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2Université de Paris, IRIF, CNRS, F-75006, Paris, France. Email address: reza@irif.fr.

3Department of Mathematics Indian Institute of Technology Madras Chennai 600 036, India Email:
s.rohini@smail.iitm.ac.in

4Department of Mathematics, Indian Institute of Technology Dharwad, Dharwad 580011, India
Email address : taruni.sridhar@gmail.com

June 30, 2023

Abstract

Concerning the recent notion of circular chromatic number of signed graphs, for each given integer k
we introduce two signed bipartite graphs, each on 2k2 − k + 1 vertices, having shortest negative cycle of
length 2k, and the circular chromatic number 4.

Each of the construction can be viewed as a bipartite analogue of the generalized Mycielski graphs on
odd cycles, Mℓ(C2k+1). In the course of proving our result, we also obtain a simple proof of the fact that
Mℓ(C2k+1) and some similar quadrangulations of the projective plane have circular chromatic number
4. These proofs have the advantage that they illuminate, in an elementary manner, the strong relation
between algebraic topology and graph coloring problems.

1 Introduction

The problem of building graphs of high girth and high chromatic number is one of the basic questions of
graph coloring and its study has led to many further developments. In particular, the original proof of Erdős
for the existence of such graphs has led to the development of probabilistic methods in graph theory. Since
then several constructive methods were presented, but none are easy to grasp. With a weaker condition of
high odd girth instead of high girth, there are several natural classes of graphs. In particular, in the family
of the Kneser graphs one can find examples of high odd girth and high chromatic number. The proof of
the lower bound for the chromatic number of the Kneser graphs, by L. Lovász [14], was the birthplace of
the connection between algebraic topology and graph coloring. Further developing this method, Stiebitz
introduced a generalization of the Mycielski construction in [25] to build small graphs of high odd girth and
high chromatic number. Generalized Mycielski on odd cycles have been studied independently by many
authors and several results on their chromatic number [23, 27, 28], circular chromatic number [1, 3, 7, 12, 24]
and on various other related parameters [13,26] are proved.

In this work, building on the ideas from several works in the literature, we first present a relatively short
proof that the generalized Mycielski graphs on odd cycles have circular chromatic number 4. The proof has
the advantage of capturing the connection between algebraic topology and graph coloring with elementary
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techniques. We then present three similar classes of signed graphs of high negative girth and circular
chromatic number 4. The graphs are built similarly to the generalized Mycielski on odd cycles when viewed
as a quadrangulation of the projective plane, the main difference being that the subgraph induced by the
outer layer induces a Möbius ladder.

In Section 2, we give the necessary notation and the terminology. In Section 3, we provide a historical
account of what is known. In Section 4, we discuss three families of signed graphs and in the Section 5, we
prove that their circular chromatic number is 4. Finally, we conclude our paper with the Section 6.

2 Notation

We consider simple graphs unless clearly stated otherwise. A signed (simple) graph (G, σ) is a graph G
together with the assignment σ of signs to the edges. We denote by (G,−) the signed graph G with all edges
negative (and (G,+) accordingly). If G is bipartite, then (G, σ) is called a signed bipartite graph (in some
literature, this term is used to refer to a balanced signed graph, that is a signed graph with no negative
cycle). The sign of a structure in (G, σ) (such as a cycle, a closed walk, a path) is the product of the signs
of edges in the said structure counting multiplicity.

Given an integer n, n ≥ 3, we denote by Cn the cycle (graph) on n vertices. That is a 2-regular connected
graph on n vertices. Furthermore, we view Cn as a plane graph, that is, the graph together with a planar
embedding. For topological use of Cn, one may identify it with the regular polygon on n vertices. Vertices
of Cn are normally labeled as v1, v2, . . . , vn. The exact square of Cn, denoted C

#2
n , is the graph on the same

set of vertices where two vertices are adjacent if they are at a distance (exactly) 2 in Cn. Observe that

for odd values of n, C#2
n is also a cycle of length n. For even values of n, C#2

n consists of two connected
components, each isomorphic to a cycle of length n

2 . They are induced on sets of vertices with odd and even

indices and will be denoted, respectively, by C#2o
n and C#2e

n .

Given a positive real number, we denote by Or the (geometric) circle of circumference r. That would be a
circle of radius r

2π . The antipodal of a point x on Or is the unique point x on Or which is collinear with x
and the center of the circle.

Given a real number r, r ≥ 2, a circular r-coloring of a signed graph (G, σ) is a mapping ψ of the vertices of
G to the points of Or in such a way that when xy is a negative edge, then the distance of ψ(x) from ψ(y) on
Or is at least 1 and if xy is a positive edge, then the distance of ψ(x) from ψ(y) is at least 1, equivalently,
the distance between ψ(x) and ψ(y) is at most r

2 − 1. The circular chromatic number of (G, σ), denoted
χc(G, σ), is the infimum of r such that (G, σ) admits a circular r-coloring. When restricted to signed graphs
where all edges are negative, we have the classic notion of circular coloring of graphs. This extension to
signed graphs is first presented in [20] noting that a different but similar parameter under a similar name has
been introduced in [10]. However, compared to [20], the role of positive and negative edges are exchanged
for better suitability with literature on structural theory on signed graphs, especially in regard to the minor
theory of signed graphs.

