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Explicit k−dependence for Pk finite elements in Wm,p error

estimates: application to probabilistic laws for accuracy analysis

Joël Chaskalovic ∗ Franck Assous †

Abstract

We derive an explicit k−dependence inWm,p error estimates for Pk Lagrange finite elements.
Two laws of probability are established to measure the relative accuracy between Pk1 and
Pk2

finite elements (k1 < k2) in terms of Wm,p-norms. We further prove a weak asymptotic
relation in D′(R) between these probabilistic laws when difference k2 − k1 goes to infinity.
Moreover, as expected, one finds that Pk2

finite element is surely more accurate than Pk1
,

for sufficiently small values of the mesh size h. Nevertheless, our results also highlight cases
where Pk1 is more likely accurate than Pk2 , for a range of values of h. Hence, this approach
brings a new perspective on how to compare two finite elements, which is not limited to the
rate of convergence.

keywords: Error estimates, Finite elements, Céa Lemma, Bramble-Hilbert lemma, Banach Sobolev

spaces, Probabilistic laws.

1 Introduction

Recently ([12] and [13]), we proposed new perspectives on relative finite elements accuracy based
on a mixed geometrical-probabilistic interpretation of the error estimate derived from Bramble-
Hilbert lemma.

This led us to derive two laws of probability that estimate the relative accuracy, considered as
a random variable, between two finite elements Pk1 and Pk2 (k1 < k2).

By doing so, we obtained new insights which showed, among others, which of Pk1 or Pk2 is the
most likely accurate, depending on the value of the mesh size h which is no more considered as
going to zero, as in the usual point of view.

These results have been obtained by considering a second-order elliptic variational problem set
in the Sobolev space H1(Ω). However, many partial differential equations are well posed in a
more general class of Sobolev spaces, namely, Wm,p(Ω), (m, p) ∈ N∗2.

Possible applications for studying case p 6= 2 can be the Laplace equation set in an open-bounded
domain Ω ⊂ Rn with a given right-hand side f ∈ Lp(Ω), (p 6= 2). Indeed, in that case, the so-
lution to the associated variational formulation, u, belongs to W 1,p(Ω) for p 6= 2 if the domain
Ω is regular enough: this problem is indeed discussed in [8] (note in the Chapter on Sobolev
spaces, where a reference to [1] is quoted). Other examples may be found for instance in [17],
[18], [19], or in [20] for non-linear problems.

Here, we consider a functional framework defined by the help of Wm,p Sobolev spaces, particu-
larly when p 6= 2, and extend our previous work [13] limited to the case of the H1 Hilbert space.

∗D’Alembert, Sorbonne University, Paris, France, (email : jch1826@gmail.com)
†Ariel University, 40700 Ariel, Israël, (email : franckassous55@gmail.com).
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The paper is organized as follows. We recall in Section 2 the mathematical problem we consider
as well as the basic definitions of functional tools we will need along the paper. In Section 3, we
introduce Pk(K), the space of polynomial functions defined on a given n-simplex K, of degree
less than or equal to k. We then obtain several estimates to upper-bound the basis functions
of Pk(K) and their partial derivatives. We provide in Section 4 results that make explicit the
dependence of the constant involved in the a priori Wm,p−error estimates with respect to degree
k of the concerned Pk Lagrange finite element. Section 5 presents applications to the analysis
of the relative finite elements accuracy in Wm,p. In particular, extending to Wm,p spaces the
two generalized probabilistic laws introduced in [12], we prove, relying on distributions theory,
and under some ad hoc assumptions that are fulfilled in many cases, that an asymptotic relation
exist between these two laws. Concluding remarks follow.

2 The abstract problem

In this section, we introduce the abstract framework we will use to derive error estimates in
the Wm,p Sobolev spaces, particularly in the non standard cases p 6= 2, corresponding to non-
Hilbert spaces. As a consequence, we need a well-posedness result based on a stability (or
inf-sup) condition extended to non-Hilbert spaces. For the error analysis, we will also need
an extension of Céa’s Lemma to Banach spaces, devoted to the approximation of the abstract
problem using a Galerkin method.

In order to provide sufficient resources for a reader even not familiar with these methods to
understand the approach as a whole, we recall here some fundamental results. To this end, we
basically follow the presentation and the terminology proposed in the book by A. Ern and J. L.
Guermond [15]. The book of Brenner et al. [7], that goes back to a paper by Rannacher and
Scott [22] can also provide helpful references. A well-informed reader may skip to subsection
2.2.

2.1 Preliminary results

Let W and V be two Banach spaces equipped with their norms ‖.‖W and ‖.‖V , respectively. In
addition, V is assumed to be reflexive. Let u ∈W be the solution to the variational formulation{

Find u ∈W solution to:

a(u, v) = l(v), ∀v ∈ V,
(1)

where l is a continuous linear form on V , and a is a continuous bilinear form on W × V , i.e.

∀(u, v) ∈W × V, |a(u, v)| ≤ ‖a‖W,V ‖u‖W ‖v‖V ,

with ‖a‖W,V ≡ inf
{
C ∈ R∗

+,∀(u, v) ∈W × V : |a(u, v)| ≤ C‖u‖W ‖v‖V
}
. Assuming that

(BNB1) ∃α > 0, inf
w∈W

sup
v∈V

a(w, v)

‖w‖W ‖v‖V
≥ α,

(BNB2) ∀v ∈ V, (∀w ∈W,a(w, v) = 0) =⇒ (v = 0) ,

one can prove that problem (1) has one and only one solution in W , (see [15] Theorem 2.6),
where (BNB1)-(BNB2) refers to the Banach-Necas-Babuska conditions.
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Now, let us introduce the approximation uh of u, solution to the approximate variational for-
mulation {

Find uh ∈Wh solution to:
a(uh, vh) = l(vh), ∀vh ∈ Vh,

(2)

where Wh ⊂ W and Vh ⊂ V are two finite-dimensional subspaces of W and V . As noted in
[15], (Remark 2.23, p.92), neither condition (BNB1) nor condition (BNB2) implies its discrete
counterpart. The well-posedness of (2) is thus equivalent to the two following discrete conditions:

(BNB1h) ∃αh > 0, inf
wh∈Wh

sup
vh∈Vh

a(wh, vh)

‖wh‖Wh
‖vh‖Vh

≥ αh,

(BNB2h) ∀vh ∈ Vh, (∀wh ∈Wh, a(wh, vh) = 0) =⇒ (vh = 0).

