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Abstract

Scalability of parallel solvers for problems with high heterogeneities relies on adaptive coarse spaces built
from generalized eigenvalue problems in the subdomains. The corresponding theory is powerful and flexible
but the development of an efficient parallel implementation is challenging. We report here on recent advances
in adaptive coarse spaces and on their open source implementations.

1. Introduction

All domains of physical sciences, engineering or medicine make use of scientific computing. For
instance more and more imaging methods in earth science or in medicine rely on the direct
simulation of the data acquisition process when solving the inverse problems. For earth sci-
ence applications, the volume of data is naturally very large. In medical imaging, nearly real
time methods are demanded. These requirements can only be met with parallel computers and
algorithms designed for these new computing architectures.

As an example, we consider the modeling of a microwave imaging system, for the detection and
monitoring of brain strokes. The prototype in Figure 1.1 was developed by the company EMTen-
sor GmbH and studied in the framework of the ANR project MEDIMAX. The data acquired
with this device are used as input for an inverse problem associated with the time-harmonic
Maxwell’s equations, which makes it possible to estimate the complex electric permittivity of
the brain tissues of a patient affected by a stroke. Indeed, a stroke results in a variation of the
complex electric permittivity inside a region of the brain, thus it can be detected and monitored
by clinicians thanks to an image of the brain displaying the values of this property. Taking
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Figure 1.1. The microwave imaging system prototype developed by EMTensor
GmbH, the decomposed computational domain, and the imaginary part of the
relative complex permittivity of a virtual head model immersed in the imaging
chamber, with a simulated ellipsoid-shaped stroke.

advantage of several levels of parallelism, in [42] we met the requirement of a nearly real time
imaging with an elapsed time of two minutes when running on 2048 cores.

The paper is organized as follows. In Section 2, we recall the original one-level Schwarz method
and in Section 3 the need for two-level methods in order to reach scalability. In Section 4, we
introduce the GenEO method and point to several of its extensions. In Section 5, some large
scale computations are displayed.

2. One level Schwarz methods

H.A. Schwarz was a German analyst of the 19th century. He was interested in proving the
existence and uniqueness of the Poisson problem. At his time, there were no Sobolev spaces nor
Lax–Milgram theorem. The only available tool was the Fourier transform, limited by its very
nature to simple geometries. In order to consider more general situations, H.A. Schwarz devised
an iterative algorithm for solving Poisson problems set on a union of simple geometries, see [38].
For a historical presentation of these kind of methods see [15].

Let the domain Ω be the union of a disk and a rectangle, see Figure 2.1. Consider the Poisson
problem which consists in finding u : Ω→ R such that:

−∆(u) = f in Ω
u = 0 on ∂Ω. (2.1)

Ω1 Ω2

Figure 2.1. A complex domain made from the union of two simple geometries
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Definition 2.1 (Original Schwarz algorithm). The Schwarz algorithm is an iterative method
based on solving alternatively sub-problems in domains Ω1 and Ω2. It updates (un

1 , u
n
2 ) →

(un+1
1 , un+1

2 ) by:

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω
un+1

1 = un
2 on ∂Ω1 ∩ Ω2.

then,
−∆(un+1

2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω
un+1

2 = un+1
1 on ∂Ω2 ∩ Ω1.

(2.2)

H.A. Schwarz proved the convergence of the algorithm and thus the well-posedness of the
Poisson problem in complex geometries.

With the advent of digital computers, this method also acquired a practical interest as an
iterative linear solver. Subsequently, parallel computers became available and a small modifica-
tion of the algorithm [26] makes it suited to these architectures. Its convergence can be proved
using the maximum principle [25].

Our main focus is high performance computing which implies to have thousands of subdomains
and also to be able to work with third-party linear solver libraries. Let N be the number of sub-
domains, the domain Ω is decomposed into N overlapping subdomains (Ωi)1≤i≤N . Rather than
iterating on the collection of local approximate solutions (un

i )1≤i≤N , it is then more convenient
to consider related algorithms where we iterate on a global approximate solution un : Ω → R.
In order to do this, we introduce a partition of unity. We proceed here in an informal way.

Definition 2.2 (Extension operators and partition of unity). Let the extension operator Ei be
such that Ei(wi) : Ω → R is the extension of a function wi : Ωi 7→ R, by zero outside Ωi. We
also define the partition of unity functions χi : Ωi → R, χi ≥ 0 and χi(x) = 0 for x ∈ ∂Ωi \ ∂Ω
and such that:

w =
N∑

i=1
Ei(χiw|Ωi

) (2.3)

for any function w : Ω 7→ R.

