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Abstract

Concerning the recent notion of circular chromatic number of signed graphs, we introduce a bipartite
analogue of the generalized Mycielski graphs, denoted BMk,2k−1, having the following properties. It has
k(2k − 1) + 1 vertices, its shortest negative cycle is of length 2k and its circular chromatic number is 4.

In the course of proving our result, we also obtain a simpler proof of the fact that the generalized
Mycielski graph Mℓ(C2k+1) has circular chromatic number 4. The proof has the advantage that it il-
luminates, in an elementary manner, the strong relation between algebraic topology and graph coloring
problems.

1 Introduction

The problem of building graphs of high girth and high chromatic number is one of the basic questions of
graph coloring and its study has lead to many developments. In particular, the original proof of Erdős for
the existence of such graphs has led to the development of probabilistic methods in graph theory. Since
then several constructive methods are presented, but none easy to grasp. With a weaker condition of high
odd girth instead of high girth there are several natural classes of graphs. In particular, in the family
of the Kneser graphs one can find examples of high odd girth and high chromatic number. The proof
of the lower bound for the chromatic number of the Kneser graphs, by L. Lovász, was the birth place of
the connection between algebraic topology and graph coloring. Further developing this method, Stiebitz
introduced a generalization of the Mycielski construction to build small graphs of high odd girth and high
chromatic number. Generalized Mycielski on odd cycles have been studied independently by several authors
and number of results on their chromatic number is proved.

In this work, building up on the ideas from several work in the literature, we first present a relatively short
proof that the generalized Mycielski graphs on odd cycles have circular chromatic number 4. The proof has
the advantage that captures the connection between algebraic topology and graph coloring with elementary
techniques. We then present a class of signed bipartite graphs of high negative girth and circular chromatic
number 4. Special subclass of these graphs have been proven to be on nearly optimal number of vertices
among 4-chromatic graphs of a given odd girth and are conjectured to achieve the optimal value.

In the next section, we first settle notation and terminology. In the following section, we provide a historical
account of what is known. Following that we present our proof. We end with concluding remarks the final
section.
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2 Notation

We consider simple graphs unless clearly stated otherwise. A signed (simple) graph (G, σ) is a graph G
together with the assignment σ of signs to the edges. If G is bipartite, then (G, σ) is called a signed bipartite
graph (in some literature this term is used to refer to a balanced signed graph, that is a signed graph with
no negative cycle). The sign of a structure in (G, σ) (such as a cycle, a closed walk, a path) is the product
of the signs of edges in the said structure counting multiplicity.

Given an integer n, n ≥ 3, we denote by Cn the cycle (graph) on n vertices. That is a 2-regular connected
graph on n vertices. Furthermore, we view Cn as plane graph, that is the graph together with a planar
embedding. For topological use of Cn, one may identify it with the regular polygon on n vertices. Vertices
of Cn are normally labeled as v1, v2, . . . , vn. The exact square of Cn, denoted C

#2
n , is the graph on the same

set of vertices where two vertices are adjacent if they are at distance (exactly) 2 in Cn. Observe that for odd

values of n, C#2
n is also a cycle of length n. For even values of n, C#2

n consists of two connected components,
each isomorphic to a cycle of length n

2 . They are induced on sets of vertices with odd and even indices and

will be denoted, respectively, by C#2o
n and C#2e

n .

Given a positive real number, we denote by Or the (geometric) circle of circumference r. That would be a
circle of radius r

2π . The antipodal of a point x on Or is the unique point x on Or which is collinear with x
and the center of the circle.

Given a real number r, r ≥ 2, a circular r-coloring of a signed graph (G, σ) is a mapping ψ of the vertices
of G to the points of Or such when xy is a negative edge, then distance of ψ(x) from ψ(y) on Or is at least
1 and if xy is a positive edge, then the distance of ψ(x) from ψ(y) is at least 1, equivalently, the distance
between ψ(x) and ψ(y) is at most r

2 − 1. The circular chromatic number of (G, σ), denoted χc(G, σ), is the
infimum of r such that (G, σ) admits a circular r-coloring. When restricted on signed graphs where all edges
are negative, we have the classic notion of circular coloring of graphs. This extension to signed graphs is
first presented in [17] noting that a different but similar parameter under a similar name has appeared in the
literature first [10]. However, the roll of positive and negative edges are exchanged for a better suitability
with literature on structural theory on signed graphs, specially in regard with minor theory of signed graphs.