From now on, we assume hypotheses (BNB1)-(BNB2) and (BNB1h)-(BNB2h) which guar-
antee the well-posedness of (1) and (2).

The last key ingredient we need for the error estimates is the following generalized Céa’s Lemma
[15] valid in Banach spaces:

Lemma 2.1 (Céa). Assume that Vh ⊂ V , Wh ⊂W and dim(Wh) = dim(Vh). Let u solve the
problem (1) and uh the problem (2). Then, the following error estimate holds:

‖u− uh‖W ≤
(
1 +

‖a‖W,V

αh

)
inf

wh∈Wh

‖u− wh‖W . (3)

In the rest of this paper, we will consider the variational formulation (1) and its approximation
(2) in the case where the Banach space W and the reflexive Banach space V are chosen as

W ≡Wm,p(Ω) and V ≡Wm′,p′(Ω) . (4)

Above, m and m′ are two non zero integers, p and p′ two real positive numbers satisfying p 6= 2
and p′ > 1 with

1

p
+

1

p′
= 1. (5)

As usual, for any integer m and 1 < p < +∞, Wm,p(Ω) denotes the Sobolev space of (class of)
real-valued functions which, together with all their partial distributional derivatives of order less
or equal to m, belongs to Lp(Ω):

Wm,p(Ω) =
{
u ∈ Lp(Ω) /∀α, |α| ≤ m,∂αu ∈ Lp(Ω)

}
,

α = (α1, α2, . . . , αn) ∈ Nn being a multi-index whose length |α| is given by |α| = α1 + · · ·+ αn,
and ∂αu the partial derivative of order |α| defined by:

∂αu ≡ ∂|α|u

∂xα1
1 . . . ∂xαn

n
.

The norm ‖.‖m,p,Ω and the semi-norms |.|l,p,Ω are respectively defined by:

∀u ∈ Wm,p(Ω) : ‖u‖m,p,Ω =

 ∑
|α|≤m

‖∂αu‖pLp

1/p

, |u|l,p,Ω =

∑
|α|=l

‖∂αu‖pLp

1/p

, 0 ≤ l ≤ m,

where ‖.‖Lp denotes the standard norm in Lp(Ω).
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2.2 A simple example

We illustrate below, through an elementary example, the choice of the spaces W and V defined
by (4).

Let f be a given function that belongs to Lp(]0, 1[), (p 6= 2), and u ∈W 2,p(]0, 1[) solution to:{
−u′′(x) + u(x) = f(x), x ∈]0, 1[,
u(0) = u(1) = 0.

The corresponding variational formulation is given by:
Find u ∈W 1,p

0 (]0, 1[), solution to:∫ 1

0

[
u′(x)v′(x) + u(x)v(x)

]
dx =

∫ 1

0
f(x)v(x) dx,∀v ∈W 1,p′

0 (]0, 1[),
(6)

where p and p′ satisfy (5), and W 1,p
0 (]0, 1[) denotes the space of functions w of W 1,p(]0, 1[) such

that w(0) = w(1) = 0.

Remark 1

— First of all, we notice that all the integrals in (6) are bounded due to H’́older’s inequality.

— Second, taking for example p = 3/2 and q = 3, the corresponding spaces W and V intro-

duced above are equal to W = W
1,3/2
0 (]0, 1[) and V = W 1,3

0 (]0, 1[), that are respectively a
Banach space and a reflexive Banach space, as required.

In the rest of the paper, we shall assume that Ω is an open subset in Rn, exactly covered by
a mesh Th composed by NK n-simplexes Kµ, (1 ≤ µ ≤ NK), which respect classical rules of
regular discretization, (see for example [9] for the bidimensional case, or [23] in Rn). Moreover,
we denote by Pk(Kµ) the space of polynomial functions defined on a given n-simplex Kµ of
degree less than or equal to k, (k ≥ 1).

Henceforth, we assume that the approximate spaces Wh and Vh, satisfying dim(Wh) = dim(Vh),
are included in the space of functions defined on Ω, composed by polynomials belonging to
Pk(Kµ), (1 ≤ µ ≤ NK). As a consequence, Wh ⊂Wm,p(Ω) and Vh ⊂Wm′,p′(Ω).

In the following section, we derive appropriate estimates related to the canonical basis of Pk(Kµ).
This will in turn enable us to make explicit the dependence on k of the constant involved in the
a priori error estimates in Wm,p(Ω).

3 Properties of Lagrange finite element Pk

In this section we follow the definitions and properties of the Pk finite element in Rn described
by P. A. Raviart and J. M. Thomas in [23].

Let us consider a n-simplex K ⊂ Rn which belongs to a regular mesh Th. Since a complete
polynomial of order k which belongs to Pk(K) contains

N ≡
(
n+ k
n

)
=

(n+ k)!

n! k!
(7)

terms, each n-simplex element of the mesh Th must be associated with N independent specifiable
parameters, or degrees of freedom, to assure the unisolvence of the finite element [23].
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Then, it is convenient to carry out all analysis of n-simplexes in terms of the so-called n-simplex

barycentric coordinates λ1, . . . , λn+1 which satisfy

n+1∑
i=1

λi = 1.

A regularly spaced set of points Mi1,...,in+1 can be defined in a n-simplex K by the barycentric

coordinates values Mi1,...,in+1 =

(
i1
k
, . . . ,

in+1

k

)
, 0 ≤ i1, . . . , in+1 ≤ k satisfying

i1 + · · ·+ in+1 = k. (8)

One can check that the number of points defined in this way is equal to N , the dimension of
Pk(K) given by (7).

Therefore, we introduce the canonical basis of functions pi1,...,in+1 of the variables (λ1, . . . , λn+1)
which belongs to Pk(K) defined by:

pi1,...,in+1(λ1, . . . , λn+1) ≡
n+1∏
j=1

Pij (λj), (9)

where the auxiliary polynomials Pij (λj) are given by:

Pij (λj) ≡

∣∣∣∣∣∣∣∣
ij∏

cj=1

(
kλj − cj + 1

cj

)
, if ij ≥ 1,

1, if ij = 0.

(10)

Pij is clearly a polynomial of order ij in λj , and therefore, due to condition (8), pi1,...,in+1 given
by (9) is a polynomial of order k.

In the sequel, we will also use a single-index numbering to substitute the multi-index one. It will
be the case for the N points Mi1,...,in+1 simply denoted (Mi)i=1,N , as well as for the N canonical
functions pi1,...,in+1 denoted (pi)i=1,N , and so on.

