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Abstract

A k-critical graph is a k-chromatic graph whose proper subgraphs are all (k − 1)-
colourable. An old open problem due to Borodin and Kostochka asserts that for k ≥
9, no k-critical graph G with k = ∆(G) exists, where ∆(G) denotes the maximum
degree of G. We show that if a certain special list-colouring property holds for every
8-critical graph with ∆ = 8 (which is true for the apparently only known example)
then the Borodin-Kostochka Conjecture holds. We also briefly survey constructions
of ∆-critical graphs with ∆ ≤ 8, highlighting the apparent scarcity of such graphs
once ∆ exceeds 6.

1 Introduction

A famous open problem about extending Brooks’ Theorem [3] was posed by Borodin and
Kostochka [2] in 1977. It can be conveniently formulated as follows. Here ∆ denotes
the maximum degree of a graph, and by a k-critical graph we mean a graph G with
the property that the chromatic number χ(G) = k but χ(G′) ≤ k − 1 for every proper
subgraph G′ of G.

Conjecture 1. For each k ≥ 9, the only k-critical graph with ∆ ≤ k is Kk.

Since ∆(Kk) = k − 1, this is equivalent to asserting the non-existence of ∆-critical
graphs once ∆ ≥ 9. Phrased in similar language, Brooks’ Theorem implies that for each
k ≥ 4, the only k-critical graph with ∆ + 1 ≤ k is Kk. The condition k ≥ 9 is necessary,
due in particular to the graph C5[K3] shown in Figure 1.

Much progress has been made towards a solution to the Borodin-Kostochka Conjec-
ture, for example [2, 5, 6, 7, 8, 12, 13, 15] (see e.g. [6] for a detailed description of previous
work). Despite these developments, the conjecture remains open in general. Here we men-
tion just two of the strongest results to date, namely, that the conjecture holds provided
∆ is a sufficiently large (unspecified) constant [15], and that any ∆-chromatic graph with
∆ ≥ 13 must contain K∆−3 [6]. In [7] it was shown that the conjecture is equivalent to
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the seemingly much weaker assertion that every ∆-chromatic graph with ∆ ≥ 9 contains
the graph obtained from K∆ by removing the edges of a K∆−3.

One simple but important step in addressing Conjecture 1, shown in [12, 4], has been
to reduce the general problem to graphs with ∆ = 9. (Similar arguments were used in
e.g. [6, 7, 13] as well.) In this note we continue the same theme, linking the general
conjecture to the behaviour of graphs with ∆ ≤ 8.

We will refer to a particular restricted notion of list colouring, called non-identical list
colouring (abbreviated NIL), defined as follows. For a set S, an integer k, and a graph
G, an (S, k)-NIL assignment of G is an assignment L of lists L(v) ⊆ S to each vertex
v ∈ V (G) such that each |L(v)| = k, and L(v) 6= L(w) for some pair v, w ∈ V (G). We
say that G is (S, k)-NIL colourable if every (S, k)-NIL assignment L of G admits an L-list
colouring of G. For example, it is easy to verify (see Section 2) that the complete graph
Kn is (S, n− 1)-NIL colourable for every S.

The main result of this note is the following, where [n] denotes {1, . . . , n}. The proof
appears in Section 3.

Theorem 2. Suppose that every 8-critical graph with ∆ ≤ 8 is regular and ([8], 7)-NIL
colourable. Then the only 9-critical graph with ∆ ≤ 9 is K9 (i.e. the Borodin-Kostochka
Conjecture holds).

Recall that the lexicographic product of graphs G and H is the graph G[H] with vertex
set V (G)× V (H), in which (x, u) is adjacent to (y, v) whenever xy ∈ E(G), or x = y and
uv ∈ E(H). The (regular) 8-critical graph C5[K3] (see Figure 1) is shown in Section 2
to be ([8], 7)-NIL colourable. Since we are unaware of any 8-critical graphs with ∆ ≤ 8
besides C5[K3] and K8, the following corollary tempts us to conjecture that there are no
others.

