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Abstract 

 

In this work, we propose to use varentropy, an information measure defined from a 

generalization of thermodynamic entropy, for the calculation of informational entropy in order 

to avoid negative entropy in case of continuous probability distribution. 
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1) Introduction 

Thermodynamic entropy and information are among the most fundamental concepts in 

thermodynamics, statistical mechanics and information theory [1][2][3][4][5][6][7]. According 

to a common view, thermodynamic entropy and information (entropy for short in what follows) 

are two names of a same thing, they are a measure of disorder, or statistical uncertainty in the 

presence of probability . The relationship between entropy and probability has been subject to 

rigorous mathematical study since the work of Shannon  [2] and Khinchin [7]. Nevertheless, 

some confusion persists concerning the expression of entropy for continuous probability 

distribution [4][5][8]. 

The best known and most employed statistical expression of informational entropy is in a 

form of logarithmic functional of probability distribution, a form proposed for the first time by 

Boltzmann in the study of H-theorem [1], subsequently by Gibbs in his work on statistical 

mechanics [3], and by Shannon in his information theory [2]. For a system having W discrete 

microstates, each having the probability 𝑝𝑖 (𝑖 = 1,2 … 𝑊), the Boltzmann-Gibbs (BG) entropy 

𝑆𝐵𝐺 is given by 

𝑆𝐵𝐺 = − ∑ 𝑝𝑖
𝑊
𝑖=1 ln𝑝𝑖  

(1) 

(Suppose Boltzmann constant 𝑘𝐵 = 1). This information measure is always positive because 

1 ≥ 𝑝𝑖 ≥ 0.  

When the states become continuous with a variable 𝑥 characterizing the states in the phase 

(state) space, entropy is sometime called differential or continuous entropy and given by 

[2][3][4][8] : 

𝑆𝐵𝐺 = − ∫ 𝜌(𝑥)ln𝜌(𝑥)𝑑𝑥 
 

(2) 

where 𝜌(𝑥) is the probability density distribution giving the probability 𝑑𝑝(𝑥) = 𝜌(𝑥)𝑑𝑥 of 

finding the system in the state interval 𝑥 → 𝑥 + 𝑑𝑥, the integral being carried out over the 

interval including all the possible states. The first use of this integral form dates back to 

Boltzmann [1], Gibbs [3], as well as Shannon [2] who intuitively took Eq.(2) for granted as a 

analogue of Eq.(1) without giving mathematical proof . As far as we know, the derivation of 

Eq.(2) from first principles, just as has been done for Eq.(1) by Shannon [2] and Khinchin [7], 

is still missing to date. 
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In this work, we focus on a specific mathematical problem of Eq.(2) concerning the sign 

of the continuous entropy. As mentioned above, in the case of discrete probability with Eq.(1), 

as 𝑝𝑖 is positive and smaller than unity, so ln𝑝𝑖 ≤ 0 to guarantee 𝑆𝐵𝐺 ≥ 0 [2]. However, in the 

case of continuous probability distribution with Eq.(2), 𝜌(𝑥) can be larger than unity, leading 

to ln𝜌(𝑥) > 0, and to negative informational entropy. The reader can see a list of continuous 

entropies calculated from Eq.(2) for many probability density distributions, in which most 

entropies can be negative, including those for some common and ordinary distributions such as 

uniform, normal and exponential distributions [8].  

As well known, the thermodynamic entropy cannot be negative due to the third law of 

thermodynamics [6]. In statistical mechanics and information theory, informational entropy is 

regarded as a measure of disorder or uncertainty, negative information or entropy is senseless. 

As a matter of fact, Eq.(1) cannot be simply replaced by Eq.(2) because when 𝑝𝑖 is replaced by 

the continuous counterpart 𝑑𝑝(𝑥) = 𝜌𝑑𝑥,  a divergent term −ln𝑑𝑥 ∝ ln𝑊 takes place [4][5]. 

This term implies that the shift from 𝑝𝑖 to 𝜌𝑑𝑥 in Eq.(1) is questionable. Jaynes has tried to 

avoid negative entropy using a continuous version of Boltzmann-Shannon entropy 𝑆𝐵𝐺
𝐶 =

− ∫ 𝜌(𝑥)ln
𝜌(𝑥)

𝑚(𝑥)

∞

1
𝑑𝑥 + ln𝑊 where 𝑚(𝑥) is called invariant measure of the density of discrete 

values of x [7]. The term  ln𝑊, divergent when 𝑊 → ∞, is simply removed, giving a continuous 

entropy 𝑆𝐵𝐺
𝐶 = 𝑆𝐵𝐺  + ∫ 𝜌(𝑥)ln𝑚(𝑥)𝑑𝑥

∞

1
. According to Jaynes [4], it is possible to choose the 

invariant measure 𝑚(𝑥) in an appropriate (albeit ad hoc) way for 𝑆𝐵𝐺
𝐶  to be positive.  

