)
18. Beta[ii,0] = temp_beta[0]
19. Beta[ii,1] = temp_beta[1]
20. return Beta

Main part (lines 155-213)

In this section, we elaborate the entire procedure of the inverse algorithm. In lines 156-

15

160, we import the geometry mesh file. In lines 162-172, we define functions and

function spaces in FEniCS. In lines 173-186, we apply the displacement and traction

boundary conditions.

Next, we use a finite element simulation as experimental measurement for the sake of

verification. In lines 187-195, we define the target distribution of Young’s modulus and

Poisson’s ratio for the finite element model. From lines 196-201, we calculate measu ,

measF , measC and measE successively in the current configuration.

In lines 202-209, we make preparations for the VFM iteration and set the initial guess

of parameters in the intermediate configuration. In lines 211-213, we call the VFM

algorithm to finish the identification and post-process the reconstructed results by

post_plot. The identification results of the cases are discussed in the Results section

in details.

Results

Bilayer Structure Problem

We first considered a bilayer structure as shown in Figure 3, the model is divided into

9×9×5 nodes and 1280 tetrahedrons. We fixed the bottom surface and applied the

constant traction on the top surface of the model. The whole model was equally divided

into two layers. The target Young’s moduli of the top layer and the bottom layer were

10MPa and 20MPa, respectively. The Poisson’s ratio was 0.3 for both layers. Firstly,

we applied the RE-VFM to solve this identification problem. In this case, the initial

guess of Young’s moduli and Poisson’s ratios of both the top layer and bottom layer

are 15 MPa and 0.2, respectively. The estimated material properties and the error of the

displacement fields with respect to the iteration number are plotted in Figure 4 and

16

Figure 5, respectively. The relative error between the estimated and target material

properties is reported in Table 1. We observed that both values of Young’s modulus and

Poisson’s ratio were identified accurately. Moreover, the displacement error is less than

the tolerance after 16 iterations.

Figure 3 The finite element bilayer structure model and target material parameter distributions.

(a) the finite element model and the boundary conditions; (b) target Young’s modulus distribution;

(c) target distribution of the Poisson’s ratio.

Table 1 Relative error of the estimated parameters of the bilayer model

 Target Initial guess Estimation Relative error

topE 10.00 (MPa) 15.00 (MPa) 9.9675 (MPa) 0.32%

bottomE 20.00 (MPa) 15.00 (MPa) 20.0440 (MPa) 0.22%

topv 0.30 0.20 0.3015 0.49%

bottomv 0.30 0.20 0.2992 0.27%

17

Figure 4 Estimated values of material properties versus the iteration number.

Figure 5. Error between measu and
ou of the bilayer case by RE-VFM. (The log10 of the error is

adopted)

18

Subsequentially, we tested the NO-VFM method with the bilayer structure case. The

initial guess of Young’s moduli and Poisson’s ratios for all nodes are set to 15 MPa and

0.2, respectively. In Figure 6 and Figure 7, we present the reconstructed results and the

displacement error of the bilayer case by the NO-VFM method. Since this is a large-

scale inverse problem, more minimization iteration numbers are required to satisfy the

convergence criteria. Additionally, both the Young’s modulus and Poisson’s ratio

distributions were well recovered, as shown in Figure 6. The average relative error of

the Young’s moduli and Poisson’s ratios is 11.62% and 4.51%, respectively.

Figure 6 Reconstructed results of the bilayer case by NO-VFM. 1st row: the reconstruction result

and relative error distribution of Young’s modulus; 2nd row: the reconstruction result and relative

error distribution of Poisson’s ratio.

19

Figure 7 Error between measu and
ou of the bilayer case by NO-VFM. (The log10 of the error is

adopted)

Next, we test the situation when the initial guesses are far from the target values for

both RE-VFM and NO-VFM using the bilayer model. For RE-VFM, the initial guess

of Young’s moduli and Poisson’s ratios of both the top layer and bottom layer are set

to 1 MPa and 0.2, respectively. The relative error between the estimated and target

material properties is reported in Table 2. The estimated material properties and the error

of the displacement fields with respect to the iteration number are plotted in

20

Figure 8 and Figure 9, respectively. We observe that the accurate values are obtained

after 19 iterations, even the initial guess is far away from the target parameter values.

Table 2 Relative error of the estimated parameters of the bilayer model

 Target Initial guess Estimation Relative error

topE 10.00 (MPa) 1.00 (MPa) 9.9627 (MPa) 0.37%

bottomE 20.00 (MPa) 1.00 (MPa) 20.0522 (MPa) 0.26%

topv 0.30 0.20 0.3017 0.56%

bottomv 0.30 0.20 0.2990 0.33%

21

Figure 8 Estimated values of material properties versus the iteration number.