Let us also remark that each polynomial pi defined by (9)-(10) is characteristic to the corre-
sponding point Mi. That is to say that we have the following property (see [23]):

∀ i, j = 1 to N : pi(Mj) = δij .

Therefore, for a given set of N values φi ≡ φi1,...,in+1 known at the N points Mi ≡ Mi1,...,in+1 ,
the polynomial Q in Pk(K) given by:

∀M ∈ K : Q(M) = Q(λ1, . . . , λn+1),

=
∑

i1+···+in+1=k

φi1,...,in+1 pi1,...,in+1(λ1, . . . , λn+1) =
N∑
i=1

φipi(λ1, . . . , λn+1),

is the unique one in Pk(K) such that Q(Mi) = φi.

The following lemma gives the first point-to-point estimates for the polynomials pi defined by
(9)-(10).
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Lemma 3.1 Let (pi)i=1,N be the canonical basis functions of the space of polynomials Pk(K)
which are defined by (9)-(10).

Then:

|pi(λ1, . . . , λn+1)| ≤ kn+1, ∀ r ∈ N∗ :

∣∣∣∣ ∂ rpi
∂λq1 . . . ∂λqr

(λ1, . . . , λn+1)

∣∣∣∣ ≤ kr(n+2), (11)

where (q1, q2, . . . , qr) ∈ Nr.

Proof :

This lemma generalizes lemma 3.2 of [13] in the case where p is not necessarily equal to 2. Hence,
we will only provide a sketch of the proof, and refer the interested reader to this reference for
details.

The logical sequence of the proof can be summarized as follows:

I First, examine the upper boundary of the basis functions pi, (i = 1, . . . , N).

This requires to introduce integer ni (0 ≤ ni≤ n+1) corresponding to the number of polynomials
Pij (λj) such that:

∀j = 1, . . . , ni, (ni ≥ 1), : Pij (λj) = P1(λj) = kλj , (ij = 1),

∀j = ni + 1, . . . , n+ 1, (ni ≤ n) : Pij (λj) =
kλj(kλj − 1) . . . (kλj − ij + 1)

ij !
, (ij > 1).

Using the fact that the structure of pi depends on the value of ni, (ni = 0, 1 ≤ ni ≤ n or
ni = n+ 1), one obtains in all cases that

|pi(λ1, . . . , λn+1)| ≤ kn+1.

I Consider next r = 1, which corresponds to upper-bound the partial derivative
∂pi
∂λq

, for a

given pair of non-zero integers (i, q).

Once again, depending on the value value of ni, we obtain different estimates, the more restrictive
being ∣∣∣∣ ∂pi∂λq

∣∣∣∣ ≤ k2 kni ≤ kn+2.

I Finally, handle the partial derivative of pi of order r with respect to λq1 , . . . , λqr .

To this end, we basically use the upper bound and remark that any first-order partial derivative
of pi with respect to a given λq will bring a term in kn+2; this leads to:

∀r ∈ N∗ :

∣∣∣∣ ∂rpi
∂λq1 . . . ∂λqr

∣∣∣∣ ≤ (kn+2
)r

= kr(n+2),

which corresponds to the second inequality of (11).

We can now prove the following theorem in order to obtain the estimate for the canonical basis
(pi)i=1,N with respect to the semi-norms |.|l,p,K .
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Theorem 3.2 Let ρ be the diameter of the largest ball that can be inscribed in K. Let (pi)i=1,N

be the canonical basis of Pk(K) defined in (9), (k, l, n) three integers and p a positive real number
such that:

k + 1 > l +
n

p
, (0 < p < +∞). (12)

Then, there exists two positive constants C0 and Cl independent of k such that

∀p ∈ R∗: |pi|0,p,K ≤ C0 k
n+1 and ∀l ∈ N∗: |pi|l,p,K ≤ Cl

kl(n+2)

ρ l
. (13)

Proof : Let us consider the canonical basis of polynomials (pi)i=1,N of Pk(K) defined by (9) and
(10).

Then, due to remark 2.2 in R. Arcangeli and J. L. Gout [2], for each polynomial pi, we have for
all l ≥ 0 for which (12) holds :

|pi|l,p,K ≤ 1

ρ l


∫
K

∑
|α|=l

l!

α!
|∂αpi(x)|

p

dx


1
p

=
1

ρ l


∫
K

∑
|α|=l

l!

α!

∣∣∣∣∣ ∂|α|pi(x)

∂xα1
1 . . . ∂xαn

n

∣∣∣∣∣
p

dx


1
p

, (14)

where α! = α1! . . . αn! and ρ is the supremum of the diameters of the inscribed spheres within
the n-simplex K.

So, when l = 0, (14) together with the first inequality of (11) directly leads to:

|pi|0,p,K ≤
{∫

K
|pi(x)|p dx

} 1
p

≤ mes(K)1/p kn+1, (15)

which corresponds to the first part of (13) with C0 = mes(K)1/p.

Let us now consider the case where l ≥ 1. Here, each first-order partial derivative
∂pi
∂xj

can be

written as
∂pi
∂xj

=
n+1∑
q=1

∂pi
∂λq

∂λq
∂xj

, (16)

where
∂λq
∂xj

is a constant denoted Λq
j which does not depend on k, since λq is a polynomial of

degree one, and we rewrite (16) as:

∂pi
∂xj

=
n+1∑
q=1

Λq
j

∂pi
∂λq

. (17)

Therefore, in the same way, the second-order partial derivatives are given by:

∂2pi
∂xj∂xk

=

n+1∑
q1=1

n+1∑
q2=1

Λq1
j Λq2

k

∂2pi
∂λq1∂λq2

,

and more generally for any non zero multi-index α = (α1, . . . , αn) whose length is denoted |α|,
we get:

∂|α|pi
∂xα1

1 . . . ∂xαn
n

= . . .

n+1∑
q11=1

. . .
n+1∑

q1α1
=1

. . .
 n+1∑

qn1=1

. . .
n+1∑

qnαn=1

(Λq11
1 . . .Λ

q1α1
1 . . .Λ

qn1
n. . .Λ

qnαn
n

)
∂|α|pi(

∂λq11 . . . ∂λq1α1

)
. . .
(
∂λqn1 . . . ∂λqnαn

) .
7



Now, by using the second estimate of (11) where we set r = |α|, this gives the following estimate:

∀α ∈ Nn, |α| > 0 :

∣∣∣∣∣ ∂|α|pi(x)

∂xα1
1 . . . ∂xαn

n

∣∣∣∣∣ ≤ [(n+ 1)Λ]|α| k|α|(n+2), (18)

where we set Λ ≡ max
(j,q)

Λq
j , (j, q) ∈ {1, . . . , n} × {1, . . . n+ 1} .