Among basic results the following should be noted for the purpose of this work. The infimum in the definition
is always attained for finite graphs, even allowing multi-edges and positive loops, but a negative loop cannot
be colored with a finite r. For the class of signed bipartite (multi)graphs we have the trivial upper bound
of χc(G, σ) ≤ 4, to see this, map the vertices of one part of G to the north pole of O4 and the vertices of
the other part to the east point. Even with such a strong upper bound the problem of determining the
exact value of the circular chromatic number of a given signed bipartite graph is of high importance and,
in general, quite a difficult problem. In particular, as it is pointed out in [17], using some basic graph
operations, namely indicators, one can transform a graph G into a signed bipartite graph F (G) such that
the circular chromatic number of F (G) determines the circular chromatic number of G. A basic example of
this sort is to replace each edge uv of G with a negative 4-cycle uxuvvyuv where xuv and yuv are new and
distinct vertices. It is then shown in [17] that χc(S(G)) = 4− 4

χc(G)+1 . Further connections with some well

known study and theorems, such as the four-color theorem, is discussed in [11] and [16].

Motivated by these observations and in connection with some other studies, some of which are mentioned
in the last section, the question of constructing signed bipartite graphs of high negative girth but circular
chromatic number 4 is of high interest. In this work, we present a bipartite analogue of the generalized
Mycielski graph on odd cycles as such examples of signed bipartite graphs.

Our proof also leads to an elementary understanding of the relation between coloring problems of graphs
and basic notions of algebraic topology, namely the winding number. Recall that given a closed curve γ on
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the plane, the winding number of γ, defined rather intuitively, is the number of times γ is winded around the
origin in the clockwise direction, noting that: if the origin is not in the part bounded by γ, then the winding
number is 0 and that winding in counterclockwise direction is presented by a negative number. Here the
closed curves we work with are mappings to Or with the center of Or being the center of the plane. They
can be thought of as continuous mappings of [0, 1] to Or with the condition that the two end points, i.e., 0
and 1 are mapped to the same point.

3 A historical note

Mycielski introduced in 1955 [14] the construction that is now known as the Mycielski construction. His
goal of the construction was to build triangle-free graphs of high chromatic number. In this construction,
given a graph G one adds a vertex v′ for each vertex v of G which is joined to all neighbors of v in G and
then adds a vertex u which is joined to all vertices v′. It is not difficult to prove that the resulting graph
has chromatic number χ(G) + 1.

Generalization of the construction, where one adds several layers of copy vertices before adding a universal
vertex to the last layer, was first considered, independently, in Ph.D. thesis of M. Stiebitz [23] and Ph.D.
thesis of N. Van Ngoc [18]. The former being written in German and the latter being in Hungarian, they
have not available to the author. Stiebitz applied methods of algebraic topology to prove that if one starts
with K2 and iteratively builds a generalized Mycielski, at each step the chromatic number would increase
by 1. This does not hold for every graph though. For example, the chromatic number of the complement
of C7 is 4, and any generalized Mycielski of it, except the original one is also of chromatic number 4. It is
recently been shown in [13] that the result of Stiebitz is equivalent to the Borsuk-Ulam theorem.

First English publications of the fact that the generalized Mycielski based on an odd cycle has chromatic
number 4 appeared independently in [20], [25] and [26]. The proof of Payan is about the special case of
Mk(C2k+1) as they appear as subgraphs of nonbipartite Cayley graphs on binary groups but it works the
same for any Mℓ(C2k+1). This proof has strongly motivated the work presented here. The proof of [25] is
presented quite differently, but the hidden idea behind the proof is the same. The result of [26] is more
general. It is shown that if G is not bipartite but admits an embedding on the projective plane where all
facial cycles are 4-cycles, then χ(G) = 4. That such structures are necessary in a 4-chromatic triangle-free
projective planar graphs was conjectured in [26] and proved in [5]. The well known fact that Mℓ(C2k+1)
quaderangulate the projective plane is evident from our presentation of these graphs in the next section.