22

Figure 9 Error between measu and
ou of the bilayer case by RE-VFM. (The log10 of the error is

adopted)

In NO-VFM, the initial guess of Young’s moduli and Poisson’s ratios for all nodes are

set to 1 MPa and 0.2, respectively. In Figure 10 and Figure 11, we present the

reconstructed results and the displacement error. As shown in Figure 10, both the

Young’s modulus and Poisson’s ratio distributions were well recovered even the initial

guesses are far away from the target values. After 71 iterations, the average relative

error of the Young’s moduli and Poisson’s ratios are 9.89% and 5.97%, respectively.

Figure 10 Reconstructed results of the bilayer case by NO-VFM. 1st row: the reconstruction result

and relative error distribution of Young’s modulus; 2nd row: the reconstruction result and relative

error distribution of Poisson’s ratio.

23

Figure 11 Error between measu and
ou of the bilayer case by NO-VFM. (The log10 of the error is

adopted)

Lamina Cribosa (LC) Model

Next, we tested the NO-VFM algorithm for a three-layered lamina cribosa (LC) model,

with 6581 nodes and 33451 tetrahedral elements. Lamina cribosa is a connective tissue

in the optic nerve head (ONH), whose mechanical properties could provide important

information of studying the cause of glaucoma. This geometric model was previously

used for other studies [14][24]. As boundary conditions, we fixed the posterior and

lateral surfaces and applied pressure on the upper surface. We assumed that the LC was

nearly incompressible and the Poisson’s ratio was set as 0.46. The target Young’s

modulus distribution is shown in Figure 12. The initial guess of Young’s modulus is 0.4

MPa for all nodes. The mean relative error between the target and recovered Young’s

24

moduli is 0.11%. In Figure 13, we observed that the three-layer structure was well

reconstructed by the NO-VFM. In Figure 14, the error of the displacement fields reduced

to 10-6 after 5 iterations.

Figure 12 Target Young’s modulus distribution of the LC case.

Figure 13 Reconstructed results of the LC case by NO-VFM

25

Figure 14 Error between measu and
ou of the LC case by NO-VFM. (The log10 of the error is

adopted)

Inclusion Problem

Lastly, we tested the NO-VFM for an 1mm×1mm×1mm cubic model with a spherical

inclusion (radius is 0.3mm) in the center. The geometric model is shown in Figure 15,

which is discretized with 8092 tetrahedral elements. We applied the pressure on the top

surface and fixed the bottom surface to avoid rigid motion. The target distributions of

Young’s modulus and Poisson’s ratio are shown in Figure 15. The target Young’s

modulus values are 5 MPa for the inclusion and 1 MPa for the background, respectively.

The target Poisson’s ratio is 0.45 for the inclusion and 0.35 for the background,

respectively. The initial guesses of Young’s modulus and Poisson’s ration are set as 1

MPa and 0.4 for all nodes. The mean relative error between the target and recovered

Young’s moduli is 8.60%. Moreover, the mean relative error between the target and

recovered Poisson’s ratios is 3.41%. We observed that the inclusion was well

26

reconstructed by the NO-VFM method (see Figure 16) and the relative error reduced to

10-6 after 45 iterations (see Figure 17).

Figure 15 The finite element model of the inclusion problem and target material parameter

distributions. (a) the finite element model; (b) target distribution of Young’s modulus; (c) target

distribution of the Poisson’s ratio.

Figure 16 Reconstructed results of the inclusion problem by NO-VFM. 1st row: the reconstruction

result and relative error distribution of Young’s modulus; 2nd row: the reconstruction result and

27

relative error distribution of Poisson’s ratio.

Figure 17 Error between measu and
ou of the inclusion problem by NO-VFM. (The log10 of the

error is adopted)

We ran all these examples with a personal Laptop (Intel 11800H CPU, with 8 cores 16

threads, 4.2 GHz, 32G RAM). The FEniCS environment was configurated in Python

3.8 on Ubuntu18.04 (WSL, Windows Subsystem for Linux). The average

computational time of the forward, transformation and VFM parts are reported in Table

3, respectively. Table 3 demonstrates that most of the computation time is used to

transform the Tensor to Numpy.

Table 3 Average computational times of an iteration step

Model Algorithm Forward Transformation VFM Total

Bilayer
RE-VFM 0.5s 20.2s 0.4s 21.1s

NO-VFM 0.5s 19.5s 0.2s 20.2s

LC NO-VFM 144.2s 485.2s 27.8s 657.2s

Inclusion NO-VFM 9.1s 185.4s 0.2s 194.7s

28

Discussion

In this paper, we have implemented two VFM methods in the open-source finite

element package FEniCS. Choosing FEniCS was motivated by the relative simplicity

of implementing a finite element code with the intrinsic high-level language in FEniCS.