Finally, from (18) we can derive:

∀l ∈ N∗ :
∑
|α|=l

l!

α!

∣∣∣∣∣ ∂|α|pi(x)

∂xα1
1 . . . ∂xαn

n

∣∣∣∣∣ ≤ [(n+ 1)Λ]l l!nlkl(n+2), (19)

since nl corresponds to the number of partial derivatives of order l in Rn for the polynomials pi.

Therefore, one can estimate the |.|l,p,K−norm for each polynomial pi, (1 ≤ i ≤ N), due to (14)
and (19), and finally obtain:

∀l ∈ N∗ : |pi|l,p,K ≤

[
[n(n+ 1)Λ]l l! mes(K)1/p

ρ l

]
kl(n+2), (20)

which corresponds to the second part of (13), with Cl = [n(n+ 1)Λ]l l! mes(K)1/p.

Remark 2 We notice that estimate (13) generalizes to Wm,p Sobolev spaces the result proved for
H1 in Lemma (3.3) of [13].

4 Explicit k−dependence in a priori Pk finite element error es-
timates

We are now in a position to derive a k-explicit dependence of the constant involved in a Wm,p

a priori error estimate for Pk Lagrange finite elements.

This is the purpose of the following theorem:

Theorem 4.1 Let the hypothesis of Céa’s Lemma 2.1 hold with Wand V defined by (4). Let
(k,m, n) be three integers and p a positive real number satisfying

if
n

p
< 1 then m ≤ k, (21)

if
n

p
≥ 1 then m ≤ k − 1 and k + 1− n

p
> 0. (22)

Suppose that the approximation uh ∈ Wh is a continuous piecewise function composed by poly-
nomials which belong to Pk(Kµ), (1 ≤ µ ≤ NK).

If the exact solution u to problem (1) belongs to W k+1,p(Ω), the approximation uh, solution to
problem (2), converges to u in Wm,p(Ω) when h goes to zero, and we have

‖uh − u‖m,p,Ω ≤ Ck h
k+1−m |u|k+1,p,Ω , (23)
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where Ck is a positive constant independent of h defined by:

Ck = C
(k + n)n km(n+2)

(k −m)!

(
k +1−m− n

p

) (24)

Above, C is a positive constant which does not depend on k.

Proof : The proof of this theorem is based on the paper of R. Arcangeli and J.L. Gout [2], itself
an extension of the paper by P.G. Ciarlet and P.A. Raviart [14].

Firstly, we recall the conditions of theorem 2.1 of R. Arcangeli and J.L. Gout.

Let Ω be an open, bounded and non empty convex subset of Rn and Γ its boundary. Let us
denote by Pk the space of polynomial functions of degree less than or equal to k. We assume
that Σ = {ai}i=1,N is a P−unisolvent set of points which belongs to Ω̄, where P denotes a
finite-dimensional space of dimension N composed by functions defined on Ω̄ such that Pk ⊂
P ⊂ Ck(Ω̄).

Then, for all u ∈W k+1,p(Ω) and for all integer l ≥ 0 such that

k + 1 > l +
n

p
, (25)

we have:

|u−Πhu|l,p,Ω ≤ 1

(k − l)!

1(
k + 1− l − n

p

) |u|k+1,p,Ω h
k+1−l

+
1

(mes Ω)1/p
1

k!

1(
k + 1− n

p

) ( N∑
i=1

|pi|l,p,Ω

)
|u|k+1,p,Ω h

k+1, (26)

where Πh is the classical Lagrange interpolant which consists in interpolating the set of points
Σ in Rn by a polynomial function of a given degree k, and (pi)i=1,N are the unique functions
such that

pi(Mj) = δij , ∀Mj ∈ Σ, ∀ 1 ≤ i, j ≤ N,

where δij denotes the classical Kronecker symbol.

First of all, let us remark that, since we are interested in getting an a priori error estimate in
Wm,p(Ω) for the exact solution u to the variational formulation (1) defined in (1), we will need
to write estimates (26) for all values of l between 0 and m. It means that condition (25) also
needs to be satisfied from l = 0 to m, which implies that the following inequality must hold
true:

n

p
< k + 1−m.

Now, to guarantee this condition, according to the ratio
n

p
, we get two conditions, conditions

(21) and (22).

Particularly, for the usual case where p = 2 and n = 2, condition (22) implies that when
considering finite element P1, estimate (23) will only be written for m = 0 which corresponds to

9



the L2-norm. However, the finite element P1 would also be considered with the Wm,p-norm by
adapting our theorem from another result proved by R. Arcangeli and J.L. Gout, (see remark
2.3 and theorem 1.1 in [2]).

Thus, for our objectives, we write (26) for the following conditions:

— Ω = Kµ, (1 ≤ µ ≤ Nk), a n-simplex which belongs to a regular mesh Th.
— u is the exact solution in Wm,p(Ω) ∩W k+1,p(Ω), to the variational formulation (1).

— The set of points Σ in Rn correspond to the Pk finite element nodes of Kµ.

— The global interpolant function Πhu is replaced by the local interpolant one ΠKµu on the
n-simplex Kµ.

Then, due to (20), estimate (26) becomes, ∀l = 1, . . . ,m:

|u−ΠKµu|l,p,Kµ ≤ 1

(k − l)!

1(
k + 1− l − n

p

) |u|k+1,p,Kµ h
k+1−l
Kµ

+
1

ρlKµ

 [n(n+ 1)Λ]l l!

k!

(
k + 1− n

p

) (k + n)!

n! k!
kl(n+2)

 |u|k+1,p,Kµ h
k+1
Kµ

, (27)

where we have used (7).

Consequently, (27) becomes:

|u−ΠKµu|l,p,Kµ ≤


1 +

(
[n(n+ 1)σΛ]l l! (k + 1). . .(k + n) kl(n+2)

n!

)

(k − l)!

(
k + 1− l − n

p

)
 |u|k+1,p,Kµh

k+1−l
Kµ

,

≤
(
1 +

[n(n+ 1)σ]mΛ∗m!

n!