In what follows, we present an alternative solution to this mathematical problem. The 

starting point is a definition of informational entropy as an extension of the fundamental 

equation of thermodynamics 𝛿𝑈 = 𝑇𝛿𝑆 + 𝛿𝑊, where 𝛿𝑈 is a variation of internal energy 𝑈 in 

a reversible process, 𝛿𝑆 a variation of thermodynamic entropy, 𝑇 the temperature, and 𝛿𝑊 the 

work done during the process [6].  We show that varentropy allows avoiding negative 

informational entropy. This is the main objective of this work.  

2) Definition of varentropy 

Varentropy is defined by mimicking the variational form of the entropy of the second law 

of thermodynamics [9][10]. This is a definition from scratch without any prerequisite or 

postulate on the property of entropy. The motivations was to look for an uncertainty measure 

that is optimal or maximized for any probability distribution. Although 𝑆𝐵𝐺  has been widely 



   

 

 

 

 

 

 

 

4 

used as a universal uncertainty measure for any probability distribution, it is only maximized 

for exponential and uniform distribution. The question is whether it is possible to define a more 

general measure of probabilistic uncertainty that is optimal (maximized) for other distributions 

as well, and recovers 𝑆𝐵𝐺 for exponential distribution.  

The origin of the approach is the thermodynamic equation 𝛿𝑈 = 𝑇𝛿𝑆𝐵𝐺 + 𝛿𝑊. As well 

known, in classical statistical mechanics, The internal energy is the average �̅� of the energy 𝐸𝑖 

of all microstates i, i.e., 𝑈 = �̅� = ∑ 𝑝𝑖
𝑊
𝑖=1 𝐸𝑖, and the work in the infinitesimal reversible process 

is given by the average of the energy change 𝛿𝐸𝑖 of each state: 𝛿𝑊 = 𝛿𝐸̅̅̅̅ = ∑ 𝑝𝑖
𝑊
𝑖=1 𝛿𝐸𝑖. The 

statistical expression of the fundamental equation 𝛿𝑈 = 𝑇𝛿𝑆𝐵𝐺 + 𝛿𝑊  becomes then 

𝛿 ∑ 𝑝𝑖
𝑊
𝑖=1 𝐸𝑖 = 𝑇𝛿𝑆𝐵𝐺 + ∑ 𝑝𝑖

𝑊
𝑖=1 𝛿𝐸𝑖, giving a statistical expression of the variation of entropy  

𝛿𝑆𝐵𝐺  during the process with 𝛿𝑆𝐵𝐺 =
1

𝑇
(𝛿 ∑ 𝑝𝑖

𝑊
𝑖=1 𝐸𝑖 − ∑ 𝑝𝑖

𝑊
𝑖=1 𝛿𝐸𝑖) =

1

𝑇
(𝛿�̅� − 𝛿𝐸̅̅̅̅ ) . This 

straightforwardly leading to 𝛿𝑆𝐵𝐺 =
1

𝑇
∑ 𝛿𝑝𝑖

𝑊
𝑖=1 𝐸𝑖 . For continuous distribution when 𝑝𝑖 

becomes 𝑑𝑝(𝑥) = 𝜌𝑑𝑥 , �̅� = ∫ 𝐸 𝜌(𝐸)𝑑𝐸 , 𝛿𝐸̅̅̅̅ = ∫ 𝛿𝐸 𝜌(𝐸)𝑑𝐸 , and we have 𝛿𝑆𝐵𝐺 =

∫ 𝐸 𝛿𝜌(𝐸)𝑑𝐸.  