The Schwarz algorithm of (2.2) iterates on a pair of local functions which, until convergence,
do not match in the overlap. As explained in [10, 12], its natural generalization to globally
defined iterates is the RAS (Restricted Additive Schwarz) algorithm [7]:

For an approximate solution un to (2.1), we first solve in parallel subproblems

−∆(un+1
i ) = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω
un+1

i = un on ∂Ωi \ ∂Ω.

followed by un+1 :=
N∑

i=1
Ei(χi u

n+1
i ) in Ω .

(2.4)

Surprisingly enough, at least in the two-subdomain case, an equivalence between algorithms (2.2)
and (2.4) holds independently of the choice of the partition of unity functions, see Lemma 1.5.
in [10] at the continuous level.

3. Need for global transfer of information

When the number of subdomains is large, plateaus appear in the convergence of Schwarz do-
main decomposition methods. This is the case even for a simple model such as the Poisson
problem (2.1). The problem of the one level method comes from the fact that in the Schwarz
method there is a lack of a global exchange of information. Data are exchanged only from one
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Figure 3.1. Decomposition into 18×18 subdomains. One color for each subdo-
main.
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Figure 3.2. Convergence curves with and without a coarse space correction for
a decomposition into 64 strips

subdomain to its direct neighbors. But the solution in each subdomain depends on the right-
hand side in all subdomains. Let us denote by Nd the number of subdomains in one direction.
Then, for instance, the leftmost domain of Figure 3.1 needs at least Nd iterations before being
aware about the value of the right-hand side f in the rightmost subdomain. In practice, this
long-distance effect cannot be neglected when the domain has a large inner radius or when it is
elongated with Neumann boundary conditions on the long boundary. It is then observed that
the length of the plateau is thus typically related to the number of subdomains in one direction
as exemplified in Figure 3.2.

4. Coarse Space constructions

In order to analyze and fix this weakness of the one-level method, it is necessary to go beyond the
above qualitative explanation relating the length of the delay in the convergence to the diameter
of the graph of the connections between subdomains. In [32] an adaptive method was proposed
at the continuous level. In order to generalize it, a first key tool for this is the Fictitious Space
Lemma (see [33] for the original paper and [19] for a modern exposition) which can be seen as
the Lax–Milgram theorem of domain decomposition methods. It is formulated as an abstract
result of the theory of Hilbert spaces but actually it encompasses almost all (if not all) known
domain decomposition methods: Schwarz methods, P.L. Lions algorithm, Balancing Neumann-
Neuman and FETI methods. The second key tool is the deflation technique that comes from
the linear algebra community, see e.g. [14, 34, 41] and references therein. This is connected as
well to augmented or recycled Krylov space methods, see e.g. [8, 13, 35] or [37] and references
therein.

For instance in [39] and in [10] and references therein, it is explained how to add a so-called
coarse space correction to the original one-level method in order to get a scalable method with
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a guaranteed condition number for the preconditioned system. More precisely, let equation (2.1)
(or any symmetric positive definite system) be discretized by a finite element method so that
the resulting linear system to be solved reads:

AU = F (4.1)
where U ∈ R#N is the vector of degrees of freedom for a set of indices denoted by N .

In order to define the domain decomposition method at the discrete level, we first decompose
the global mesh Th into overlapping sub meshes (Thi)1≤i≤N . This induces a decomposition of the
global set of degrees of freedom N into N sub sets (Ni)1≤i≤N . Let (Ri)1≤i≤N be the restriction
operator from the global set of indices N to the local one Ni. The one-level ASM (additive
Schwarz method) preconditioner which is a symmetrized version of the RAS method reads:

M−1
ASM :=

N∑
i=1

RT
i (RiAR

T
i )−1Ri (4.2)

Compared to RAS, its symmetry allows for the use of Hilbert space theory for its spectral
analysis. As a result, a coarse space with a provable efficiency can be defined in several steps.

First, let Di be diagonal square matrices of size #Ni that define a partition of unity, that is
for all U ∈ R#N :

U =
N∑

i=1
RT

i DiRi U . (4.3)

A simple choice for Di is that for each degree of freedom k ∈ Ni, we set (Di)kk := 1/µk where
µk denotes the number of subsets k belongs to. Note that other choices are possible and popular
particularly the ones for which Di is a Boolean matrix since it saves communications and avoids
round-off errors.