The circular chromatic number of Mycielski constructions was first studied in [2]. That of the generalized
Mycielski is studied in [7], [12], [22], and [21] among others. In particular, that χc(Mℓ(C2k+1)) = 4 follows
from the general result of [22] where it is shown that if the lower bound for the chromatic number is proved
using topological connectivity, then the same lower bound works for the circular chromatic number as well.
The fractional chromatic number of generalized Mycielski graphs is studied in [24].

4 The construction

The main body of the construction we will work with is an almost quadrangulation of the cylinder which
we define here. Given positive integers ℓ and k, C

ℓ×(2k+1)
is the graph whose vertex set is V = {vi,j | 1 ≤ i ≤

ℓ, 1 ≤ j ≤ 2k + 1} with the edge set E = {vi,jvi+1,j−1 , vi,jvi+1,j+1 | 1 ≤ i ≤ ℓ− 1, 1 ≤ j ≤ 2k + 1}. Here, and
in the rest of this work, the addition on the indices is taken modular the maximum value of the said index,
which is (mod 2k + 1) in this case. We note that, as a graph C

ℓ×(2k+1)
is isomorphic to the categorical

product Pℓ ×C2k+1, but the standard labeling of this product does not fit well with our purpose. A general
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picture of this graph is depicted in Figure 1 where the dashed circles are only presenting the layers, but they
will play a key role.

Figure 1: C
ℓ×(2k+1)

with layers highlighted

Given positive integers ℓ and k, the generalized Mycielski graph Mℓ(C2k+1) is built from C
ℓ×(2k+1)

by the
following two steps:

• Connect v1,j to v
1,j+k

(Figure 2 right).

• Add a new vertex u and connect it to all vertices v
ℓ,j

(Figure 2 left).

Figure 2: Constructions on bottom and top layers

Observe that the added edges in the first item form an isomorphic copy of C2k+1. One can easily observe
that, starting with this cycle, the classic definition of generalized Mycielski graph results in the same graph.
The graph M1(C3) is K4. The graph M2(C5) is the well known Grözsch graph. It serves as an example
that the assumption of planarity in the Grözsch theorem is necessary [6]. That M2(C5) is the smallest
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4-chromatic triangle-free graph is proposed as an exercise in [8]. Chvátal showed [3] that, furthermore,
M2(C5) is the only 4-chromatic triangle-free graph on 11 vertices.

The following is a key property of Mℓ(C2k+1).

Proposition 1. The shortest odd cycle of Mℓ(C2k+1) is the minimum of 2k + 1 and 2l + 1.

Since this is folklore fact, we do not provide a proof but we note that the main idea to verify it is also
presented in the next proposition.

Next, given integers ℓ and k satisfying ℓ, k ≥ 2, we define a signed bipartite graph BMℓ,2k−1 also from
Cℓ×(2k−1) as follows.

• Edges of Cℓ×(2k−1) are all negative.

• Connect v1,j to v
2,j+k

by a positive edge (Figure 3, right).

• Add a new vertex u and connect it to each of the vertices v
ℓ,j
, j = 1, . . . , 2k − 1, with a negative edge

(Figure 2, left).

Figure 3: Construction of BMℓ,2k−1

We view this construction as a bipartite analogue of the generalized Mycielski. The second item of the
construction, which is presented in Figure 3, right, is the main difference with the previously know con-
structions: While in construction of Mℓ(C2k+1) we add some edges between vertices of the first layer, in
this new construction we add some connection between vertices of the first layer and the second layer. This
operation preserves the bipartition. The underlying graph of the induced subgraph on the first two layers
here then is isomorphic to what is known as the Möbuis ladder with 2k−1 steps. We will refer to it as such.

The case of BM1,3 is (K3,4,M) depicted in Figure 4. That is the signed bipartite graph where all the edges
of a maximum matching of K3,4 are assigned each a positive sign and all the other edges are assigned each
a negative sign.