In the above statistical expressions of thermodynamic entropy, the random variable is the 

energy 𝐸  of the microstates. In a previous work [9], we have extended this expression of 

thermodynamic entropy in order to define a measure of statistical uncertainty for any single 

random variable, say, x. This measure has been called varentropy 𝑆𝑉 since it is defined in a 

variational form: 

𝛿𝑆𝑉 = 𝐴(𝛿�̅� − 𝛿𝑥̅̅ ̅) = 𝐴 ∫ 𝑥 𝛿𝜌(𝑥)𝑑𝑥 
(3) 

where 𝐴 ∈ ℝ is a constant to choose according to the nature of 𝑆𝑉. For example, in a reversible 

thermodynamic process where 𝑥 = 𝐸, 𝑆𝑉 is the thermodynamic entropy with 𝐴 =
1

𝑇
 as shown 

above; for the exponential decay distribution, we can choose 𝐴 = 1 or 𝐴 = −1, depending on 

the domain of 𝑥  of the considered distribution (see below). It is worth stressing that an 

important role of 𝐴 is to guarantee 𝑆𝑉  positive, as expected for entropy or any measure of 

statistical uncertainty, which is the main aim of this work. 

Varentropy turns out to be equivalent to a generalized entropy defined in [11] by 

mathematical consideration from the principle of maximum entropy. From Eq.(3), we can write 

𝛿(𝑆𝑉 − 𝐴�̅�) = −𝐴𝛿𝑥̅̅ ̅. The maximization of 𝑆𝑉 subject to the constraint of the constant �̅�, i.e., 

𝛿(𝑆𝑉 − 𝐴�̅�) = 0, implies that 𝛿𝑥̅̅ ̅ = 0, which has been interpreted as a probabilistic extension 
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of the principle of virtual work in the case where the random variable 𝑥 is the energy of the 

system under consideration [12]. It is worth mentioning once again that varentropy was 

motivated by the search for an uncertainty measure that is maximized for any probability 

distribution [9][11], implying that 𝑆𝑉 should be equal to 𝑆𝐵𝐺 for exponential distribution and 

larger than 𝑆𝐵𝐺 for other distributions. Although a general proof of this property of 𝑆𝑉 is still 

missing, the reader can find some examples of this advantage of 𝑆𝑉 compared with 𝑆𝐵𝐺 in [13] 

and [14]. 

3) Examples of varentropy 

a) Exponential distributions 

The continuous entropy of exponential distribution 𝜌(𝑥) =
1

𝑍
𝑒−𝛼𝑥  for positive 0 < 𝑥 <

∞ and 𝛼 > 0, 𝑍 being the normalization constant. Its entropy has been calculated and reads 

𝑆𝐵𝐺 = 1 − 𝑙𝑛𝛼 [6], which is inevitably negative when 𝛼 is sufficiently large. 

Now with varentropy Eq.(3), it is straightforward to get 𝛿𝑆𝑉 = 𝐴 ∫
ln(Z 𝜌)

−𝛼
𝛿𝜌𝑑𝑥

∞

0
=

−
𝐴

𝛼
∫ 𝛿[𝜌 ln(𝑍𝜌)] 𝑑𝑥
∞

0
= 𝛿 [−

𝐴

𝛼
∫ 𝜌 ln(𝑍𝜌) 𝑑𝑥

∞

0
] which implies 

𝑆𝑉 = −
𝐴

𝛼
∫ 𝜌 ln 𝑍𝜌 𝑑𝑥

∞

0

+ 𝐶 
(4) 

where C is an arbitrary constant, we can choose C=0, leading to the expression of conventional 

Boltzmann-Gibbs entropy. The positivity of this expression can be seen by substituting 𝜌(𝑥) =

1

𝑍
𝑒−𝛼𝑥 into Eq.(4), which yields 𝑆𝑉 = −

𝐴

𝛼
∫

1

𝑍
e−αx(−𝛼𝑥)𝑑𝑥

∞

0
=

𝐴

𝑍
∫ 𝑥𝑒−𝛼𝑥𝑑𝑥

∞

0
=

𝐴

𝛼
. Let 𝐴 =

1, 𝑆𝑉 =
1

𝛼
 which is positive. 

In order to show the role of the constant A to guarantee positive 𝑆𝑉 , let us suppose an 

increasing exponential distribution 𝜌(𝑥) =
1

𝑍
𝑒−𝛼𝑥   for −∞ < 𝑥 ≤ 0  with 𝛼 < 0 . After the 

same calculation as above, we reach 𝑆𝑉 =
𝐴

𝛼
. As 𝛼 < 0, we can choose 𝐴 = −1 to have a 

positive entropy 𝑆𝑉 = −
1

𝛼
. 
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c) Stretched exponential distribution 