Now, in each subdomain, let ANeu
i be the matrix associated to the restriction of the variational

formulation to the sub mesh Thi. We define a generalized eigenvalue problem
DiRiAR

T
i DiVik = λikA

Neu
i Vik (4.4)

Let τ be a user-defined threshold, we assume that the rectangular matrix Z0 defined by the
concatenation of the vectors RT

i DiVik for all 1 ≤ i ≤ N such that λik > 1/τ is full rank. The
coarse space is defined as the range of Z0.

Following [28], a two-level preconditioner is defined as follows:

M−1
2,HSM := Z0(ZT

0 AZ0)−1ZT
0 + (I − P0)M−1

ASM (I − P T
0 ) , (4.5)

where P0 is the A orthogonal projection on the coarse space V0:
P0 := Z0(ZT

0 AZ0)−1ZT
0 A . (4.6)

It is then possible to have a full control of the spectrum of the preconditioned operator, see
Theorem 7.23 in [10]:

Theorem 4.1 (Hybrid Schwarz algorithm). Let τ be a user-defined parameter to build the
GenEO coarse space as above.

The eigenvalues of the hybrid Schwarz preconditioned system satisfy the following estimate

1
1 + k1 τ

≤ λ(M−1
2,HSM A) ≤ k0 , (4.7)

where k0 is the number of neighbors of a subdomain plus one, k1 is the maximum multiplicity of
the intersection between subdomains and M−1

2,HSM is defined by (4.5).

We have considered here only the Additive Schwarz method but this kind of result has been
extended to:
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• FETI method [16, 40]

• P.L. Lions algorithm [20]

• Inexact Coarse solve [30]

• Saddle point problem [31]

• Boundary Element Methods [29]

• Multiscale Finite Element methods [27]

• Time dependent Maxwell system [5]

• Least Square problems [9]

• Purely algebraic settings [9, 17]

Note that for Helmholtz or frequency Maxwell type problems, efficient coarse spaces are more
easily built when they are based on a coarse grid discretisation of the underlying variational
form as it is classically done in multigrid methods, see [18] and references therein for a detailed
mathematical analysis and [4] for extensive numerical tests of various approaches.

5. Libraries for Large Scale Computations

We have thus a strong set of mathematical results that enable to build efficient domain decom-
position methods. But it comes at the expense of some difficulties since the implementation of
these methods is not so easy due to the need to have access to the variational formulation to
build the local matrices (ANeu

i )1≤i≤N . Also, an efficient parallel implementation needs a care-
ful organization of the code and the use of the message passing interface MPI on distributed
memory machines.

This motivated the development of open source implementations of the GenEO coarse space:

• the C++/MPI library hpddm [22] either as an autonomous library or interfaced with
FreeFem [21] or PETSc [2]. The library also provides access to the GCRODR method [35]
useful when solving linear systems with multiple right hand sides.

• the FreeFem domain decomposition library ffddm [43]

• a Dune solver as described in [6]

It is worth noticing that the access to the variational formulation is made easy if one makes
use of domain specific languages or libraries such as FreeFem [21], Dune [3] or Firedrake [36]. It
facilitates the encapsulation of two-level methods. The resulting scripts are then quite compact
and do not require to write MPI lines of code although they enable the parallel solving of all
kinds of equations with the above mentioned methods.

We now give a few examples of computations performed using these libraries.
In [31], we solve three dimensional elasticity problems for steel-rubber (ν = 0, 4999) structures

(see Figure 5.1) discretized by a finite element method with continuous pressure with up to a
billion degrees of freedom on 16,800 cores.

Considering the brain imaging problem mentioned in the introduction, we solved the forward
problem (at frequency 1GHz) on the domain shown in Figure 1.1 (center), discretized with order
1 Nedelec’s edge finite elements using 40 grid-points per wavelength, resulting in a linear system
of size n ≈ 1.6 × 107. We take 729 subdomains (with a two-cell overlap) and for the two-level
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Figure 5.1. Heterogeneous beam composed of 10 alternating layers of rubber
material (E1, ν1) = (1. 107, 0.4999) and steel material (E2, ν2) = (2 109, 0.35).
Coefficient distribution (left) and mesh partitioning into 16 subdomains by the
automatic graph partitioner Metis (right).