That the underlying graph of BMℓ,2k−1 is bipartite is easily observed. Parity of the levels is a natural
bipartition of the graph. We show that based on the choice of k and l this signed bipartite graph does not
have a short negative cycle.
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Figure 4: BM1,3, presented two different ways

Figure 5: BM2,5 Figure 6: BM3,7

Proposition 2. Given integers l and k where l, k ≥ 2, the shortest negative cycle of BMℓ,2k−1 is of length
min{2l + 2, 2k}.

Proof. We first present two natural choices for a negative cycle, one of length 2k and another of length
2l + 2. The first is a negative cycle on the first two layers. Take a positive edge and connect its two ends
with one of the two paths using only the negative edges that are connecting the two layers. This would
result in negative cycle of length 2k. The second negative cycle we consider is by taking a positive edge and
connecting each of its ends to the vertex u by a shortest path (all edges negative). One of these paths will
be of length l and the other would be of length l + 1. Together with the first chosen edge itself then they
form a negative cycle of length 2l + 2.

It remains to show that the shortest of these two types of cycles gives us the negative girth. To that end
we will first show that a shortest negative cycle can only use one positive edge of BMℓ,2k−1. Toward a
contradiction, let C be a negative cycle with more than two positive edges. Our goal is to present a negative
cycle C ′ whose length is at most |C|−2. To that end we take two positive edges of C that come consecutively
on the cyclic order of C induced on the positive edges. Assume xy and x′y′ are these two edges and that x′

is followed by y in the cyclic order of C (that is to say there is no positive edge in the x′ − y path in C).
We remove the two positive edges xy and x′y′ and the x′y path connecting them in C, but then we add
yy′ copy of this path (which also has no positive edge). The result is a closed walks whose sign is the same
as that of C, and whose length is |C| − 2. But then this closed walk must contain a negative cycle, whose
length then is also at most |C| − 2, a contradiction.
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Finally if C is a cycle that uses exactly one negative edge, say xy, then the x− y path Pxy = C − xy either
passes through u in which case we have at least 2l + 2 edges in C, or the natural image of Pxy to the cycle
in between the first and second layers also connects x to y. But the shortest such path is of length 2k − 1,
thus P+

xy is of length at least 2k − 1, and the negative cycle is of length at least 2k.

5 Winding number and coloring

Given a simple closed curve γ on the plane, and a continuous mapping φ of γ to Or, we define the winding
number of the pair (γ, φ) to be the winding number of the curve φ(γ) with center of Or considered as the
center of the plane. Intuitively speaking, (γ, φ) tells us how many times the curve γ is wrapped around Or

in the clockwise direction noting that a negative number reflects an anticlockwise mapping. This value then
will be denoted by ω(γ, φ).

A mapping c of the vertices of the cycle Cn to the points of Or can be extended to a continuous mapping
of Cn to Or with the former being viewed as the closed curve or the polygon. There are 2n natural ways to
do this. For each pair vi, vi+1 of the vertices of Cn, the pair c(vi), c(vi+1) partitions the circle Or into two
parts. The segment of the polygon that represents the edge vivi+1 can be projected into one of these two
parts. We note that c is allowed to map several vertices of Cn to the same point and that even if vi and vi+1

are mapped to the same point, in our view, they partition the circle Or into two parts: a part of length 0
and a part of length r.

These 2n extensions are in a one-to-one correspondence with the 2n possible orientations of Cn: orient the
edge vivi+1 in such a way that the mapping follows the clockwise direction of Or.

Given a coloring c of the vertices of the cycle Cn, two extensions of c to a mapping of the polygon to Or

are of special importance. The first is the extension corresponding to the directed cycle Cn. Here vivi+1 is
mapped to the part of the circle where c(vi+1) follows c(vi) in the clockwise direction. Let us denote this
extension by cD. A trivial observation here is that the winding number of (Cn, c

D) is never 0.