This makes the proposed method highly flexible and convenient to introduce user-

defined material constitutive models.

In this study, the isotropic Neo-Hookean hyperelastic constitutive model was chosen to

test the proposed VFM-based inverse methods. Numerical examples have shown the

feasibility of the proposed methods, even when the initial guesses are far from the target

values. However, we should also test the feasibility of the proposed methods by other

types of constitutive models considering exponentially nonlinear, anisotropic and

viscoelastic behaviors.

A recurrent difficulty in inverse method is related to the uncertainty about the boundary

conditions. The inaccurate boundary might affect the accuracy of the identification

results. In this paper, the traction t is applied in the reference configuration. Eq 5 is the

quasi-static equilibrium equation of forces responsible for deformation F and Eq 6 is

the quasi-static equilibrium equation of forces responsible for deformation F , both

written in the reference configuration. As they are written in the reference configuration,

both equations have the same t traction vector. This means that there are no assumptions

on the boundary conditions in our method.

A bottleneck of VFM methods compared to the optimization-based methods is that

artificial virtual fields should be introduced. With the increasing number of unknown

material parameters, the total number of virtual fields should be increased accordingly

to ensure the uniqueness of the inverse solution. To address this issue, RE-VFM method

29

was firstly proposed in [14] and can be used to solve for the regional material properties

without introducing artificial virtual fields. However, the virtual fields in [14] are

obtained by solving another constructed forward problem, which requires more time.

In this paper, a novel way to construct virtual fields is proposed. Based on the proposed

method, we further develop the NO-VFM method, which is capable of identifying the

spatial variation of the nonhomogeneous elastic property distribution of soft solids.

Compared to [15], the NO-VFM method can be used to identify the material properties

for a hyperelastic solid with a complex geometry. The feasibility of the proposed

method has been successfully tested by several numerical examples were shown in the

Results Section. The simulated displacement datasets utilized to test the feasibility of

the proposed VFM methods illustrate different possible applications. In the future, the

performance of the proposed methods should be tested with actual datasets obtained

from medical images.

Conclusions

In this study, we have proposed two efficient VFM methods for identifying the

distribution of hyperelastic material parameters in soft tissues. The details of the

implementation of the proposed methods in the FEniCS platform were presented. From

the observation of the numerical examples, we have found that both the RE-VFM and

NO-VFM methods are capable of reconstructing the hyperelastic nonhomogeneous

material distribution accurately. In particular, the NO-VFM shows the potential of

reconstructing the material distribution without the partition information. This study

has demonstrated that the proposed methods have great potential in identifying regional

variations of material properties in soft tissues due to diseases and aging.

30

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of

China (11732004, 12002075), 111 Project (B14013), National Key Research and

Development Project (2020YFB1709401), Natural Science Foundation of Liaoning

Province in China(2021-MS-128).

We are very garteful to Prof. Thao D. Nguyen and Dr. Brandon Zimmerman from Johns

Hopkins University for sharing the lamina cribosa model and for the useful discussions

31

Appendix

We present the main.py and util.py files of the double-layered structural model

below. main.py is utilized to implement the VFM-based inverse algorithm. util.py

is used to store the auxiliary code pieces such as project and post_plot.