Among basic results, the following should be noted for the purpose of this work. The infimum in the
definition is always attained for finite graphs, even allowing multi-edges and positive loops, but a negative
loop cannot be colored with a finite r. For the class of signed bipartite (multi)graphs, we have the trivial
upper bound of χc(G, σ) ≤ 4, to see this, map the vertices of one part of G to the north pole of O4 and the
vertices of the other part to the east point. Even with such a strong upper bound the problem of determining
the exact value of the circular chromatic number of a given signed bipartite graph is of high importance
and, in general, quite a difficult problem. In particular, as it is pointed out in [20], using some basic graph
operations, namely indicators, one can transform a graph G into a signed bipartite graph F (G) such that
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the circular chromatic number of F (G) determines the circular chromatic number of G. A basic example of
this sort is the construction S(G), which is obtained from a given graph G by replacing each edge uv of G
with a negative 4-cycle uxuvvyuv where xuv and yuv are new and distinct vertices. It is then shown in [20]
that χc(S(G)) = 4 − 4

χc(G)+1 . Further connections with some well-known study and theorems, such as the

four-color theorem, is discussed in [11] and [19].

Motivated by these observations and in connection with some other studies, some of which are mentioned
in the last section, the question of constructing signed bipartite graphs of high negative girth but circular
chromatic number 4 is of high interest. In this work, we present two bipartite analogues of the generalized
Mycielski graph on odd cycles as examples of signed bipartite graphs.

The proofs also lead to an elementary understanding of the relation between coloring problems of graphs
and basic notions of algebraic topology, namely the winding number. Recall that given a closed curve γ on
the plane, the winding number of γ, defined rather intuitively, is the number of times γ is winded around
the origin in the clockwise direction, noting that: if the origin is not in the part bounded by γ, then the
winding number is 0 and that winding in anticlockwise direction is presented by a negative number. Here
the closed curves we work with are mappings to Or with the center of Or being the center of the plane.
They can be thought of as continuous mappings of [0, 1] to Or with the condition that the two endpoints,
i.e., 0 and 1 are mapped to the same point.

3 A historical note

In 1955 Mycielski introduced the construction [17] that is now known as the Mycielski construction. His
goal of the construction was to build triangle-free graphs of high chromatic number. In this construction,
given a graph G one adds a vertex v′ for each vertex v of G, which is joined to all neighbors of v in G and
then adds a vertex u which is joined to all vertices v′. It is not difficult to prove that the resulting graph
has chromatic number χ(G) + 1.

Generalization of the construction, where one adds several layers of copy vertices before adding a universal
vertex to the last layer, was first considered independently in Habilitation thesis of M. Stiebitz [25] and Ph.D.
thesis of N. Van Ngoc [21]. (The former is written in German, but its result can also be found in [6,15] and
the latter is in Hungarian.) Stiebitz applied methods of algebraic topology to prove that if one starts with
K2 and iteratively builds a generalized Mycielski, at each step the chromatic number would increase by 1.
This does not hold for every graph, though. For example, the chromatic number of the complement of C7

is 4, and any generalized Mycielski of it, except the original one, is also of chromatic number 4. It has been
shown recently in [16] that the result of Stiebitz is equivalent to the Borsuk-Ulam theorem.

First English publications of the fact that the generalized Mycielski based on an odd cycle has chromatic
number 4 appeared independently in [23, 27, 28]. The proof of Payan [23] is about the special case of
Mk(C2k+1) as they appear as subgraphs of nonbipartite Cayley graphs on binary groups, but it works the
same for any Mℓ(C2k+1). This proof has strongly motivated the work presented here. The proof of [27] is
presented quite differently, but the hidden idea behind the proof is the same. The result of [28] is more
general. It is shown that if G is not bipartite but admits an embedding on the projective plane where all
facial cycles are 4-cycles, then χ(G) = 4. That such structures are necessary for 4-chromatic triangle-free
projective planar graphs was conjectured in [28] and proved in [5]. The well-known fact that Mℓ(C2k+1)
quadrangulate the projective plane is evident from our presentation of these graphs in the next section.

The circular chromatic number of Mycielski constructions was first studied in [1]. That of the generalized
Mycielski is studied in [3, 7, 12, 24] among others. In particular, that χc(Mℓ(C2k+1)) = 4 follows, indepen-
dently, from the general results of [3] and of [24]. In the latter, it is shown that if the lower bound of 2k
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for the chromatic number is proved using topological connectivity, then the same lower bound works for the
circular chromatic number as well.