The other natural extension is to choose the shortest of the two parts of the circle determined by c(vi)
and c(vi+1) to extend the mapping on the segment corresponding to the edge vivi+1. The orientation
corresponding to this extension then depends on whether c(vi) is the start or the end of this shorter part of
the circle with respect to the clockwise orientation. We denote this extension by csh and observe that this
extension may result in winding number 0 for some choices of c (and r).

Given the cycle Cn, a mapping c of its vertices to Or and an extension φ of c to the polygon, a combinatorial
way to compute ω(Cn, φ) is as follows: take an (open) interval I on Or which does not contain any image
of the vertices of Cn. Then in an extension φ of c to a mapping of the polygon to Or, each edge of Cn

either traverses I completely, or does not touch any point of it. Now the winding number ω(Cn, φ) is the
number of edges that traverse I in the clockwise direction minus the number of edges that traverse it in the
anticlockwise direction.

Let c be a mapping of the vertices of a cycle Cn to the circle Or. Consider the continuous mapping (Cn, c
D)

and an (open) interval I of Or which does not contain any point c(vi). Color the edges of Cn with two
colors, say green and orange, as follows: if the image of an edge e under cD contains I, then color it green,
otherwise color it orange. We are interested in the pairs of consecutive edges vi−1vi and vivi+1 which are
colored differently. If in such a pair the first edge is colored green, then in the next pair of this sort, (next
in the cyclic order of indices), the first edge must be orange and vice versa. Thus, the total number of such
pairs is even, regardless of the choices of n and c.

To use this observation, we will work with certain types of mappings c. We say a mapping c of the vertices
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of Cn to the points on Or is semi-proper if the followings hold: for each i the pair c(vi−1) and c(vi+1) of the
points on Or partitions it into two unequal parts and that c(vi) is on the larger of the two parts.

In the following, we present how the condition of semi-proper provides a connection between cD extension
of c on Cn and csh extension of the mapping c on C#2

n .

Lemma 3. Let c be a semi-proper mapping of Cn to Or and let I be an interval of Or which does not
contain any c(vi). Then in the extension csh as a mapping of one or two cycles in C#2

n to Or, the number
of edges vi−1vi+1 that does not cross over I is an even number.

Proof. That is because this number is the number of consecutive pairs of the edges of Cn which are not
of the same color in the {orange, green}-coloring corresponding to the extension cD of c. In counting such
edges, following the cyclic order, each time we see a green-orange, we have to see an orange-green next. As
we must return to the starting point we have an even number of them.

We may now observe that, given a real number r, r < 4, any circular r-coloring of Cn must be a semi-proper
coloring. Thus we have the following two consequences depending on the parity of n.

Lemma 4. Let c be a circular r-coloring of an even cycle Cn. Let co (resp. ce) be its restriction on the
vertices with odd (resp. even) indices. Then the winding numbers of (C#2o, csho ) and (C#2e, cshe ) are of the
same parity.

Proof. That is because after choosing a suitable interval I, by Lemma 3, the total number of edges of C#2

that does not cross over I in the extension csh is even. As the total number of edges is also even (that
is n), the number of edges of C#2 that cross over I is also even. However, the winding number of each
of (C#2o, csho ) and (C#2e, cshe ), which is the difference of the number of edges crossing I in the clockwise
direction and the number edge crossing it in the anticlockwise direction, has the same parity as the total
number of the edges of the cycle in consideration that cross over I (in the csh extension). This proves our
claim as the sum of the two winding numbers is an even number.

Using this lemma we can build cylinder of many layers, as shown in the example of Figure 1, with the
property that in any circular r-coloring c of the red graph (r < 4) all of the dashed gray cycles must have
winding numbers of the same parity. Observe that in this construction the zigzag red cycle between two
layers is an even cycle and its exact square consists of the two gray cycles presenting the two levels. If we
then add structures to the two ends in such a way that one forces an odd winding number of one of the gray
cycles and the other forces an even winding number to one of them, then the result would be a graph which
admits no circular r-coloring for r < 4.

A basic method to achieve these conditions, which results in the generalized Mycielski graphs, is presented
next.