)
(k + n)n km(n+2)

(k −m)!

(
k +1−m− n

p

) |u|k+1,p,Kµh
k+1−l
Kµ

, (28)

where Λ∗ ≡ max
0≤l≤m

Λl, σ a given number such that σ ≥ 1 and
hKµ

ρKµ

≤ σ, for all element Kµ

belonging to the regular mesh Th.

For simplicity, we rewrite (28) as follows:

|u−ΠKµu|l,p,Kµ ≤ C1(σ,Λ
∗,m, n)

(k + n)n km(n+2)

(k −m)!

(
k +1−m− n

p

) |u|k+1,p,Kµ h
k+1−l
Kµ

, (29)

where we introduced constant C1(σ,Λ
∗,m, n) defined by:

C1(σ,Λ
∗,m, n) ≡ 1 +

[n(n+ 1)σ]mΛ∗m!

n!
. (30)

10



Now, when l = 0, due to (15), estimate (26) becomes:

|u−ΠKµu|0,p,Kµ ≤ 1

k!

1(
k + 1− n

p

) |u|k+1,p,Kµ h
k+1

+
1

k!

1(
k + 1− n

p

) (k + n)!

n! k!
kn+1|u|k+1,p,Kµ h

k+1,

which leads to:

|u−ΠKµ |0,p,Kµ ≤ C2(n)
(k + n)nkm(n+2)

(k −m)!

(
k + 1−m− n

p

) |u|k+1,p,Kµ h
k+1, (31)

for all k ≥ 1 and m ≥ 1, and where we introduced constant C2(n) defined by:

C2(n) = 1 +
1

n!
(32)

Therefore, by the help of (29)-(30) and (31)-(32), we get the following Wm,p local interpolation
error estimate:

‖u−ΠKµu‖
p
m,p,Kµ

=
m∑
l=0

|u−ΠKµ |
p
l,p,Kµ

,

≤
m∑
l=0

Cp(σ,Λ∗,m, n)

 (k + n)n km(n+2)

(k −m)!

(
k +1−m− n

p

)

p

|u|pk+1,p,Kµ
h
p(k+1−l)
Kµ

, (33)

where constant C(σ,Λ∗,m, n) is defined by : C(σ,Λ∗,m, n) = max
(
C1(σ,Λ

∗,m, n), C2(n)
)
.

Then, (33) leads to:

‖u−ΠKµu‖
p
m,p,Kµ

≤Cp(σ,Λ∗,m, n, p, h)

 (k + n)n km(n+2)

(k −m)!

(
k +1−m− n

p

)

p

|u|pk+1,p,Kµ
hp(k+1−m), (34)

where h ≡ max
Kµ∈Th

hKµ and C(σ,Λ∗,m, n, p, h) ≡ ξ(m, p, h).C(σ,Λ∗,m, n) with ξ(m, p, h) defined

as follows:

ξ(m, p, h) ≡

∣∣∣∣∣∣∣∣∣
[
1− hp(m+1)

1− hp

] 1
p

if h 6= 1,

(m+ 1)
1
p if h = 1.

(35)
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Since the mesh Th is regular, by the help of (34), we get for the whole domain Ω the following
global interpolation error estimate:

‖u−Πhu‖m,p,Ω =

 ∑
Kµ∈Th

‖u−ΠKµu‖
p
m,p,Kµ

1/p

≤ C(σ,Λ∗,m, n, p, h)

 (k + n)nkm(n+2)

(k −m)!

(
k +1−m− n

p

)

 ∑
Kµ∈Th

|u|pk+1,p,Kµ

1/phk+1−m,

≤ C(σ,Λ∗,m, n, p, h)

 (k + n)nkm(n+2)

(k −m)!

(
k +1−m− n

p

)
 |u|k+1,p,Ω h

k+1−m. (36)

Then, estimate (24) is proved, provided that one takes into account estimate (3) of Céa’s Lemma
2.1. Indeed, consider the Wm,p−norm to measure the difference between the exact solution u
to the variational problem (1) and its approximation uh solution to (2), we have:

‖u− uh‖m,p,Ω ≤

(
1 +

‖a‖Wm,p,Wm′,p ′

αh

)
‖u−Πhu‖m,p,Ω, (37)

where we choose in (3) wh ∈ Wh equal to Πhu, ‖a‖Wm,p,Wm′,p ′ as defined in (BNB), and αh

being the constant of the discrete inf-sup condition, see (BNB1h).

Then, replacing expression (36) in inequality (37) leads to:

‖u−uh‖m,p,Ω ≤

(
1 +

‖a‖Wm,p,Wm′,p ′

αh

)
C(σ,Λ∗,m, n, p, h)

 (k + n)nkm(n+2)

(k −m)!

(
k +1−m− n

p

)
 |u|k+1,p,Ω h

k+1−m.

(38)
Now, since ξ(m, p, h) introduced in (35) is bounded as h ≤ diam (Ω̄), C(σ,Λ∗,m, n, p, h) is
uniformly bounded with h. Hence, there exists C(σ,Λ∗,m, n, p) independent of h such that:

C(σ,Λ∗,m, n, p, h) ≤ C(σ,Λ∗,m, n, p).

Consequently, by defining constant Ck by

Ck ≡

(
1 +

‖a‖Wm,p,Wm′,p ′

αh

)
C(σ,Λ∗,m, n, p)

(k + n)nkm(n+2)

(k −m)!

(
k +1−m− n

p

) , (39)

we obtain the error estimate (23)-(24), with C =

(
1 +

‖a‖Wm,p,Wm′,p ′

αh

)
C(σ,Λ∗,m, n, p).

5 Application to relative finite elements accuracy

In this section, we apply inequality (23) of Theorem 4.1 to evaluate the relative accuracy between

two finite elements. Hereafter, we will replace notation uh with u
(k)
h , in order to highlight the
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degree k of the polynomials involved in Pk(Kµ).

In [12], regarding a problem set in the usual Sobolev space H1(Ω), we introduced a probabilistic
framework which enables one to compare the relative accuracy of two finite elements of different
degrees in a non standard way. Indeed, we claimed that quantitative uncertainties exist in the

approximate solution u
(k)
h , due for instance to the quantitative uncertainties that are commonly

produced in the mesh generation.

For this reason, we have considered the approximation error as a random variable, and we aimed

at evaluating the probability of the difference between two H1−approximation errors of u−u(k1)h

and u− u
(k2)
h corresponding to finite elements Pk1 and Pk2 , (k1 < k2).