4 The construction

The main body of the construction we will work with is an almost quadrangulation of the cylinder which
we define here. Given positive integers ℓ and k, C

ℓ×(2k+1)
is the graph whose vertex set is V = {vi,j | 1 ≤ i ≤

ℓ, 1 ≤ j ≤ 2k + 1} with the edge set E = {vi,jvi+1,j−1 , vi,jvi+1,j+1 | 1 ≤ i ≤ ℓ− 1, 1 ≤ j ≤ 2k + 1}. Here, and
in the rest of this work, the addition on the indices is taken modular the maximum value of the said index,
which is (mod 2k + 1) in this case. We note that, as a graph C

ℓ×(2k+1)
is isomorphic to the categorical

product Pℓ ×C2k+1, but the standard labeling of this product does not fit well with our purpose. A general
picture of this graph is depicted in Figure 1 where the dashed circles are only presenting the layers, but they
will play a key role.

Figure 1: C
ℓ×(2k+1)

with layers highlighted.

4.1 Mℓ(C2k+1)

Given positive integers ℓ and k, the generalized Mycielski graph of the odd cycle C2k+1, Mℓ(C2k+1) is built
from C

ℓ×(2k+1)
by the following two steps:

• Connect v1,j to v
1,j+k

(Figure 2, right).

• Add a new vertex u and connect it to all vertices v
ℓ,j
, j = 1, . . . , 2k + 1 (Figure 2, left).

Observe that the added edges in the first item form an isomorphic copy of C2k+1. One can easily observe
that starting with this cycle, the classic definition of a generalized Mycielski graph results in the same graph.
The graph M1(C3) is K4. The graph M2(C5) is the well-known Grözsch graph. To show that M2(C5) is
the smallest 4-chromatic triangle-free graph is proposed as an exercise in [8]. Furthermore, Chvátal showed
in [2] that M2(C5) is the only 4-chromatic triangle-free graph on 11 vertices.
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Figure 2: Constructions on bottom and top layers.

The following is a key property of Mℓ(C2k+1).

Proposition 1. The shortest odd cycle of Mℓ(C2k+1) is the minimum of 2k + 1 and 2l + 1.

Since this is a folklore fact, we do not provide a proof but we note that the main idea to verify it is also
presented in the next proposition.

4.2 B̂Q(ℓ, 2k − 1)

Next, given integers ℓ and k satisfying ℓ, k ≥ 2, we define the signed bipartite graph B̂Q(ℓ, 2k− 1) also from
Cℓ×(2k−1) as follows.

• Edges of Cℓ×(2k−1) are all negative.

• Connect v1,j to v
2,j+k

by a positive edge (Figure 3, right).

• Add a new vertex u and connect it to each of the vertices v
ℓ,j
, j = 1, . . . , 2k − 1, with a negative edge

(Figure 3, left).

We view this construction as one of the bipartite analogues of the generalized Mycielski. The second item
of the construction, which is presented in Figure 3 (right) is the main difference with the previously known
constructions: While in construction of Mℓ(C2k+1) we add some edges between vertices of the first layer,
in this new construction we add some connection between vertices of the first layer and the second layer.
Therefore this operation preserves the bipartition. The underlying graph of the induced subgraph on the
first two layers is isomorphic to what is known as the Möbuis ladder with 2k − 1 steps. We will refer to it
as such.

The case of B̂Q(2, 3) is (K3,4,M) depicted in Figure 4. It is the signed bipartite graph where each one of
the edges of a maximum matching of K3,4 is assigned a positive sign and all the other edges are assigned a
negative sign.

The fact that the underlying graph of B̂Q(ℓ, 2k − 1) is bipartite is easily observed. The parity of the levels
gives a natural bipartition of the graph. We show that based on the choice of k and l this signed bipartite
graph does not have a short negative cycle.
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Figure 3: Construction of B̂Q(ℓ, 2k − 1).

Figure 4: B̂Q(2, 3), presented two different ways.

Proposition 2. Given integers l and k where l, k ≥ 2, the shortest negative cycle of B̂Q(ℓ, 2k − 1) is of
length min{2l, 2k}.

Proof. We first present two natural choices for a negative cycle, one of length 2k and another of length 2l.
The first is a negative cycle on the first two layers. Take a positive edge and connect its two ends with one
of the two paths using only the negative edges that connect the two layers. This would result in a negative
cycle of length 2k. The second negative cycle we consider is by taking a positive edge and connecting each
of its ends to the vertex u by a shortest path (all edges negative). One of these paths will be of length l
and the other would be of length l− 1. Together with the first chosen edge itself then, they form a negative
cycle of length 2l.

It remains to show that the shortest of these two types of cycles gives us the negative girth. To that end,
we will first show that a shortest negative cycle can only use one positive edge of B̂Q(ℓ, 2k − 1). Towards
a contradiction, let C be a negative cycle with more than two positive edges. We aim to present a negative
cycle C ′ whose length is at most |C| − 2. We take two positive edges of C that come consecutively on the
cyclic order. Assume xy and x′y′ are these two edges and that x′ is followed by y in the cyclic order of C
(that is to say, there is no positive edge in the x′ − y path in C). We remove the two positive edges xy
and x′y′ and the x′y path connecting them in C, but then we add a xy′ copy of this path (which also has
no positive edge). The result is a closed walk whose sign is the same as that of C, and whose length is
|C| − 2. But then this closed walk must contain a negative cycle, whose length then is also at most |C| − 2,
a contradiction.
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Figure 5: B̂Q(3, 5). Figure 6: B̂Q(4, 7).