main.py

1. #%% VFM-based inverse algorithm by FeniCS2019
2. from fenics import *
3. import ufl as uf
4. import os
5. import numpy as np
6. from utils import proj_tensor2,proj_tensor4,post_plot
7. def forward(E,nu,Trac,bcs):
8. P= stress_nh(u,E,nu)
9. FV = inner(P, grad(v))*dx
10. # Traction at boundary
11. T=Trac
12. FT=dot(T,v)*ds1
13. # Whole system and its Jacobian
14. FF = FV-FT
15. JJ = derivative(FF, u)
16. # Initialize solver
17. problem = NonlinearVariationalProblem(FF, u, bcs=bcs, J=JJ)
18. solver = NonlinearVariationalSolver(problem)
19. solver.parameters['newton_solver']['relative_tolerance'] = 1e-10
20. solver.parameters['newton_solver']['linear_solver'] = 'mumps'
21. solver.solve()
22. return u
23. def stress_nh(u,E,nu):
24. """Returns 1st Piola-Kirchhoff stress and (local) mass balance for given u, p."""
25. mu = E/(2.0*(1.0 + nu)); lam= E*nu/((1.0 + nu)*(1.0 - 2.0*nu))
26. F = I + grad(u)
27. J = det(F)
28. C = F.T * F
29. S = mu*(I-inv(C))+lam*ln(J)*inv(C) # 2nd Piola-Kirchoff stress
30. P = F*S # 1st Piola-Kirchhoff stress
31. return P
32. def stress_grad_nh(u,E,nu):
33. i,j,k,l,m=uf.indices(5)
34. mu = E/(2.0*(1.0 + nu))
35. lam= E*nu/((1.0 + nu)*(1.0 - 2.0*nu))
36. dmu_dE = 1.0/(2.0*(1.0 + nu))
37. dlam_dE= 1.0*nu/((1.0 + nu)*(1.0 - 2.0*nu))
38. dmu_dnu = -1.0*E/(2.0*(1.0 + nu)*(1.0 + nu))
39. dlam_dnu= E*(2.0*nu*nu+1.0)/((1.0 + nu)*(1.0 - 2.0*nu)) /((1.0 + nu)*(1.0 - 2.0*nu))
40. F = I + grad(u)
41. J = det(F)
42. C=(F.T)*F
43. C_inv=inv(C)
44. S = mu*(I-inv(C))+lam*ln(J)*inv(C) # 2nd Piola-Kirchhoff stress
45. dS_dE=dmu_dE*(I-inv(C))+dlam_dE*ln(J)*inv(C) # 2nd Piola-Kirchhoff stress
46. dS_dnu=dmu_dnu*(I-inv(C))+dlam_dnu*ln(J)*inv(C) # 2nd Piola-Kirchhoff stress
47. K_tan=as_tensor(lam*C_inv[i,j]*C_inv[k,l]+(mu-
lam*ln(J))*(C_inv[i,k]*C_inv[j,l]+C_inv[i,l]*C_inv[j,k]),(i,j,k,l))

48. L = as_tensor(K_tan[i,j,k,l]+inv(F)[k,i]*inv(F)[l,m]*S[m,j],(i,j,k,l))
49. return dS_dE,dS_dnu,L
50. def VFM(E_top_gue,E_bottom_gue,nu_top_gue,nu_bottom_gue):
51. u_o = Function(V)
52. iter = 0
53. while True:
54. E_top_list.append(E_top_gue);E_bottom_list.append(E_bottom_gue)
55. nu_top_list.append(nu_top_gue);nu_bottom_list.append(nu_bottom_gue)
56. E_o = interpolate(Expression('x[2]>-
0.19635? E_top:E_bottom',degree=1,E_top=E_top_gue,E_bottom=E_bottom_gue), M)

57. nu_o = interpolate(Expression('x[2]>-
0.19635? nu_top:nu_bottom',degree=1,nu_top=nu_top_gue,nu_bottom=nu_bottom_gue), M)

58. File("output/{}/{}/Parameters/Eo_iter{}.pvd".format(case_name,initial_name,iter)) << E_o
59. File("output/{}/{}/Parameters/nuo_iter{}.pvd".format(case_name,initial_name,iter)) << nu_o
60. u_o.assign(forward(E_o,nu_o,traction1,bcs))

32

61. error = assemble((inner(u_o-u_meas,u_o-u_meas)*dx))/assemble((inner(u_meas,u_meas)*dx))
62. error_list.append(error)
63. if error < tol:
64. break
65. if iter >MAX_ITER:
66. break
67. iter += 1
68. # kinematics in the intermediate configuration
69. F=I+grad(u_o)
70. C=(F.T)*F
71. Strain_E = (C-I)/2
72. # formulating Eq.(21)
73. dS_dE,dS_dnu,L = stress_grad_nh(u_o,E_o,nu_o)
74. dS_dE_array,dS_dnu_array,Strain_E_array = proj_tensor2(dS_dE,dS_dnu,Strain_E,TT)
75. L_array = proj_tensor4(L,TT_4)
76. # solve VFM equation systems
77. dE_top,dE_bottom,dnu_top,dnu_bottom = solve_VFM(dS_dE_array,dS_dnu_array,Strain_E_array,E_meas_array,L
_array)