Here, in the same way, one can only infer that the value of the approximation error ‖u(k)h −u‖m,p,Ω

belongs to the interval [0,Ck|u|k+1,p,Ω h
k+1−m], using error estimates (23)-(24).

As a consequence, for fixed values of k,m and p, we define the following random variable X
(k)
m,p

by:

X(k)
m,p : Ω → [0,Ck|u|k+1,p,Ω h

k+1−m]

ω ≡ u
(k)
h 7→ X(k)

m,p(ω) = X(k)
m,p(u

(k)
h ) = ‖u(k)h − u‖m,p,Ω,

where the probability space Ω contains all the possible results for a given random trial, namely,
all possible grids that the involved meshing tool can generate for a given value of h. Equivalently,

Ω consists of all the possible corresponding approximations u
(k)
h . Below, for simplicity, we will

set: X
(k)
m,p(u

(k)
h ) ≡ X

(k)
m,p(h).

Now, regarding the absence of information concerning the more likely or less likely values of norm

‖u(k)h −u‖m,p,Ω within the interval [0,Ck|u|k+1,p,Ω h
k+1−m], we assume that the random variable

X
(k)
m,p(h) has a uniform distribution on the interval [0,Ck|u|k+1,p,Ω h

k+1−m] in the following sense:

∀(α, β), 0 ≤ α < β ≤ Ck|u|k+1,p,Ω h
k+1−m : Prob

{
X(k)

m,p(h) ∈ [α, β]
}
=

β − α

Ck|u|k+1,p,Ω hk+1−m
.

The above equation means that if one slides interval [α, β] anywhere in [0,Ck|u|k+1,p,Ω h
k+1−m],

the probability of the event
{
X(k)

m,p(h) ∈ [α, β]
}

does not depend on the localization of [α, β] in

[0,Ck|u|k+1,p,Ω h
k+1−m], but only on its length; this reflects the property of uniformity for X

(k)
m,p.

Hence, it is straightforward to extend the theorem proved in [12] for theH1 case to theWm,p con-

text. This yields the following result, which estimates the probability of event
{
X(k2)

m,p (h) ≤ X(k1)
m,p (h)

}
.

Let Cki be equal to Cki ≡ Cki |u|ki+1,p,Ω, for i = 1, 2, and let h∗m,p be defined as:

h∗m,p ≡
(
Ck1

Ck2

) 1
k2−k1

. (40)

As in [12], by changing the H1−norm to the Wm,p one, we can derive that:

Prob
{
X(k2)

m,p (h) ≤ X(k1)
m,p (h)

}
=

∣∣∣∣∣∣∣∣∣∣
1− 1

2

(
h

h∗m,p

)k2−k1

if 0 < h ≤ h∗m,p,

1

2

(
h∗m,p

h

)k2−k1

if h ≥ h∗m,p.

(41)
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Then, using (39), one can rewrite h∗m,p defined in (40) as follows:

h∗m,p =


(
1 +

‖a‖Wm,p,Wm′,p ′

αh,k1

)
(
1 +

‖a‖Wm,p,Wm′,p ′

αh,k2

) (k1 + n

k2 + n

)n(k1
k2

)m(n+2) (k2 −m)!

(k1 −m)!

(
k2 + 1−m− n

p

)
(
k1 + 1−m− n

p

) |u|k1+1,p,Ω

|u|k2+1,p,Ω


1

k2−k1

,

(42)
where αh,k1 and αh,k2 denotes the αh appearing in generalized Céa’s Lemma 2.1, associated to
finite elements Pk1 and Pk2 , respectively.

Remark 3 Notice that, as proposed in [13], one can derive another law of probability to evaluate
the most accurate finite element between Pk1 and Pk2. More precisely, for h < h∗m,p, assuming

the independence of events A ≡
{
X(k2)

m,p (h) ≤ X(k1)
m,p (h)

}
and B ≡

{
X

(k1)
m,p (h) ∈ [Ck2h

k2 , Ck1h
k1 ]
}
,

one can obtain the following law of probability:

Prob
{
X(k2)

m,p (h) ≤ X(k1)
m,p (h)

}
=

∣∣∣∣∣ 1 if 0 < h < h∗m,p,

0 if h > h∗m,p .
(43)

The probability distribution (43) is obtained by replacing the uniform distribution assumption
in (41) by the independence of events A and B. However, with no prior information about the
independence of these events, the more ”natural” probabilistic law is (41).

Therefore, in what follows, we take a fixed value for k1 (that we will denote k in the sequel),
and we study the asymptotic behavior of the accuracy between Pk and Pk+q, when q goes to
+∞: this will give us the asymptotic relation between the two probabilistic laws (41) and (43).

To this end, it is convenient to introduce notation (Pq(h))q∈N⋆ corresponding to the sequence of
functions defined by (41), namely:

∀q ∈ N∗ : Pq(h) ≡ Prob
{
X(k+q)

m,p (h) ≤ X(k)
m,p(h)

}
=

∣∣∣∣∣∣∣∣∣
1− 1

2

(
h

h∗q

)q
if 0 < h ≤ h∗q ,

1

2

(
h∗q
h

)q
if h ≥ h∗q .

(44)

Above, we denote by h∗q the h∗m,p expressed as a function of q for given values of k,m and p,
that is:

h∗q =


(
1 +

‖a‖Wm,p,Wm′,p ′

αh,k

)
(
1 +

‖a‖Wm,p,Wm′,p ′

αh,k+q

) ( k + n

k + q + n

)n( k

k + q

)m(n+2) (k + q −m)!

(k −m)!

(
k + q + 1−m− n

p

)
(
k + 1−m− n

p

) |u|k+1,p,Ω

|u|k+q+1,p,Ω


1
q

.

(45)
To obtain the asymptotic behavior of sequence (Pq(h))q∈N⋆ , we first have to compute the limit

of sequence
(
h∗q
)
q∈N.

It is the purpose of the following lemma:
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Lemma 5.1 Let u ∈ W r,p(Ω), (∀ r ∈ N), be the solution to problem (1) and (h∗q)q∈N⋆ the se-
quence defined by (45). We assume that sequence (αh,k+q)q∈N⋆ satisfies:

∀k ∈ N, lim
q→+∞

αh,k+q = α∗
h,k ∈ R∗. (46)

Let k,m and p be fixed such that (21) or (22) holds.