Finally, if C is a cycle that uses exactly one negative edge, say xy, then the x− y path Pxy = C − xy either
passes through u in which case we have at least 2l edges in C, or the natural image of Pxy to the cycle in
between the first and second layers also connects x to y. But the shortest such path is of length 2k−1, thus
Pxy is of length at least 2k − 1, and the negative cycle is of length at least 2k.

4.3 B̂Q(ℓ, 2k)

The third family of (signed) graphs we consider in this work are built quite similar to the previous construc-

tion. More precisely, given integers ℓ and k satisfying ℓ, k ≥ 2, we define the (signed) graph B̂Q(ℓ, 2k) from
Cℓ×(2k) as follows.

• Edges of Cℓ×2k are all negative.

• Connect v1,j to v
1,j+k

and v2,j to v
2,j+k

by negative edges (Figure 7, right).

• Add a new vertex u and connect it to each of the vertices v
ℓ,j
, j = 1, . . . , 2k, with a negative edge

(Figure 7, left).

As an example, the (signed) graphs B̂Q(3, 4) and B̂Q(4, 6) are depicted in Figures 8 and 9 respectively.

Proposition 3. Given integers l and k, where l, k ≥ 2, the shortest negative cycle of B̂Q(l, 2k) is of length
min{2l − 1, 2k + 1}.

Proof. A cycle of B̂Q(l, 2k) which does not contain any step of the Möbius ladder induced by the first two
layers is even. That is to say any odd cycle has at least one step of this Möbius ladder. A step of the
Möbius ladder together with one of the two paths that are connecting the end vertices of this step through
the first two layers form an odd cycle of length 2k + 1. Also, there is another natural choice for an odd
cycle constituted by this step and the shortest path which contains the universal vertex u connecting the
end vertices of this step. This cycle is of length 2l− 1. In a similar way as in the proof of Proposition 2 one
may conclude that one of these two odd cycles of B̂Q(l, 2k) is the shortest.
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Figure 7: Construction of B̂Q(ℓ, 2k).

Figure 8: B̂Q(3, 4). Figure 9: B̂Q(4, 6).

The two constructions B̂Q(ℓ, 2k − 1) and B̂Q(ℓ, 2k) can be defined uniformly as follows. Starting with an
i-star (i = 2k − 1 or i = 2k) on the projective plane, we complete it to quadrangulation of the planar part
except for the vertices on the outer layer which are at distance ℓ or ℓ − 1 from the center of the star, and
assign a negative sign to everything so that all facial 4-cycles are positive. We then complete the outer
layer to a Möbuis ladder, choosing signs for the crossing edges so that all faces are positive 4-cycles but the
non-contractible cycles are negative.

We view this class of signed graphs as Basic Qudrangulations of the projective plane and thus use the
notation B̂Q(ℓ, i).

4.4 BM(ℓ, 2k)

The last construction we present here, BM(ℓ, 2k), is built from Cℓ,2k as follows. Taking all the edges of this
graph as negative edges, on the last layer of the cylinder, as in the other cases, we add a (universal) vertex

8



which is joined to all vertices of this layer with negative edges. On the first layer we add a set {u1, . . . , uk}
of vertices, then join each ui, i = 1, . . . k, to v1,i and v1,i+1 with negative edges and to v1,i+k and v1,i+k+1

with positive edges. See Figure 10 for a depiction.

We leave it to the reader to check the following.

Proposition 4. Given integers l, k ≥ 2, the shortest negative cycle of the signed bipartite graph BM(l, 2k)
is of length min{2l + 2, 2k}.

In particular, BM(k − 1, 2k) has 2k2 − k + 1 vertices and its shortest negative cycles is of length 2k.

Figure 10: BM(ℓ, 2k)

5 Winding number and coloring

Given a simple closed curve γ on the plane, and a continuous mapping φ of γ to Or, we define the winding
number of the pair (γ, φ) to be the winding number of the curve φ(γ) with center of Or considered as the
center of the plane. Intuitively speaking, (γ, φ) tells us how many times the curve γ is wrapped around Or

in the clockwise direction noting that a negative number reflects an anticlockwise mapping. This value then
will be denoted by ω(γ, φ).

A mapping c of the vertices of the cycle Cn to the points of Or can be extended to a continuous mapping
of Cn to Or with the former being viewed as the closed curve or the polygon. There are 2n natural ways to
do this. For each pair vi, vi+1 of the vertices of Cn, the pair c(vi), c(vi+1) partitions the circle Or into two
parts. The segment of the polygon that represents the edge vivi+1 can be projected into one of these two
parts. We note that c is allowed to map several vertices of Cn to the same point and that even if vi and vi+1

are mapped to the same point, in our view, they partition the circle Or into two parts: a part of length 0
and a part of length r.