Lemma 5. Given an odd integer n, a positive real number r, and a semi-proper mapping c of Cn to Or,
the winding number ω(C#2

n , csh) is an odd number.

Proof. By Lemma 3, the total number of edges of C#2
n that does not cross over I is even. As n is an odd

number, C#2
n is isomorphic to Cn, and, hence, the number of edges crossing over I is odd. This is the sum of

the number of edges crossing over I in the clockwise direction and in the counterclockwise direction. Thus
the winding number, which is the difference of these two numbers, is also an odd number.

Applying this lemma on circular r-coloring for r < 4 we have the following.
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Lemma 6. Given an odd integer n, n = 2k + 1, a real number r satisfying 2 + 1
k ≤ r < 4, and a circular

r-coloring c of Cn, the winding number ω(C#2
n , csh) is an odd number.

Proof. We observe that if r < 4 and c is a circular r-coloring of Cn, then it is, in particular, a semi-proper
mapping of Cn. That is because for three consecutive vertices vi−1, vi, and vi+1, having partitioned Or to
two parts based on c(vi−1) and c(vi+1), the part that contains c(vi) must be of length at least 2. As r < 4,
this must be the larger part.

Observation 7. Let G be the star K1,n with u being the central vertex and A being the independent set of
order n. Let c be a circular r-coloring of G with r < 4. Then for any cycle C built on A the winding number
of (C, csh) is 0.

This is observed by taking a sufficiently small interval containing c(u) and noting that since r < 4, for any
pair x and y of vertices in A in the partition of Or to two parts by c(x) and c(y), the part containing u is
of length at least 2 and thus it is the larger of the two.

We may now give a new proof of the following theorem.

Theorem 8. For any positive integers ℓ and k, we have χc(Mℓ(C2k+1) = 4.

Proof. It is enough to observe that Mℓ(C2k+1) is obtained from the l× (2k + 1) cylindrical grid of Figure 1
by adding diagonal edges to bottom layer (that is connecting pairs at distance k of the gray cycle) and
adding a universal vertex to the top layer. As any circular r-coloring with r < 4 is also semi-proper, any
such a coloring would imply an odd winding number for the the layer in Csh extension from one end and
an even winding number for the layers from the other end.

Next we show that BMℓ,2k−1 shares the same property. We will note later that Theorem 8 follows from the
next theorem.

Theorem 9. For given positive integers ℓ and k, satisfying l, k ≥ 2, we have χc(BMℓ,2k−1) = 4.

Proof. Toward a contradiction, let c be a circular r-coloring of BMℓ,2k−1 with r < 4. We will have a
contradiction if we show that the cycle C ′ formed on v1,1v1,2 · · · v1,2k−1

in this cyclic order has an odd

winding number under the mapping csh (restricted on the vertices of this cycle). We emphasize that edges
of C ′ are not in BMℓ,2k−1.

To this end we first consider another cycle, C⋆, (also not part of our graph) by considering the following
sequence of vertices of the first layer of BMℓ,2k−1: v1,1v1,k+1

v1,2v1,k+2
· · · v

1,k
. Note that in this cycle v1,j is

followed by v
1,j+k

where the addition is taken (mod 2k − 1). We may also note that this is the diagonally
drawn cycle on the first layer of Figure 2 (right).

Our claim is that the mapping c, viewed as a mapping of the vertices of C⋆ to Or, is a semi-proper mapping.
Toward proving the claim, we consider c(v1,j ), c(v1,j+k

), and c(v1,j+1). The first observation is that since v2,j
is adjacent to both v1,j and v1,j+1 with negative edges, the points c(v1,j ) and c(v1,j+1) of Or partition Or in
such a way that the part containing c(v2,j ) is at least 2. As r < 4, it follows that c(v2,j ) is on the larger part
of Or when it is partitioned by c(v1,j ) and c(v1,j+1). It remains to show that c(v

1,j+k
) is also on the same part.