Table 5.1. Numerical performance for the microwave imaging system problem
for three different material configurations inside the imaging chamber. In the
Time columns we report the total time (the execution time for GMRES) in
seconds.

#2-level Time #1-level Time
homogeneous liquid 28 63.4(8.6) 30 53.1(6.4)

head model 28 64.1(9.2) 32 53.4(6.9)
non-conductive cylinder 29 62.3(9.4) 125 83.5(38.2)

preconditioner a coarse problem of size ≈ 3.8×104. We tested a two-level preconditioner and the
corresponding one-level version for three different material configurations: the imaging chamber
filled just with a homogeneous matching liquid, the virtual head model of Figure 1.1, and a
plastic-filled cylinder immersed in the matching liquid; the last test case is the most difficult
because plastic is a non-conductive material. Then, waves are not damped in the chamber and
it will delay the convergence of the domain decomposition method. In Table 5.1 we see that the
performance of the one-level method deteriorates badly for the non-conductive cylinder, but the
performance of the two-level method is uniform across all three cases, i.e. it appears robust with
respect to the type of heterogeneity.

In [11], a two-level domain-decomposition preconditioner is used to solve large scale Helmholtz-
type problems arising in the context of frequency-domain full-waveform inversion (FWI) for
seismic imaging. The performance of the solver is assessed for cartesian meshes as well as un-
structured meshes adapted to the size of the local wavelength (h-adaptivity) allowing to signifi-
cantly reduce the number of unknowns in the discretization. The coarse problem in the two-level
preconditioner is based on a coarse mesh discretization and is solved at each iteration in an ap-
proximate manner with an inner one-level method retaining the same spatial decomposition as
the first level in order to minimize communications. Figure 5.2 shows a wavefield solution at
frequency f = 20 Hz for the 3D acoustic SEG/EAGE Overthrust model computed using P3
finite elements on an unstructured mesh adapted to the local wavelength, with 5 points per
wavelength. Table 5.2 reports simulation statistics for different frequencies with regular and
adapted meshes for the Overthrust model. We can see for example that it takes 37 seconds and
30 GMRES iterations to solve the forward problem at frequency f = 20 Hz on 16960 cores, with
2.285 billion unknowns.
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Figure 5.2. 20 Hz wavefield for the acoustic SEG/EAGE Overthrust model
computed using P3 finite elements on an unstructured mesh adapted to the local
wavelength, with 5 points per wavelength – FreeFem software

Table 5.2. Simulation statistics for the acoustic SEG/EAGE Overthrust model
with regular and adaptive meshes. Freq(Hz): frequency; #core: number of cores;
#elts: number of elements; #dofs: number of degrees of freedom; #it: iteration
count. Elapsed time (seconds) in GMRES.

Regular mesh
Freq (Hz) #core #elts (M) #dofs (M) #it GMRES

5 265 16 74 7 16s
10 2,120 131 575 15 33s

Adaptive mesh
Freq (Hz) #core #elts (M) #dofs (M) #it GMRES

10 2,120 63 286 14 15s
20 16,960 506 2,285 30 37s

In [23], the flexibility of PETSc [1, 2] was leveraged to try new applications of GenEO. First,
the method was used on meshes with quadrilateral elements, see Figure 5.3, in comparison
to previous FreeFEM results where only simplices (lines, triangles, and tetrahedra) are used.
Then, GenEO was also used to precondition an eigensolver, LOBPCG [24], which requires the
application of the preconditioned operator on a set of multiple vectors. This is particularly
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efficient since HPDDM can leverage the high efficiency of subdomain solvers when dealing with
blocks of right-hand sides. Eventually, the GenEO second-level correction was benchmarked in
the context of a nonlinear problem, the Liouville–Bratu–Gelfand equation, solved with a Newton
method. It was shown that it is possible to reuse the coarse operator to solve the linearized system
without hindering the convergence of the outer solver.

(a) Initial non-overlapping decom-
position.

(b) Overlapping decomposition on
which (ANeu

i )1≤i≤N are assembled

Figure 5.3. Automatic generation of overlapping subdomains and assembly of
local Neumann operators needed by (4.4). For clarity, only four subdomains, one
of which is disconnected, are colored. Figure taken from [23]

Also, in [6], the scalability of the GenEO solver of Dune was assessed on more than 15,000
cores of the UK national supercomputer Archer, solving an aerospace composite problem with
over 200 million degrees of freedom in a few minutes.
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