These 2n extensions are in a one-to-one correspondence with the 2n possible orientations of Cn: orient the
edge vivi+1 in such a way that the mapping follows the clockwise direction of Or.

Given a coloring c of the vertices of the cycle Cn, two extensions of c to a mapping of the polygon to Or

are of special importance. The first is the extension corresponding to the directed cycle Cn. Here vivi+1 is
mapped to the part of the circle where c(vi+1) follows c(vi) in the clockwise direction. Let us denote this
extension by cD. A trivial observation here is that the winding number of (Cn, c

D) is never 0.
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The other natural extension is to choose the shortest of the two parts of the circle determined by c(vi) and
c(vi+1) and project the line vivi+1 onto it. The orientation corresponding to this extension then depends on
whether c(vi) is the start or the end of this shorter part of the circle with respect to the clockwise orientation.
We denote this extension by csh and observe that this extension may result in winding number 0 for some
choices of c (and r).

Given the cycle Cn, a mapping c of its vertices to Or and an extension φ of c to the polygon, a combinatorial
way to compute ω(Cn, φ) is as follows: take an (open) interval I on Or which does not contain any image
of the vertices of Cn. Then in an extension φ of c to a mapping of the polygon to Or, each edge of Cn

either traverses I completely or does not touch any point of it. Now the winding number ω(Cn, φ) is the
number of edges that traverse I in the clockwise direction minus the number of edges that traverse it in the
anticlockwise direction (and thus independent of the choice of I).

Let c be a mapping of the vertices of a cycle Cn to the circle Or. Consider the continuous mapping (Cn, c
D)

and an (open) interval I of Or which does not contain any point c(vi). Color the edges of Cn with two
colors, say green and orange, as follows: if the image of an edge e under cD contains I, then color it green,
otherwise, color it orange. We are interested in the pairs of consecutive edges vi−1vi and vivi+1, which are
colored differently. If in such a pair, the first edge is colored green, then in the next pair of this sort (next
in the cyclic order of indices), the first edge must be orange and vice versa. Thus, the total number of such
pairs is even, that is regardless of the choices of n and c.

To use this observation, we will work with certain types of mappings c. We say a mapping c of the vertices
of Cn to the points on Or is far-polar if the followings hold: for each i the pair of the points c(vi−1) and
c(vi+1) on Or partitions Or into two unequal parts and that c(vi) is on the larger of the two parts. More
generally, a mapping ϕ of the vertices of a graph G to the circle Or is called far-polar if for each vertex x of
G there is a diameter Dx which separates ϕ(x) from ϕ(y) for all neighbors y of x.

In the following, we present how the condition of c being a far-polar mapping provides a connection between
cD extension of c on Cn and csh extension of the mapping c on C#2

n .

Lemma 5. Let c be a far-polar mapping of Cn to Or and let I be an interval of Or which does not contain
any c(vi). Then in the extension csh of a mapping of the one or two cycles in C#2

n to Or, the number of
edges vi−1vi+1 that does not cross over I is an even number.

Proof. Consider three consecutive vertices vi−1, vi, vi+1 of the cycle. If, following the cD extension of Cn,
both edges vi−1vi and vivi+1 are colored orange, that is to say, in the extension they do not pass through
I, then since c is far-polar, c(vi) must be on the longer of c(vi−1)c(vi+1) or c(vi+1)c(vi−1) and thus I is on

the shorter part. Thus in the extension csh of C#2
n , c(vi−1)c(vi+1) passes through I. Similarly, if both edges

vi−1vi and vivi+1 are colored green, then c(vi−1)c(vi+1) passes through I. On the other hand, if one of the
edges is green and the other orange, then together, they must cover more than half of the Or. Implying that
c(vi−1)c(vi+1) does not pass through I.

Overall the number of edges of C#2
n that do not pass through I in csh extension is the number of vertices of

Cn incident with both green and orange edges, where the colors are determined by the extension cD of Cn.
The number of such pairs then must be even as it is observed above.

We may now observe that, given a real number r, r < 4, any circular r-coloring of Cn must be a far-polar
coloring. Thus we have the following two consequences depending on the parity of n.

Lemma 6. Let c be a circular r-coloring of an even cycle Cn. Let co (resp. ce) be its restriction on the
vertices with odd (resp. even) indices. Then the winding numbers of (C#2o, csho ) and (C#2e, cshe ) are of the
same parity.
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Proof. That is because after choosing a suitable interval I, by Lemma 5, the total number of edges of C#2

that does not cross over I in the extension csh is even. As the total number of edges is also even (that
is n), the number of edges of C#2 that cross over I is also even. However, the winding number of each
of (C#2o, csho ) and (C#2e, cshe ), which is the difference of the number of edges crossing I in the clockwise
direction and the number of edges crossing it in the anticlockwise direction, has the same parity as the total
number of the edges of the cycle in consideration that cross over I (in the csh extension). This proves our
claim as the sum of the two winding numbers is an even number.