78. E_top_gue += dE_top
79. E_bottom_gue += dE_bottom
80. nu_top_gue += dnu_top
81. nu_bottom_gue += dnu_bottom
82. if E_top_gue <= 0:
83. E_top_gue = 0.1
84. if nu_top_gue<=0:
85. nu_top_gue = 0.2
86. if nu_top_gue >=0.5:
87. nu_top_gue = 0.48
88. if E_bottom_gue <= 0:
89. E_bottom_gue = 0.1
90. if nu_bottom_gue<=0:
91. nu_bottom_gue = 0.2
92. if nu_bottom_gue >=0.5:
93. nu_bottom_gue = 0.48
94. print('This is the {} iter, error is {}'.format(iter,error))
95. def solve_VFM(dS_dE_array,dS_dnu_array,E_array,E_meas_array,L_array):
96. # turn the node list aranged by dof to node list aranged by nodes
97. top_dof_list = []
98. bottom_dof_list = []
99. for i in range(num_vertices):
100. node_index = dof2vtx[i]
101. if node_index < 243:
102. top_dof_list.append(i)
103. else:
104. bottom_dof_list.append(i)
105. def solve_system(part_list):
106. """ part_list is all nodal index of a specific part """
107. A_11_total = 0; A_12_total = 0; A_21_total = 0; A_22_total = 0
108. B_1_total = 0; B_2_total =0
109. for el in part_list:
110. B = np.zeros([2,1])
111. A = np.zeros([2,2])
112. Vir_E1,Vir_E2,E_o,E_meas = calc_VF(dS_dE_array,dS_dnu_array,E_array,E_meas_array,L_array,el)

113. A[0,0] = np.dot(Vir_E1.T,Vir_E1)[0][0]
114. A[0,1] = np.dot(Vir_E2.T,Vir_E1)[0][0]
115. A[1,0] = np.dot(Vir_E1.T,Vir_E2)[0][0]
116. A[1,1] = np.dot(Vir_E2.T,Vir_E2)[0][0]
117. B[0] = -np.dot((E_meas-E_o).T,Vir_E1)[0][0]
118. B[1] = -np.dot((E_meas-E_o).T,Vir_E2)[0][0]
119. A_11_total += A[0,0];A_12_total+=A[0,1];A_21_total+=A[1,0];A_22_total+=A[1,1]
120. B_1_total+=B[0];B_2_total+=B[1]
121. A_total = np.zeros([2,2]); B_total = np.zeros([2,1])
122. A_total[0,0] = A_11_total;A_total[0,1] = A_12_total;A_total[1,0] = A_21_total;A_total[1,1] = A_22_tota
l

123. B_total[0] = B_1_total;B_total[1] = B_2_total
124. cond = np.linalg.cond(A_total)
125. if cond>=1e6:
126. temp_beta = np.linalg.lstsq(A_total,B_total)[0]
127. else:
128. temp_beta = np.linalg.solve(A_total,B_total)
129. return temp_beta[0,0],temp_beta[1,0]
130. dE_top,dnu_top = solve_system(top_dof_list)
131. dE_bottom,dnu_bottom = solve_system(bottom_dof_list)
132.
133. return dE_top,dE_bottom,dnu_top,dnu_bottom
134. def calc_VF(dS_dE_array,dS_dnu_array,E_array,E_meas_array,L_array,index):
135. dS_dE_np = ((dS_dE_array[index].reshape([3,3])))
136. dS_dnu_np = ((dS_dnu_array[index].reshape([3,3])))
137. E = E_array[index].reshape([3,3])
138. E_m = E_meas_array[index].reshape([3,3])
139. L_np = (L_array[index].reshape([3,3,3,3]))
140. index2D1=[0,1,2,1,0,0];index2D2=[0,1,2,2,2,1]
141. S_E=np.zeros([6,1]);S_nu=np.zeros([6,1]);E_meas=np.zeros([6,1]);E_o=np.zeros([6,1]);LL=np.zeros([6,6])
142. for i in range(6):
143. for j in range(0,3):
144. LL[i,j] = L_np[index2D1[i],index2D2[i],index2D1[j],index2D2[j]]