Corollary 3. Suppose that the only 8-critical graphs with ∆ ≤ 8 are C5[K3] and K8.
Then the Borodin-Kostochka Conjecture holds.

We end this brief note with a discussion on constructing ∆-critical graphs for small ∆
in Section 4. In particular, we point out there that while infinite families of such graphs
exist when ∆ ≤ 6, it seems more difficult to construct examples for ∆ = 7, and (as
mentioned) even more so for ∆ = 8.

2 Non-identical list colouring

In this section we verify that the graph C5[K3] shown in Figure 1 is ([8], 7)-NIL colourable.
Observe that C5[K3] has 15 vertices and independence number 2, so it is not 7-colourable.
An 8-colouring can be easily found (χ(C5[K3]) ≤ 8 also follows from Brooks’ theorem).
To see that it is critical, observe that the graph is vertex transitive and there are only
two types of edges (those in triangles xiyizi and those connecting them). Given an [8]-
colouring φ, let us assume that 8 is the unique colour that appears exactly once, and
that φ(x1) = 8. By symmetry, we may assume that φ(z2) = φ(z5) = 7, and that colors
1, 2, . . . , 6 each appear on neighbours of x1 exactly once. Then in a subgraph missing x1y1

we may recolour x1 to φ(y1), and in a subgraph missing x1x2 we may recolour x1 to φ(x2).
This shows that C5[K3] is also 8-critical.
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Figure 1: C5[K3]

First we note the following simple consequence of the well-known fact (equivalent
to Hall’s Theorem) that a collection of sets {L(v) : v ∈ V } has a system of distinct
representatives {sv ∈ L(v) : v ∈ V } if and only if |

⋃
v∈T L(v)| ≥ |T | for each T ⊆ V .

Lemma 4. For every n ≥ 2 and every set S, the complete graph Kn is (S, n − 1)-NIL
colourable.

Lemma 5. The graph C5[K3] is ([8], 7)-NIL colourable.

Proof. Fix an ([8], 7)-NIL assignment L of G = C5[K3]. By symmetry, we may assume
that two (adjacent) vertices with different lists are among x1 , x2 , y1 , y2 . Let K denote the
K4 induced by these four vertices. Since every pair of vertices of G have at least 6 common
colours in their lists, by renaming colours if necessary we may choose the following partial
colouring ϕ:

• ϕ(z1) = ϕ(z3) = 7.

• ϕ(z2) = ϕ(z5) = 8.

• ϕ(x3) = ϕ(x5) = 6 and ϕ(y3) = ϕ(y5) = 5.

• For each v ∈ K ∪ {x4 , y4 , z4} set L′(v) = L(v) \ {5, 6, 7, 8}. Then we may easily
colour each vertex v ∈ {x4 , y4 , z4} from L′(v) since |L′(v)| ≥ 3 for each.

It remains to colour the vertices v of K from their current lists L′(v). If |L′(v)| = 3 for
each v ∈ K, then each L(v) contains all of {5, 6, 7, 8} and hence, by our choice of K, we
find that {L′(v) : v ∈ K} is a ([4], 3)-NIL assignment of K4. If |L′(x)| ≥ 4 for some x ∈ K,
then we may assign to each v in K a 3-subset of L′(v) such that not all are identical.
Hence, in either case, by Lemma 4, we may complete the colouring of K and hence of
G.
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3 Proof of Theorem 2

As mentioned in the Introduction, and shown in [12, 4] (see also [6, 7, 13]), the Borodin-
Kostochka Conjecture can be reduced to the specific case of k = 9. A useful tool for such
purposes is the following result of King [11] (which is based on [9]). Here ω(G) denotes
the maximum size of a clique in G.

Theorem 6. If a graph G satisfies ω(G) > 2
3
(∆(G) + 1), then G contains an independent

set I such that ω(G− I) = ω(G)− 1.

Our proof of Theorem 2 begins with an application of Theorem 6, which in this context
is quite standard. For example it essentially repeats the proof of Lemma 1.8 in [7], but
we include this argument in order to establish how the 8-critical graph H sits in G. This
is needed for the rest of the proof.