Using this lemma, we can build a cylinder of many layers, as shown in the example of Figure 1, with the
property that in any circular r-coloring c of the red graph (r < 4), all of the dashed grey cycles must have
winding numbers of the same parity. Observe that in this construction, the zigzag red cycle between two
consecutive layers is an even cycle, and its exact square consists of the two grey cycles presenting the two
layers. If we then add structures to the two ends in such a way that one force an odd winding number on
one of the grey cycles and the other forces an even winding number on another one of them, then the result
would be a graph which admits no circular r-coloring for r < 4.

A basic method to achieve these conditions is presented next.

Lemma 7. Given an odd integer n, a positive real number r, and a far-polar mapping c of Cn to Or, the
winding number ω(C#2

n , csh) is an odd number.

Proof. By Lemma 5, the total number of edges of C#2
n that does not cross over I is even. As n is an odd

number, C#2
n is isomorphic to Cn, and, hence, the number of edges crossing over I is odd. This is the sum

of the number of edges crossing over I in the clockwise direction and in the anticlockwise direction. Thus
the winding number, which is the difference between these two numbers, is also an odd number.

Applying this lemma on circular r-coloring for r < 4 we have the following.

Lemma 8. Given an odd integer n, n = 2k + 1, a real number r satisfying 2 + 1
k ≤ r < 4, and a circular

r-coloring c of Cn, the winding number ω(C#2
n , csh) is an odd number.

Proof. We observe that if r < 4 and c is a circular r-coloring of Cn, then it is, in particular, a far-polar
mapping of Cn. That is because for three consecutive vertices vi−1, vi, and vi+1, having partitioned Or to
two parts based on c(vi−1) and c(vi+1), the part that contains c(vi) must be of length at least 2. As r < 4,
this must be the larger part. Then the statement follows from the previous lemma.

Observation 9. Let G be the star K1,n with u being the central vertex and A being the independent set
of order n. Let c be a circular r-coloring of G with r < 4. Then for any cycle C built on A, the winding
number of (C, csh) is 0.

This is observed by taking a small interval I sufficiently close to c(u) and noting that first of all, a vertex of
C cannot be mapped to c(u); secondly, since r < 4, for any pair x and y of vertices in A in the partition of
Or to two parts by c(x) and c(y), the part containing c(u) is of length at least 2 and thus it is the larger of
the two, meaning in the shortest extension, c(x)c(y) will never cross over I.

We may now give a new proof of the following theorem.

Theorem 10. For any positive integers ℓ and k, we have χc(Mℓ(C2k+1)) = 4.

Proof. It is enough to observe that Mℓ(C2k+1) is obtained from the l× (2k + 1) cylindrical grid of Figure 1
by adding diagonal edges to the bottom layer (that is connecting pairs at a distance k of the grey cycle) and
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adding a universal vertex to the top layer (as mentioned in the previous section). As any circular r-coloring
with r < 4 is also far-polar, any such a coloring would imply an odd winding number for the layers in csh

extension from one end and an even winding number for the layers from the other end. So a proper mapping
to Or where r < 4 is impossible. On the other hand, one can easily color Mℓ(C2k+1) with 4 colors, which
gives the upper bound 4 on the circular chromatic number as well.

Next, we show that B̂Q(ℓ, 2k − 1) shares the same property. We will note later that Theorem 10 follows
from the next theorem.

Theorem 11. For given positive integers ℓ and k, satisfying l, k ≥ 2, we have χc(B̂Q(ℓ, 2k − 1)) = 4.

Proof. Towards a contradiction, let c be a circular r-coloring of B̂Q(ℓ, 2k − 1) with r < 4. We will have a
contradiction if we show that the cycle C ′ formed on v1,1v1,2 · · · v1,2k−1

in this cyclic order has an odd winding

number under the mapping csh (restricted on the vertices of this cycle). We emphasize that edges of C ′ are

not in B̂Q(ℓ, 2k − 1).

To this end we first consider another cycle, C⋆, (also not part of our graph) by considering the following

sequence of vertices of the first layer of B̂Q(ℓ, 2k− 1): v1,1v1,k+1
v1,2v1,k+2

· · · v
1,k

. Note that in this cycle v1,j
is followed by v

1,j+k
where the addition is taken (mod 2k−1). We may also note that this is the diagonally

drawn cycle on the first layer of Figure 2 (right).

Our claim is that the mapping c, viewed as a mapping of the vertices of C⋆ to Or, is a far-polar mapping.
Toward proving the claim, we consider c(v1,j ), c(v1,j+k

), and c(v1,j+1). The first observation is that since v2,j
is adjacent to both v1,j and v1,j+1 with negative edges, the points c(v1,j ) and c(v1,j+1) of Or partition Or in
such a way that the part containing c(v2,j ) is at least 2. As r < 4, it follows that c(v2,j ) is on the larger part
of Or when it is partitioned by c(v1,j ) and c(v1,j+1). It remains to show that c(v

1,j+k
) is also on the same part.