33

145. for j in range(3,6):
146. LL[i,j] = 2*L_np[index2D1[i],index2D2[i],index2D1[j],index2D2[j]]
147. S_E[i] = dS_dE_np[index2D1[i],index2D2[i]]
148. S_nu[i] = dS_dnu_np[index2D1[i],index2D2[i]]
149. E_o[i] = E[index2D1[i],index2D2[i]]
150. E_meas[i] = E_m[index2D1[i],index2D2[i]]
151. inv_LL = np.linalg.inv(LL)
152. Vir_E1 = np.dot(inv_LL,S_E)
153. Vir_E2 = np.dot(inv_LL,S_nu)
154. return Vir_E1,Vir_E2,E_o,E_meas
155. #%% Model setup
156. case_name = 'Case_2layer'
157. mesh_path = 'model/2layer'
158. meshfile = '2layer.xml'
159. # Geometry mesh
160. mesh = Mesh(os.path.join(os.curdir,mesh_path,meshfile))
161. num_vertices = mesh.num_vertices()
162. #%% FEniCS Functionspaces
163. V = VectorFunctionSpace(mesh, 'P', 1)
164. u = Function(V)
165. v = TestFunction(V)
166. M = FunctionSpace(mesh, "CG", 1)
167. TT = TensorFunctionSpace(mesh,'P',1)
168. shape = 4*(mesh.geometry().dim(),)
169. TT_4 = TensorFunctionSpace(mesh,'P',1,shape = shape)
170. I = Identity(3)
171. dof = vertex_to_dof_map(M)
172. dof2vtx = vertex_to_dof_map(M).argsort()
173. # Boundary definition
174. boundary_parts = MeshFunction('size_t', mesh, mesh.topology().dim()-1)
175. bottom = AutoSubDomain(lambda x: near(x[2], -0.3972))
176. top = AutoSubDomain(lambda x: near(x[2], 0))
177. bottom.mark(boundary_parts, 1)
178. top.mark(boundary_parts, 2)
179. dx = Measure("dx",mesh)
180. ds1 = Measure("ds", mesh,subdomain_data=boundary_parts, subdomain_id=2)
181. bc0 = DirichletBC(V.sub(0), Constant(0), boundary_parts, 1)
182. bc1 = DirichletBC(V.sub(1), Constant(0), boundary_parts, 1)
183. bc2 = DirichletBC(V.sub(2), Constant(0), boundary_parts, 1)
184. bcs = [bc0,bc1,bc2]
185. normal_vector = FacetNormal(mesh)
186. traction1 = Constant((0.0, 0.0, -0.1))
187. #%% Synthetic Umeas
188. E_target = Function(M)
189. nu_target = Function(M)
190. u_meas = Function(V)
191. # Set target parameter value by Expression
192. E_top = 10; E_bottom = 20
193. E_target = interpolate(Expression('x[2]>-0.19635? E_top:E_bottom',degree=1,E_top=E_top,E_bottom=E_bottom), M)
194. nu_top = 0.3; nu_bottom = 0.3
195. nu_target = interpolate(Expression('x[2]>-
0.19635? nu_top:nu_bottom',degree=1,nu_top=nu_top,nu_bottom=nu_bottom), M)

196. u_meas.assign(forward(E_target,nu_target,traction1,bcs))
197. F_meas=I+grad(u_meas)
198. C_meas=(F_meas.T)*F_meas
199. E_meas=(C_meas-I)/2
200. E_meas_proj = project(E_meas,TT)
201. E_meas_array = np.array(E_meas_proj.vector()).reshape([-1,9])
202. #%% Intermediate configurations
203. E_top_gue=15; E_bottom_gue=15
204. nu_top_gue=0.2; nu_bottom_gue=0.2
205. E_top_list = [];E_bottom_list = []
206. nu_top_list = [];nu_bottom_list = []
207. initial_name = 'E_top{:.2f}_E_bot{:.2f}_nu_top{:.2f}_nu_bot{:.2f}'.format(E_top_gue,E_bottom_gue,nu_top_gue,nu
_bottom_gue)

208. error_list = []
209. MAX_ITER = 100; tol = 1e-6
210. ## VFM iteration loop
211. VFM(E_top_gue,E_bottom_gue,nu_top_gue,nu_bottom_gue)
212. #%% post_plot
213. post_plot(case_name,initial_name,E_top_list,E_bottom_list,nu_top_list,nu_bottom_list,error_list)

214.