We consider the continuous stretched exponential distribution 𝜌(𝑥) =
1

𝑍
𝑒−𝑥𝛽

  for positive 

0 < 𝑥 < ∞  and 𝛽 > 0 , 𝑍  being the normalization constant 𝑍 = ∫ 𝑒−𝑥𝛽∞

0
𝑑𝑥 . Let us first 

calculate its BG entropy: 

𝑆𝐵𝐺 = − ∫
1

𝑍
𝑒−𝑥𝛽

  ln (
1

𝑍
𝑒−𝑥𝛽

) dx  
∞

0
=

ln 𝑍

𝑍
∫ 𝑒−𝑥𝛽∞

0
𝑑𝑥 +

1

𝑍
∫ 𝑥𝛽𝑒−𝑥𝛽

𝑑𝑥
∞

0
. 

Considering the change of variable 𝑡 = 𝑥𝛽, and the definition of Gamma function, we obtain: 

𝑆𝐵𝐺 =
ln 𝑍

𝑍𝛽
Γ (

1

𝛽
) +

1

𝑍𝛽
Γ (

1

𝛽
+ 1). 

which becomes, with the equality Γ(𝑥 + 1) = 𝑥Γ(𝑥): 

𝑆𝐵𝐺 =
1

𝑍𝛽
(Γ (

1

𝛽
) [ln 𝑍 +

1

𝛽
]. 

Considering the normalization constant 𝑍 =
1

𝛽
Γ (

1

𝛽
), we have: 

𝑆𝐵𝐺 =
1

𝛽
− ln 𝛽 + ln(Γ (

1

𝛽
)) 

which inevitably becomes negative whenever ln 𝛽 >
1

𝛽
+ ln(Γ (

1

𝛽
)). 

Now let us see the varentropy of the continuous stretched exponential distribution 𝛿𝑆𝑉 =

𝐴 ∫ 𝑥𝛿𝜌(𝑥)𝑑𝑥
∞

0
. Introducing the change of variable 𝑥 = 𝑡

1

𝛽, we have 𝛿𝜌(𝑥) = 𝛿 (
1

𝑍
𝑒−𝑡) =

−
1

𝑍
𝑒−𝑡𝛿𝑡  and 𝛿𝑆𝑉 = −

𝐴 

𝑍 
∫ 𝑡

1

𝛽𝑒−𝑡𝛿𝑡𝑑𝑥
∞

0
= −

𝐴 

𝑍 
∫ 𝛿 [∫ 𝜏

1

𝛽𝑒−𝜏𝑑𝜏
𝑡

0
+ 𝐶] 𝑑𝑥

∞

0
=

−
𝐴 

𝑍 
𝛿 [∫ 𝛾 (

1

𝛽
+ 1, 𝑡) 𝑑𝑥 + 𝐶

∞

0
] , where 𝐶  is a constant of integration and 𝛾 (

1

𝛽
+ 1, 𝑡) =

∫ 𝜏
1

𝛽𝑒−𝜏𝑑𝜏
𝑡

0
 is the lower incomplete gamma function. As 𝑡 = 𝑥𝛽 = ln

1

𝑍𝜌(𝑥)
, the varentropy 

reads  

𝑆𝑉 = −
𝐴 

𝑍 
[∫ 𝛾 (

1

𝛽
+ 1, ln

1

𝑍𝜌(𝑥)
) 𝑑𝑥 + 𝐶

∞

0

] 

Let us choose 𝐴 = −1 and 𝐶 = 0, the stretched exponential varentropy reads 

𝑆𝑉 =
𝛽

Γ (
1

𝛽
) 

∫ 𝛾 (
1

𝛽
+ 1, ln

𝛽

Γ (
1

𝛽
) 𝜌(𝑥)

) 𝑑𝑥
∞

0
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where we used 𝑍 =
1

𝛽
Γ (

1

𝛽
), and 𝑆𝑉 ≥ 0 because 𝛽 > 0, Γ (

1

𝛽
) > 0, and 𝛾 (

1

𝛽
+ 1, ln

1

𝑍𝜌(𝑥)
) =

𝛾 (
1

𝛽
+ 1, 𝑥𝛽)>0. 

d) Continuous normal distribution 

We consider the continuous normal distribution 𝜌(𝑥) =
1

𝑍
𝑒

−
(𝑥−𝜇)2

2𝜎2   for any 𝑥 ∈ 𝑅, where 

𝑍 = 𝜎√2𝜋 is the normalization constant, 𝜇 is the mean. Its entropy has been calculated and 

reads 𝑆𝐵𝐺 = 𝑙𝑛(𝜎√2𝜋𝑒) [6] which is negative when 𝜎√2𝜋𝑒 < 1.  