If not, that is if c(v
1,j+k

) is on the shorter side of Or, then one of the arcs c(v
1,j+k

)c(v2,j ) and c(v2,j )c(v1,j+k
)

contains the shorter side of c(v1,j )c(v2,j ) and the other contains the shorter side of c(v1,j+1)c(v2,j ). As each
of these shorter arcs is of length at least one, we conclude that the distance of c(v

1,j+k
) and c(v2,j ) is at least

one. However, since c is a circular r-coloring where r < 4 and v
1,j+k

v2,j is a positive edge, they should be at
a distance at most r

2 − 1 < 1, a contradiction.

Finally, observing that C ′ is the exact square of C⋆, and by Lemma 7, we conclude that the winding number
of C ′ is odd.

To prove that χc(B̂Q(ℓ, 2k) = 4 we need a few more lemmas.

Lemma 12. Let c be a far-polar mapping of C4 to Or. Then the winding number w(C4, c
D) is 2.

Proof. The points c(v1) and c(v3) partition Or into two unequal parts. Since c is a far-polar coloring, we
know that c(v2) and c(v4) both should be on the larger of these two parts. Without loss of generality, we
may assume that images of the vertices are in the following cyclic order: c(v1), c(v3), c(v2), c(v4). Let I be
an interval of Or that does not contain any c(vi). As the winding number is independent of the choice of I
we can choose I to be in c(v3)c(v2). Then following the orientation of C4 and clockwise direction of Or, the
arcs c(v1)c(v2) and c(v3)c(v4) contain the interval I while the arcs c(v2)c(v3) and c(v4)c(v1) do not intersect
it.

Lemma 13. Let c be a far-polar mapping of C2k to Or and let the edges of C2k be e1, e2, . . . , e2k. The
number of edges colored green in the extension cD of c has the same parity as the number of odd (or even)
indexed vertices being incident to both green and orange edges.
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Proof. Let J be the set of vertices of C2k incident to both green and orange edges. Let Jo and Je be the
partition of J into odd and even indexed vertices (a natural bipartition of on C2k).

Consider a maximal green path in C2k. Thus the two ends of each such path are in J . Moreover, if the
length of the path is even, then both ends of the path belong to the same subset Jo or Je of J . Thus each
even green path contributes 0 to one of Jo or Je and 2 to the other. If the length of the path is odd, then
one of its ends is in Jo and the other is in Je, thus contributing 1 to each of these two sets. The claim then
follows as the odd length green-paths determine the parity of the total number of green edges.

Lemma 14. Let c be a far-polar coloring of the cycle C4k. The number of edges colored green in the
extension cD of c and the winding number w(C#2e

4k , csh) (or similarly w(C#2o
4k , csh)) are of the same parity.

Proof. For each edge vi−1vi+1 of C#2e
4k there is an odd indexed vertex vi of C4k corresponding to it. (And

similarly, for each edge vi−1vi+1 of C#2o
4k there is an even indexed vertex vi of C4k.) As we have observed

before, an edge vi−1vi+1 in C#2 does not cross over the interval I in the csh extension if and only if the
edges incident to vi are colored differently (i.e. one of vi−1vi and vivi+1 is green, the other is orange). So

the number of non-crossing edges in C#2e
4k in the csh extension is just the number of odd indexed vertices

being incident to both green and orange edges in C4k. From the previous lemma, we know that this number
has the same parity as the total number of green edges in the cycle C4k. As C

#2e
4k is a cycle on 2k vertices,

its total number of edges is an even number, so the total number of edges which cross I should also have
the same parity, and so does the difference of the number of edges cross I in the clockwise direction and
anticlockwise direction. This completes the proof.

We use M2k to denote the Möbuis ladder with 2k steps. As a graph that is isomorphic to the graph build
on C4k by adding an edge between each pair of vertices at a distance 2k. In the next lemma we show that
the Möbuis ladder M2k can replace the role of the odd cycle in Lemma 7. It can then be used similarly to
build families of graphs with circular chromatic number at least 4.

Lemma 15. For any far-polar mapping c of M2k to Or, the winding number w(C#2e
4k , csh) (or similarly

w(C#2o
4k , csh)) is odd.

Proof. By Lemma 14, it is enough to prove that the number of green edges of C4k in the extension cD of c
is odd. We use the notation C1,2,3,···t for oriented cycle with vertices v1, v2, · · · vt and directed edges −−−→vivi+1

for i (mod t). We will view M2k as union of 2k 4-cycles, see Figure 11 for reference.