We may now begin the proof of Theorem 2. Suppose that there exist 9-critical graphs
G with ∆(G) ≤ 9 that are distinct from K9, and choose one such G with the smallest
number of vertices. Then by Brooks’ Theorem we know ∆(G) = 9, since otherwise G
would be 8-colourable. By Theorem 6 we may choose a maximal independent set I in G
that intersects every 8-clique. (Note that if ω(G) ≤ 7 then any maximal independent set
will do.)

By maximality of I we know ∆(G−I) ≤ 8, by 9-criticality of G we know χ(G−I) ≤ 8
(and hence χ(G−I) = 8), and by choice of I we have ω(G−I) ≤ 7. Let H be an 8-critical
subgraph of G − I. Then clearly we have ∆(H) ≤ 8 and ω(H) ≤ 7 as well. Hence in
particular H is not K8, so again by Brooks’ Theorem ∆(H) = 8. Thus, by the assumption
of the theorem, H is 8-regular and ([8], 7)-NIL colourable.

We denote by IH the subset I ∩ NG(H). Since ∆(G) = 9 and H is 8-regular, by
maximality of I we know dIH (v) = 1 for each vertex v of H, and IH is a vertex cut in G
separating H from G− I −H. Furthermore since H is 8-regular and not K9 it has more
than 9 vertices, so |IH | ≥ 2.

By 9-criticality of G we know that G−H is 8-colourable. First suppose that G−H has
an 8-colouring φ in which two vertices of IH receive different colours. Since each vertex v
of H has exactly one neighbour vI in IH , the list assignment L given by L(v) = [8]\{φ(vI)}
is an ([8], 7)-NIL assignment for H. Hence, by the assumption, H has an L-colouring,
which together with φ shows that G is 8-colourable, giving a contradiction. Thus we may
assume that every 8-colouring of G−H must give all vertices of IH the same colour. In
other words, adding any edge xy to G−H where x, y ∈ IH results in a 9-chromatic graph
G−H + xy.

Claim 1. Every pair x, y ∈ IH of distinct vertices lies in a K−9 -subgraph Kxy of G −H
with V (Kxy) ∩ IH = {x, y}. (Here K−9 denotes the graph obtained by removing one edge
from K9.)

To verify the Claim, observe that since G − H + xy is 9-chromatic, it contains a 9-
critical subgraph J . Since |V (J)| ≤ |V (G − H)| < |V (G)| and ∆(J) ≤ ∆(G) = 9, by
minimality of our counterexample G, we conclude that J = K9. Clearly J must contain
the edge xy, so J − xy is the claimed K−9 .

Recalling that |IH | ≥ 2 and ∆(G) = 9, Claim 1 immediately implies a contradiction
if any v ∈ IH satisfies dH(v) ≥ 3. Hence we may assume dH(v) ≤ 2 for each v ∈ IH . We
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know H has more than 9 vertices, so since dIH (u) = 1 for each vertex u of H, we find
that |IH | ≥ 5. Fix v ∈ IH .

For four vertices ui ∈ IH , 1 ≤ i ≤ 4, ui 6= v, by Claim 1, we have copies Kvui
of K−9 in

G, each of which contains v. Since d(v) ≤ ∆(G) = 9, these four subgraphs have another
common vertex in G− I −H, say w. Then w has eight neighbours in Kvu1 together with
u2, u3 and u4, thus there are a total of at least 11 neighbours of w in G, contradicting the
fact that ∆(G) = 9. This completes the proof of Theorem 2.

4 ∆-critical graphs for small ∆

The graph C5[K3] is one example of a critical graph obtained by blowing up each vertex
of an odd cycle into a clique. One can easily construct infinite families of k-critical graphs
with ∆ = k for k = 4, 5 by using such blow-ups using clique sizes 1 and 2.