If

lim
q→+∞

|u|k+q+2,p,Ω

|u|k+q+1,p,Ω
= l, (l ∈ R∗

+), (47)

then,
lim

q→+∞
h∗q = +∞. (48)

Proof : From (45), we readily get:

(
h∗q
)q

=

(
1 +

‖a‖Wm,p,Wm′,p ′

αh,k

)
(
1 +

‖a‖Wm,p,Wm′,p ′

αh,k+q

) (k + n)nkm(n+2)

(k −m)!

(
k + 1−m− n

p

) (k + q −m)!

(
k + q + 1−m− n

p

)
(k + q + n)n (k + q)m(n+2)

.
|u|k+1,p,Ω

|u|k+q+1,p,Ω
.

(49)
Let us first remark that condition (46) implies that the following ratio, based on the constant
involved in (3) of Lemma 2.1, is uniformly bounded and stays strictly positive for any value of
q. In particular, we have:

lim
q→+∞

(
1 +

‖a‖Wm,p,Wm′,p ′

αh,k

)
(
1 +

‖a‖Wm,p,Wm′,p ′

αh,k+q

) = β∗h,k ∈ R∗. (50)

Then, using Stirling’s formula when q goes to +∞, we first remark that

(k+q−m)!

(
k+q+1−m−n

p

)
(k + q)m(n+2) (k + q + n)n

∼
q→+∞

√
2π(k + q −m)

(
k + q −m

e

)(k+q−m)(
k+q+1−m−n

p

)
(k + q)m(n+2) (k + q + n

)n ,

∼
q→+∞

√
2π(k + q −m)(k+q−m+ 1

2
)

ek+q−m

1(
k + q

)n+m(n+2)−1
,

∼
q→+∞

√
2π

(k + q)k+q−3m−n(m+1)+ 3
2

ek+q
, (51)

where, according to Euler’s formula [21], we have used the following equivalence

(k + q −m)(k+q−m+ 1
2
) ∼
q→+∞

e−m(k + q)(k+q−m+ 1
2
).
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Then, substituting (51) in (49) allows us to determine equivalent of h∗q when q → +∞. Using
(50), one obtains

(
h∗q
)q ∼

q→+∞
Θ

(
1 +

‖a‖Wm,p,Wm′,p ′

αh,k

)
(
1 +

‖a‖Wm,p,Wm′,p ′

αh,k+q

)e−(k+q)(k + q)k+q−3m−n(m+1)+ 3
2 .

|u|k+1,p,Ω

|u|k+q+1,p,Ω
, (52)

where Θ denotes a constant independent of q defined by

Θ ≡
√
2π

(k + n)nkm(n+2)

(k −m)!

(
k + 1−m− n

p

) .
We now introduce two sequences (vq)q∈N and (wq)q∈N, as follows:

∀ q ∈ N : vq ≡ ln |u|k+q+1,p,Ω, wq ≡ q .

Then, because of (47), the sequence rq defined by the ratio

rq ≡
vq+1 − vq
wq+1 − wq

= ln

(
|u|k+q+2,p,Ω

|u|k+q+1,p,Ω

)
has a limit L ≡ ln l ∈ R, when q goes to +∞.

As a consequence, due to the Stolz-Cesaro theorem, (see [16], p.263-266), the ratio
vq
wq

also

converges to the same limit L when q goes to +∞:

lim
q→+∞

vq
wq

= lim
q→+∞

ln |u|k+q+1,p,Ω

q
= L,

and

lim
q→+∞

(
|u|k+1,p,Ω

|u|k+q+1,p,Ω

) 1
q

= lim
q→+∞

(
1

|u|k+q+1,p,Ω

) 1
q

= e−L =
1

l
. (53)

As a result, from (50), (52) and (53), one can conclude that h∗q ∼
+∞

1

e l
q, which proves (48).

Remark 4 Let us comment on the assumptions of this lemma.

1. The hypothesis on the ratio of norms in Eq. (47) might appear very ad-hoc. Nevertheless,
one can easily check, based on several examples, that it is satisfied. Take for instance u,
solution to a standard Laplace problem solved in a regular domain Ω ∈ R2 (for example
a square), with a given regular Dirichlet boundary condition on the boundary ∂Ω and a
regular enough right-hand side, (for details see [13]).

2. As a matter of fact, inequality (50) is fulfilled in the following case: Assuming the bilinear
form a is coercive, the functional framework is necessarily Hilbertian (see Remark 2.3 in
[15]). Since we have considered that W ≡ Wm,p(Ω) and V ≡ Wm′,p′(Ω), with 1

p + 1
p′ = 1,

then p = 2 and W = V = Hm(Ω).

So, if we denote by α the coercivity constant and by ‖a‖ the continuity constant, inequality

(3) of Céa’s Lemma 2.1 can be expressed with constant ∥a∥
α instead of

(
1 +

∥a∥W,V

αh

)
and

the ratio in the limit (50) equals 1 and β∗h,k too.
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3. In terms of linear algebra, i.e. considering the matrix A associated with the bilinear form
a, it can be shown that αh,k (or αh,k+q) of (50) is related to the smallest eigenvalue of the
square matrix AtA, i.e. the smallest singular value of A, (see [15], Remark 2.23, (iii)).
Hence, inequality (50) could be checked if one is able to get information about the singular
value decomposition of A.

We now consider the convergence of sequence (Pq(h))q∈N⋆ as q → +∞. As we will see, due to
the definition (44) of sequence (Pq(h))q∈N⋆ , pointwise convergence presents a discontinuity at
point h = h∗q . Indeed, when q goes to +∞, thanks to lemma 5.1, h∗q also goes to +∞, and this
discontinuity is therefore at +∞.

Thus, to handle this singular behavior, we introduce the weak convergence of the sequence
(Pq(h))q∈N⋆ , i.e. convergence on the sense of distributions.

For the sake of exhaustivity, we briefly recall here some basic notions about distribution theory
[24], that allows us in passing to introduce the notations we will use. A well-informed reader
may skip these few lines.

We denote by D(R) the space of functions C∞(R) with a compact support in R, and by D′(R)
the space of distributions defined on R. As we will carry out our analysis for all x ∈ R, we
extend the sequence of functions (Pq(h))q∈N⋆ on ]−∞, 0[ by setting: ∀h ≤ 0 : Pq(h) = 0.