Before calculating its varentropy, let us make a change of variable 𝑡 = (
𝑥−𝜇

√2𝜎
)

2

, with 𝜌(𝑡) =

1

𝑍
𝑒−𝑡. Its varentropy is 𝛿𝑆𝑉 = 𝐴 ∫ 𝑥𝛿𝜌(𝑥)𝑑𝑥

∞

0
= 𝐴 ∫ (√2𝜎𝑡1/2 + 𝑚)𝛿(

1

𝑍
𝑒−𝑡)𝑑𝑥

∞

0
. The result 

is 𝑆𝑉 = −
𝐴

𝑍
∫ √2𝜎𝛾 (

3

2
, ln

1

𝑍𝜌(𝑥)
) 𝑑𝑥

∞

0
− 𝐴𝜇 + 𝐶. Let 𝐴 = −1 and 𝐶 = 0, we get  

𝑆𝑉 =
𝛾

√𝜋
∫ (

3

2
, ln

1

𝜎√2𝜋𝜌(𝑥)
) 𝑑𝑥

∞

0

+ 𝜇 

which should always be positive. 

e) Power law distribution 

We consider here the Pareto law 𝜌(𝑥) =
𝛽

𝑥𝛽+1, for 1 < 𝛽 < ∞, the continuous Boltzmann-

Gibbs entropy 𝑆𝐵𝐺 is calculated as follows [6] :  

𝑆𝐵𝐺 = − ∫ 𝜌(𝑥)ln𝜌(𝑥)
∞

1

𝑑𝑥 = −ln𝛽 + 1 +
1

𝛽
 

(5) 

The trouble takes place for the interval ln𝛽 > 1 +
1

𝛽
 or 𝛽 > 3.59 where 𝑆𝐵𝐺 becomes negative. 

Now let us calculate the continuous varentropy for the power law distribution 𝜌(𝑥) =

1

𝑍
𝑥−

1

𝑏 . From the definition of varentropy, we write 𝛿𝑆𝑉 =  𝐴 ∫(𝑍𝜌)−𝑏 𝛿𝜌𝑑𝑥 =

𝐴 ∫ 𝛿 (
𝑍−𝑏

1−𝑏
𝜌1−𝑏) 𝑑𝑥 = 𝛿{

𝐴

1−𝑏
∫(𝑍−𝑏𝜌1−𝑏 − 𝑚) 𝑑𝑥}}. Let 𝐴 = 1 , the continuous varentropy 

reads 

𝑆𝑉 = ∫ 𝜌
(𝑍𝜌)−𝑏 − 𝑚

1 − 𝑏
𝑑𝑥 

(6) 

where the function m is such that ∫ 𝜌𝑚(𝑥) 𝑑𝑥 = 𝐶 is a constant of the variation, i.e., 𝛿𝐶 = 0.  

For Pareto PDF 𝜌(𝑥) =
𝛽

𝑥𝛽+1
 with β =

1

𝑏
− 1 , 𝑥𝑚𝑖𝑛 = 1 and 𝑥𝑚𝑎𝑥 = ∞, Eq.(7) gives  
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𝑆𝑉 =
∫ 𝛽−(𝛽+1)𝜌𝛽/(𝛽+1)𝑑𝑥

∞
1 −𝐶

𝛽/(𝛽+1)
=

𝛽+1

𝛽
(

𝛽

𝛽−1
− 𝐶), 

(7) 

Let 𝐶 = 1, we obtain a positive varentropy  

𝑆𝑉 =
𝛽 + 1

𝛽(𝛽 − 1)
 

(8) 

which is always positive for 1 < 𝛽 < ∞ as plotted in Figure 4 as a function of 𝛽. 

 

Figure 4. Evolution of 𝑆𝑉 =
𝛽+1

𝛽
𝛽

−
𝛽2+𝛽+1

𝛽+1 ⋅
1

𝛽−1
 which decreases from infinity to zero 

with increasing  𝛽 in the intervals 1 < 𝛽 < ∞.  

4) Conclusion 

We have proposed a solution of the problem of negative value of informational entropy for 

continuous probability distribution with the help of varentropy which has been previously 

defined as a general maximizable measure of probabilistic uncertainty. We have shown that 

varentropy can be used to avoid negative informational entropy of continuous probability 

distribution. Several examples of varentropy for some well-known continuous probability has 

been calculated.  
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