Another simple construction of critical graphs from [4] (generalizing examples from [1])
is as follows. Fix k ≥ 4, let G be a graph with ∆(G) ≤ k, and suppose G has a vertex x
of degree k− 1. Form a new graph Gk by “evenly splitting” x into 3 vertices (i.e. remove
x and add an independent set I of three vertices whose degrees differ by at most one and
whose neighbourhoods partition N(x)), and joining each vertex of I to a new clique K of
size k − 2.

It is straightforward to verify that Gk is k-critical if and only if G is k-critical. Since
each v ∈ V (G) ∩ V (Gk) has degree dG(v) in Gk, each v ∈ K has degree (k − 3) + 3 = k,
and each v ∈ I has degree k− 2 + dk−1

3
e or k− 2 + bk−1

3
c, we see that if k− 2 + dk−1

3
e ≤ k

then ∆(Gk)) = k. This holds for k = 4, 5, 6, 7. Moreover if k−2 + bk−1
3
c ≤ k−1, then Gk

has a vertex of degree less than k, which is true for k = 4, 5, 6. Hence for these values, this
construction may be repeated an arbitrary number of times, starting e.g. with Kk, giving
an infinite family of k-critical graphs with ∆ = k. For k = 7, however, since no new vertex
of degree k − 1 is introduced by the construction, if we start with K7 the process will
produce 7-critical graphs with ∆ = 7 on 7i vertices for i = 1, 2, . . . 8, thus terminating with
graphs on 56 vertices. This operation produces various nonisomorphic 7-critical graphs
on 7i vertices for i = 3, . . . , 8. For example, for such graphs on 56 vertices, we note that
the subgraph J induced on the set of 21 split vertices is a 2-regular graph where there
is (exactly) one edge connecting each pair of triples representing two vertices of K7. In
particular, for any partition F1, . . . , Fs of E(K7) into connected even-degree subgraphs of
K7, we may construct J whose components are cycles of lengths |E(F1)|, . . . , |E(Fs)|, by
following an Euler tour in each of the Fi. There are many such partitions, for example a
partition of E(K7) into three 7-cycles, or a partition into seven 3-cycles (the lines of Fano
plane), or the whole set E(K7) as a single partition class (for which J is a 21-cycle).

Since the graph obtained from C5[K3] by removing two nonadjacent vertices is also
7-critical, another family of 7-critical graphs with ∆ = 7 can be built from it using the
above operation. This gives further examples, with vertex sets of sizes 20, 27, and 34. To
the best of our knowledge this desribes all the known 7-critical graphs satisfying ∆ = 7.
Thus we pose the following natural questions.

Problem 7. Does there exist an 8-critical graph with ∆ = 8 different from C5[K3]?

Problem 8. Does there exist an infinite family of 7-critical graphs with ∆ = 7?
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Since Gk is k-critical if and only if G is k-critical, one potential way of showing that
the above list is complete for ∆ = 7 might be to show that every 7-critical graph with
∆ = 7, aside from C5[K3]−I, contains the graph obtained from K8 by removing the edges
of a triangle.

Finally we remark that further examples of ∆-critical graphs for ∆ = 4, 6 that are not
of either of the types described above are given by the square C2

8 of the 8-cycle and the
cube C3

11 of the 11-cycle respectively (the latter is shown in Figure 2). More generally,
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Figure 2: C3
11

the rth power Cr
3r+2 of the (3r + 2)-cycle forms the basis for a family of tight examples

for a conjecture of Reed [14], that is closely related to Conjecture 1. This conjecture

proposes that for every graph G one has χ(G) ≤ d∆(G)+ω(G)+1
2

e. The graph Cr
3r+2[Kt] has

(3r+ 2)t vertices, it is ∆ = ((2r+ 1)t− 1)-regular, it has clique number ω = (r+ 1)t, and
independence number 2. This implies that its chromatic number is at least⌈(3r + 1)t

2

⌉
=

⌈(2r + 1)t− 1) + (r + 1)t+ 1

2

⌉⌈∆(G) + ω(G) + 1

2

⌉
.

It is not difficult to give a colouring using only this many colours. The well-known example
C5[Kt] is the special case r = 1.
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