Therefore, the sequence of extended functions
(
Pq(h)

)
q∈N⋆

belongs to the space L1
loc(R). 1 Hence,

∀ q ∈ N∗, each function Pq(h) can be associated to its regular distribution TPq defined by:

∀φ ∈ D(R) : < TPq , φ > ≡
∫
R
Pq(h)φ(h)dh. (54)

For what follows, we will also need the Heaviside distribution TH defined by:

∀φ ∈ D(R) : < TH , φ > ≡
∫
R
H(h)φ(h)dh =

∫ +∞

0
φ(h)dh,

where H(h) = 1 if h > 0, and zero otherwise. We are now in a position to state the convergence
result of the sequence of distributions

(
TPq

)
q∈N∗ in D′(R).

Theorem 5.2 With the same assumptions on u as in Lemma 5.1, let
(
TPq

)
q∈N∗ be the sequence

of distributions defined by (54) and (44)-(45). Then,
(
TPq

)
q∈N∗ converges with respect to the

weak-* topology on D′(R) to the Heaviside distribution TH .

Proof : By definition [24] of the weak convergence in D′(R), we have to evaluate the limit of
the numerical sequence

(
< TPq , φ >

)
q∈N∗ when q goes to +∞.

Hence, due to (54) and (44), we have, ∀φ ∈ D(R) :

< TPq , φ > ≡
∫
R
Pq(h)φ(h)dh =

∫ h∗
q

0

[
1− 1

2

(
h

h∗q

)q]
φ(h)dh+

∫ +∞

h∗
q

1

2

(
h∗q
h

)q
φ(h)dh

=

∫ +∞

−∞

[
1− 1

2

(
h

h∗q

)q]
11[0,h∗

q ]
(h)φ(h)dh+

∫ +∞

−∞

1

2

(
h∗q
h

)q
11[h∗

q ,+∞[(h)φ(h)dh, (55)

1. the space of functions locally integrable for any compact K of R.
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where 11[a,b] denotes the indicator function of interval [a, b],∀(a, b) ∈ R2.

Therefore, to compute the limit of < TPq , φ > when q goes to +∞, we will check the hypothesis
of the dominated convergence theorem [8] for the integrals involved in (55).

For the first one, introduce the sequence of functions (ψq)q∈N∗ defined on R by:

∀ q ∈ N∗ : ψq(h) =

[
1− 1

2

(
h

h∗q

)q]
11[0,h∗

q ]
(h)φ(h).

Then, sequence (ψq)q∈N∗ exhibits the following properties:

— It converges pointwise on R to function Hφ, thanks to the following properties:

∀h ∈ R : lim
q→+∞

11[0,h∗
q ]
(h) = 11[0,+∞[(h),

∀h, 0 < h < h∗q : lim
q→+∞

(
h

h∗q

)q

= lim
q→+∞

exp

[
q ln

(
h

h∗q

)]
= 0+,

For h = h∗q : ψq(h
∗
q) =

1

2
11[0,h∗

q ]
(h∗q)φ(h

∗
q) =

1

2
φ(h∗q) −→

q→+∞
0,

as h∗q goes to +∞ when q goes to +∞, φ being a function with compact support.

— The sequence of functions (ψq)q∈N∗ is uniformly dominated for all q ∈ N∗ by an integrable
function:

∀q ∈ N∗ : |ψq(h)| ≤ |φ|,

and |φ| ∈ L1(R) as φ ∈ D(R).
The dominated convergence theorem enables us to conclude that

lim
q→+∞

∫ +∞

−∞
ψq(h)dh =

∫ +∞

−∞
lim

q→+∞
ψq(h)dh =

∫ +∞

−∞
(Hφ)(h)dh.

With the same arguments, one gets for the second integral of (55)

lim
q→+∞

∫ +∞

−∞

1

2

(
h∗q
h

)q
11[h∗

q ,+∞[(h)φ(h)dh = 0,

so that

lim
q→+∞

< TPq , φ > =

∫ +∞

−∞
(Hφ)(h)dh = < TH , φ >, ∀φ ∈ D(R).

This ends the proof.

In this setting, it is worth giving an interpretation of the results proved in this section. Basically,
our results mean that when the distance between the values of k1 and k2, (k1 < k2) increases,
the finite elements Pk2 will be surely more accurate than finite elements Pk1 , for all values of h
in the interval [0,+∞[, and not only when h goes to zero, as usually considered for accuracy
comparison.

Apart from the asymptotic case where k2 − k1 goes to infinity, the probabilistic law (41) gives
new insights into the relative accuracy between Pk1 and Pk2 finite elements when k1 and k2 are
fixed.

Indeed, in this situation, for h > h∗m,p, we obtained that Prob
{
X

(k2)
m,p (h) ≤ X

(k1)
m,p (h)

}
≤ 0.5.
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This shows that there are cases where Pk2 finite elements probably must be overqualified. As a
consequence, a significant reduction of implementation time and execution cost could be obtained
without loss of accuracy. Such a phenomenon has already been observed by using data-mining
techniques coupled with other probabilistic models (see [3, 4, 5], [10] and [11]).

6 Conclusion

In this paper, we derived an explicit k−dependence in Wm,p a priori error estimates, that we
then applied to probabilistic relative accuracy of Lagrange finite elements. After having recalled
some fundamental results of Banach spaces, especially the extension of Céa’s classical Lemma
to non Hilbert spaces, we derived general upper bounds on the basis functions and their partial
derivatives for the polynomial space Pk(K).

Hence, we extended previous work [12], [13] to the case of BanachWm,p spaces. This enabled us
to evaluate the relative accuracy between two Lagrange finite elements Pk1 and Pk2 , (k1 < k2),
when the norm to measure the error estimate is defined on Wm,p(Ω). We also analyzed the
asymptotic behavior of the relative accuracy between finite elements Pk1 and Pk1+q, for a fixed
k1, when q goes to +∞. We proved that, under some ad hoc assumptions that are fulfilled
in most cases, the probabilistic law (41) is convergent to the Heaviside distribution TH in the
weak-* topology on D′(R).

Lastly, note that these perspectives are not necessarily restricted to finite element methods, but
can be extended to other approximation methods: given a class of numerical schemes and their
corresponding error estimates, one can order them, not only by considering their asymptotic
rates of convergence, but also by evaluating the most probably accurate one.

Homages: The authors want to warmly dedicate this research to pay homage to the memory
of Professor André Avez and Professor Gérard Tronel, who largely promoted the passion of
research and teaching in mathematics.
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