34

util.py

1. from fenics import *
2. import numpy as np
3. import os
4. import matplotlib.pyplot as plt
5. class PinPoint(SubDomain):
6. def __init__(self,p):
7. self.p = p
8. SubDomain.__init__(self)
9. def inside(self, x, on_boundary):
10. return np.linalg.norm(x-self.p) < DOLFIN_EPS
11. class K(UserExpression):
12. def __init__(self, marker_domain, k_0, k_1,k_2, **kwargs):
13. super().__init__(**kwargs)
14. self.marker_domain = marker_domain
15. self.k_0 = k_0
16. self.k_1 = k_1
17. self.k_2 = k_2
18.
19. def eval_cell(self, values, x, cell):
20. if self.marker_domain[cell.index] ==0:
21. values[0] = self.k_0
22. elif self.marker_domain[cell.index] ==1:
23. values[0] = self.k_1
24. else:
25. values[0] = self.k_2
26.
27. def value_shape(self):
28. return ()
29.
30.
31. def proj_tensor2(dS_dE,dS_dnu,E,TT):
32. ## 2 order Tensor
33. dS_dE_proj = project(dS_dE,TT)
34. dS_dE_array = np.array(dS_dE_proj.vector()).reshape([-1,9])
35. dS_dnu_proj = project(dS_dnu,TT)
36. dS_dnu_array = np.array(dS_dnu_proj.vector()).reshape([-1,9])
37. E_proj = project(E,TT)
38. E_array = np.array(E_proj.vector()).reshape([-1,9])
39. return dS_dE_array,dS_dnu_array,E_array
40. def proj_tensor4(L,TT_4):
41. L_proj = project(L,TT_4,solver_type='cg')
42. L_array = np.array(L_proj.vector()).reshape([-1,81])
43. return L_array
44.
45. def post_plot(case_name,initial_name,E_top_list,E_bottom_list,nu_top_list,nu_bottom_list,error_list):
46. os.makedirs('./output/{}/{}/Figure/'.format(case_name,initial_name),exist_ok=True)
47. print('E_top',E_top_list)
48. print('nu_top',nu_top_list)
49. print('E_bottom',E_bottom_list)
50. print('nu_bottom',nu_bottom_list)
51. print('error',error_list)
52.
53. plt.figure()
54. plt.subplot(1,2,1)
55. plt.plot(E_top_list,label=r"E_{top}")
56. plt.plot(E_bottom_list,label=r"E_{bottom}")
57. plt.xlabel('Iteration number')
58. plt.legend()
59.
60. plt.subplot(1,2,2)
61. plt.plot(nu_top_list,label=r"$v{top}$")
62. plt.plot(nu_bottom_list,label=r"$v{bottom}$")
63. plt.xlabel('Iteration number')
64. plt.legend()
65.
66. plt.tight_layout()
67. plt.savefig('./output/{}/{}/Figure/iter.jpg'.format(case_name,initial_name),dpi=2000)
68.
69. plt.figure()
70. plt.plot(np.log10(error_list))
71. plt.title('error')
72. plt.ylabel('log(10)')
73. plt.savefig('./output/{}/{}/Figure/error.jpg'.format(case_name,initial_name))
74.
75. np.savetxt('./output/{}/{}/Figure/E_top_list.txt'.format(case_name,initial_name),E_top_list)
76. np.savetxt('./output/{}/{}/Figure/nu_top_list.txt'.format(case_name,initial_name),nu_top_list)
77. np.savetxt('./output/{}/{}/Figure/E_bottom_list.txt'.format(case_name,initial_name),E_bottom_list)
78. np.savetxt('./output/{}/{}/Figure/nu_bottom_list.txt'.format(case_name,initial_name),nu_bottom_list)
79. np.savetxt('./output/{}/{}/Figure/error_list.txt'.format(case_name,initial_name),error_list)

35

References

[1] M. Ambroziak, P. Pietruski, B. Noszczyk, U. Paluch, A. Dermatol, and Allergol,

“ultrasonographic elastography in the evaluation of normal and pathological skin -

a review,” 2019.

[2] M. R. Bersi et al., “Multimodality Imaging-Based Characterization of Regional

Material Properties in a Murine Model of Aortic Dissection,” Sci Rep, vol. 10, no.

1, p. 9244, Dec. 2020, doi: 10.1038/s41598-020-65624-7.

[3] B. Coudrillier, J. Tian, S. Alexander, K. M. Myers, H. A. Quigley, and T. D.

Nguyen, “Biomechanics of the Human Posterior Sclera: Age- and Glaucoma-

Related Changes Measured Using Inflation Testing,” Investigative Ophthalmology

& Visual Science, vol. 53, no. 4, p. 1714, 2012.

[4] J. Ophir et al., “Elastography: Ultrasonic estimation and imaging of the elastic

properties of tissues,” Proc Inst Mech Eng H, vol. 213, no. 3, pp. 203–233, Mar.

1999, doi: 10.1243/0954411991534933.

[5] T. Oida, A. Amano, and T. Matsuda, “Magnetic resonance elastography : in vivo

measurements of elasticity for human tissue,” in International Conference on

Informatics Research for Development of Knowledge Society Infrastructure, 2004.

ICKS 2004., Kyoto, Japan, 2004, pp. 57–64. doi: 10.1109/ICKS.2004.1313409.

[6] B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical

Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J.

Select. Topics Quantum Electron., vol. 20, no. 2, pp. 272–288, Mar. 2014, doi:

10.1109/JSTQE.2013.2291445.

[7] Z. Liu, Y. Sun, J. Deng, D. Zhao, Y. Mei, and J. Luo, “A Comparative Study of

Direct and Iterative Inversion Approaches to Determine the Spatial Shear Modulus

Distribution of Elastic Solids,” Int. J. Appl. Mechanics, vol. 11, no. 10, p. 1950097,

Dec. 2019, doi: 10.1142/S1758825119500972.

[8] A. A. Oberai, N. H. Gokhale, and G. R. Feij o, “Solution of inverse problems in

elasticity imaging using the adjoint method,” Inverse Problems, vol. 19, no. 2, pp.

297–313, Apr. 2003, doi: 10.1088/0266-5611/19/2/304.