Consider all oriented 4-cycles formed by two consecutive steps of ladder, C1 : C1,2,(2k+2),(2k+1), C2 :
C2,3,(2k+3),(2k+2), · · ·C2k : C2k,(2k+1),1,4k. By Lemma 12 we know that each Ci’s has two green edges in

cD extension. Therefore, in total, the sum of the number of their green edges is an even number as well. To
prove our claim, we present a different counting of this number. Consider the oriented 4k-cycle, C1,2,3,···4k,
half of its edges (from −−→v1v2 to −−−−−→v2kv2k+1) agree in orientation with the one in the corresponding Ci, but the
other half is oriented the opposite direction. So if we want to get back the same orientation as in the Ci’s,
we should switch 2k edges. As changing the orientation of a green edge makes it orange and vice versa,
we switch the parity of the number of green edges an even number of times. Now we have to consider the
steps of the ladder as well. Except for the edge between v1 and v2k+1, every other step viv2k+i is oriented
as −−−−→v2k+ivi in Ci and as −−−−→viv2k+i in Ci−1 (for 1 < i ≤ 2k). So they contribute exactly one green edge (in one
of their orientations) to the total sum. The edge between v1 and v2k+1 is oriented as −−−−−→v2k+1v1 in both C1

and C2k, contributing 0 or 2 to the total sum. Therefore the contribution of the steps is odd in total. So,
in summary, starting with the oriented C4k, changing the orientation of an even number of its edges, and
then adding the steps of the ladder, we should get back the same number of green edges as we had in total
in the Ci’s. Since that is an even number, the oriented C4k must have an odd number of green edges.
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C1 C2 C3 C2k

v1 v2 v3 v4 v2k−1 v2k

v2k+1 v2k+2 v2k+3 v2k+4 v4k−1 v4k

Figure 11: Möbius ladder M2k.

We can now state our theorem for B̂Q(ℓ, 2k).

Theorem 16. For any positive integers ℓ and k, we have χcB̂Q(ℓ, 2k) = 4.

Proof. As in the previous cases, we can consider B̂Q(ℓ, 2k) as a graph obtained from the l × 2k cylindrical
grid by adding a universal vertex on the first layer and completing the last two layers into a Möbuis ladder.
Any r < 4 r-coloring would be a far-polar coloring of this graph, which, by Lemma 15 would imply an odd
winding number for each of the last layers in the Csh extension, but by Observation 9 the first layer has the
winding number 0, but by Lemma 6 all layers have the same parity of winding number.

Finally, we use this to prove that BM(ℓ, 2k) also has the same circular chromatic number.

Theorem 17. For any positive integers ℓ and k, we have χc(BM(ℓ, 2k)) = 4.

Proof. As BM(ℓ, 2k) is a signed bipartite graph, 4 is an upper bound on its circular chromatic number. To

prove that it is also a lower bound, we consider B̂Q(ℓ+ 2, 2k) and switch at first 2k vertices of the Möbuis
ladder built on the first two layers. These are vertices labelled v1,1, v2,1, v1,2, v2,2, . . . , v1,k, v2,k. At the end
all diagonal edges of the Möbuis ladder are positive. We consider a homomorphic image of this signed graph
by identifying two ends of each diagonal edge of the Möbuis ladder. That is v1,1 is identified with v1,k+1,
v2,1 is identified with v2,k+1 and so on. Then, we can identify each v1,i with v3,i+k as well (i ∈ {1, 2, . . . k}).
It can then be verified that the image is the signed graph obtained from BM(ℓ, 2k) by adding a positive
loop to each of the k vertices uj and to the next layer. However, a positive loop does not change the circular

chromatic number of a signed graph. Thus we have χc(BM(ℓ, 2k)) ≥ χc(B̂Q(ℓ+ 2, 2k)) = 4.

We note that by identifying the two ends of each positive edge in B̂Q(ℓ, 2k+1) we get a copy of Mℓ(C2k+1)
together with some positive loops. Thus, in a similar fashion, one can view Theorem 10 as a corollary of
Theorem 11.

6 Concluding remarks

The special subclass ofMk(C2k+1), on 2k2+k+1 vertices, is conjectured in [27] to have the smallest number
of vertices among 4-chromatic graphs of odd-girth 2k+1. In [4], this is verified to be the case with an added
assumption that every pair of odd cycles share a vertex. For the general case, a lower bound of (k− 1)2 for
the number of vertices of a 4-critical graph of odd girth 2k + 1 is given in [9] modifying the method of [22].
A natural bipartite analogue of this question is to find the smallest number of vertices of a signed bipartite
graph of negative girth 2k whose circular chromatic number is 4. Here we gave two families of such graphs,
where the graphs of negative girth 2k have 2k2 − k + 1 vertices.

14



The starting point of this work has been a joint work of the second author with Lan Anh Pham and
Zhouningxin Wang on the study of C−4-critical signed graphs (for a definition, see [18]). In an unpublished
work, they have shown that a C−4-critical signed graph of negative girth at least 2k must have at least k2

vertices. Based on the fact that χc(C−4) =
8
3 , our result in this work implies that B̂Q(k, 2k− 1) is a signed

bipartite graph of negative girth 2k which does not map to C−4. Thus B̂Q(k, 2k−1) contains a C−4-critical

signed graph. As B̂Q(k, 2k− 1) has 2k2 − k+ 1 vertices, this implies the smallest number of the vertices of
a C−4-critical signed graph of negative girth 2k is somewhere between k2 and 2k2 − k + 1.
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