If not, that is if c(v
1,j+k

) is on the shorter side of Or, then one of the arcs c(v
1,j+k

)c(v2,j ) and c(v2,j )c(v1,j+k
)

contains the shorter side of c(v1,j )c(v2,j ) and the other contains the shorter side of c(v1,j+1)c(v2,j ). As each
of these shorter arcs are of length at least one, we conclude that the distance of c(v

1,j+k
) and c(v2,j ) is at

least one. However, since c is a circular r-coloring where r < 4 and v
1,j+k

v2,j is a positive edge, they should
be at distance at most r

2 − 1 < 1, a contradiction.
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Finally observing that C ′ is the exact square of C⋆, and by Lemma 5, we conclude that the winding number
of C ′ is odd.

6 Concluding remarks

1. In recent development of the theory of homomorphisms and colorings of signed graphs it has normally
been the case that restriction on the class of signed bipartite graphs strengthen the results on the class of
graphs. This has been the case in this work as well. We show here that Theorem 9 easily implies Theorem 8.

First, observe that adding a positive loop to the vertices does not affect the circular coloring and the circular
chromatic number of signed graphs. The claim follows from observation that if we identify the two ends of
each positive edge in BMℓ,2k+1, then we will get a copy of Mℓ−1(C2k+1) where the vertices on the first layer
have positive loops on them but all other edges are negative.

2. It is not difficult to show that removing any edge from BMℓ,2k+1 the resulting signed graph admits a
circular 3-coloring.

3. The special subclass of Mk(C2k+1), on 2k2 + k + 1 vertices, is conjectured in [25] to have the smallest
number of vertices among 4-chromatic graphs of odd-girth 2k+1. In [4], this is verified to be the case with
an added assumption that every pair of odd cycles share a vertex. For the general case, a lower bound of
(k − 1)2 for the number of vertices of a 4-critical graph of odd girth 2k + 1 is given in [9] modifying the
method of [19].

The starting point of this work has been a joint work with Lan Anh Pham and Zhouningxin Wang on the
study of C−4-critical signed graphs (for a definition see [15]). In a forthcoming work, it is shown that a
C−4-critical signed graph of negative girth at least 2k must have at least k2 vertices. Based on the fact that
χc(C−4) =

8
3 , our result in this work implies that BMk,k−1 is a signed bipartite graph of negative girth 2k

which does not map to C−4. Thus BMk,k−1 contains a C−4-critical signed graph. As BMk,k−1 has 2k
2−k+1

vertices, this implies the smallest number of the vertices of a C−4-critical signed graph of negative girth 2k
is somewhere between k2 and 2k2 − k + 1.

4. As mentioned, the fact that Ml(C2k+1) is a 4-chromatic graph is generalized by Youngs showing that
any quaderangulation of the projective plane, if not bipartite, is of chromatic number 4. A strengthening
and stronger connection to this work is to be addressed in a follow up work. That would be to show that,
if a signed graph (G, σ) admits an embedding on the projective plane such that each face of it is a positive
4-cycle, then either it is balanced, and thus admits a circular 2-coloring, or, after adding a positive loop to
each vertex of it, it would admit a homomorphism from some BMℓ,2k−1. This would imply that its circular
chromatic number is at least 4, but a circular 4-color is implied by maximum average degree condition on
these graphs.

5. In this work, a connection between the circular chromatic number being 4 and winding number is
developed. Following Lovasz’s proof of the Kneser conjecture using topological connectivity, applications
of topological methods to graph coloring problems have been one of the fascinating part of graph theory.
Perhaps some other results of this sort can be reduced to notion of winding number using the following
development from [15].

Given a graph G, let Tℓ(G) be the signed graph obtained from G by replacing each edge e of it with a
path Pe of length ℓ such that internal vertices are distinct, and then assign a sign such that product of the
signs of the edges in Pe is negative. It then follows that G is k-colorable if and only if Tk−2(G) admits a
homomorphism to C−k, or equivalently, if it admits a circular 2k

k−1 -coloring.
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6. Finally we should note that Payan’s interest in Mk(C2k+1) was based on the fact that they appear as
subgraph in binary Cayley graphs that are not bipartite and in particular in the projective cubes (see [1]).
An extension in this direction to signed bipartite Cayley graphs is to be addressed in a forthcoming joint
work with Meirun Chen.
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