[9] S. Avril and F. Pierron, “General framework for the identification of constitutive

parameters from full-field measurements in linear elasticity,” International Journal

of Solids and Structures, vol. 44, no. 14–15, pp. 4978–5002, Jul. 2007, doi:

10.1016/j.ijsolstr.2006.12.018.

[10] C. M. Luetkemeyer, U. Scheven, J. B. Estrada, and E. M. Arruda, “Constitutive

modeling of the anterior cruciate ligament bundles and patellar tendon with full-

field methods,” Journal of the Mechanics and Physics of Solids, vol. 156, p. 104577,

Nov. 2021, doi: 10.1016/j.jmps.2021.104577.

[11] J.-H. Kim, S. Avril, A. Duprey, and J.-P. Favre, “Experimental characterization of

rupture in human aortic aneurysms using a full-field measurement technique,”

Biomech Model Mechanobiol, vol. 11, no. 6, pp. 841–853, Jul. 2012, doi:

10.1007/s10237-011-0356-5.

[12] F. S. M. Pires, S. Avril, P. Livens, J. A. Cordioli, and J. J. J. Dirckx, “Material

Identification on Thin Shells Using the Virtual Fields Method, Demonstrated on

the Human Eardrum,” Journal of Biomechanical Engineering, vol. 144, no. 3, p.

031004, Mar. 2022, doi: 10.1115/1.4052381.

[13] Y. Mei and S. Avril, “On improving the accuracy of nonhomogeneous shear

36

modulus identification in incompressible elasticity using the virtual fields method,”

International Journal of Solids and Structures, vol. 178–179, pp. 136–144, 2019.

[14] Y. Mei, J. Liu, X. Guo, B. Zimmerman, T. D. Nguyen, and S. Avril, “General

Finite-Element Framework of the Virtual Fields Method in Nonlinear Elasticity,” J

Elast, vol. 145, no. 1–2, pp. 265–294, Aug. 2021, doi: 10.1007/s10659-021-09842-

8.

[15] Y. Mei, J. Deng, X. Guo, S. Goenezen, and S. Avril, “Introducing regularization

into the virtual fields method (VFM) to identify nonhomogeneous elastic property

distributions,” Comput Mech, vol. 67, no. 6, pp. 1581–1599, Jun. 2021, doi:

10.1007/s00466-021-02007-3.

[16] G. Chagnon, M. Rebouah, and D. Favier, “Hyperelastic Energy Densities for Soft

Biological Tissues: A Review,” J Elast, vol. 120, no. 2, pp. 129–160, Aug. 2015,

doi: 10.1007/s10659-014-9508-z.

[17] H. Dal, A. K. Açan, C. Durcan, and M. Hossain, “An in silico-based review on

anisotropic hyperelastic constitutive models for soft biological tissues.” arXiv, Jul.

28, 2022. Accessed: Sep. 12, 2022. [Online]. Available:

http://arxiv.org/abs/2207.13985

[18] W. Zhang, G. Sommer, J. A. Niestrawska, G. A. Holzapfel, and D. Nordsletten,

“The effects of viscoelasticity on residual strain in aortic soft tissues,” Acta

Biomaterialia, vol. 140, pp. 398–411, Mar. 2022, doi:

10.1016/j.actbio.2021.11.019.

[19] C. Durcan et al., “Experimental investigations of the human oesophagus:

anisotropic properties of the embalmed muscular layer under large deformation,”

Biomech Model Mechanobiol, vol. 21, no. 4, pp. 1169–1186, Aug. 2022, doi:

10.1007/s10237-022-01583-4.

[20] B. E. Lezar and D. B. Davidson, “Automated solution of differential equations by

the finite element method : the FEniCS book,” Lecture Notes in Computational

Science & Engineering, vol. 84, 2012.

[21] J. Bonet and R. D. Wood, Nonlinear continuum mechanics for finite element

analysis. Cambridge ; New York, NY, USA: Cambridge University Press, 1997.

[22] B. E. Abali, Computational Reality, vol. 55. Singapore: Springer Singapore, 2017.

doi: 10.1007/978-981-10-2444-3.

[23] T. Sørevik, Ed., Applied parallel computing: new paradigms for HPC in industry

and academia: 5th international workshop, PARA 2000, Bergen, Norway, June 18-

20, 2000: proceedings. Berlin ; New York: Springer, 2001.

[24] D. E. Midgett, H. A. Quigley, and T. D. Nguyen, “In vivo characterization of the

deformation of the human optic nerve head using optical coherence tomography

and digital volume correlation,” Acta Biomaterialia, vol. 96, pp. 385–399, Sep.

2019, doi: 10.1016/j.actbio.2019.06.050.

