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Abstract 
 

Forests are ecosystems where naturally multiple tree species may coexist. Assessing 

possible tree behavior to ongoing climate change is key to forecast forest’s future, and 

better understanding the links between tree community assembly and functioning is 

essential to this aim. Here we compared genomes of beech trees growing either in 

monospecific or multispecific plots, in different sites in the French Alps. We found a 

high genetic association at specific loci between SNP profiles and the monospecific or 

multispecific tree community composition. The studied mixed forests appear as genetic 

patchworks structured at the sub-population level. The most significant SNPs identified 

point out a key metabolic pathway, pathogen defense related genes and stress response. 

As mixed forests are likely to better promote biodiversity conservation and forest 

ecosystem functions provision and to show a stronger resilience to new climate 

conditions, our findings strengthens the need of understanding multispecific tree 

community assembly at the genetic level to forecast and improving forest adaptation to 

climate change.    
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1. Introduction 

 
Forests are essential ecosystems harboring an important amount of species [1][2]. A 

positive correlation between tree species composition and biodiversity richness has 

been shown for several taxonomic groups: flora, fauna, microorganisms [3][4]. If 

biodiversity thus differs between multispecific (or mixed, ie, with at least two 

dominating tree species [5] at the plot level - between 103 and 104 m²) and monospecific 

forests, this is also the case for forest functioning - notably ecosystem productivity 

[1][6] [7]. In fact an increasing number of studies – using various approaches 

(observations, experiments, process-based simulations) - pointed out that multispecific 

forests or plantations showed a higher productivity [7][8][9][10] but also a stronger 

resilience and resistance to biotic and abiotic stress [6][11][12], although these patterns 

are not universal as several counter-examples have been highlighted [13] [14]. Species 

interactions that mostly drive these biodiversity effects, actually depend on many 

factors, such as species identity [15], environmental conditions and resource 

availability [16]. However, ongoing climate change strongly impacts tree physiology 

and therefore the outcome of intra- and interspecific interactions [17]. Therefore, 

although promoting mixed forests is more and more considered as a promising 

approach to sustain both biodiversity and ecosystem functioning under harsher 
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environmental conditions [18][19][20], knowledge remains scarce about how mixed 

forests may respond to new climatic conditions relatively to monospecific stands.  

 

To better understand differences between mono- and multi-specific tree communities, 

most studies have focused on phenotypic aspects by relying on functional trait 

variations that are supposed to reflect plant response to local conditions [21][22]. These 

variations may be related to phenotypic plasticity [23][24] but also to genetic adaptation 

[25]. In this latter context, beneficial alleles are favored by local environmental (ie. 

abiotic and biotic) conditions leading to an enhanced fitness of the species [26]. Such a 

process has been mainly investigated in relation to abiotic environmental conditions so 

far [27]. Yet, it has been shown that genetic variations within a species may influence 

plant community composition, but also the composition of other  trophic levels [28]. 

This is the case for example through chemical compounds for Scots pine [29] whose 

needle monoterpene composition affects the understorey vegetation composition. 

Baccharis pilularis, a coastal dune shrub, has a genetically-dependent architecture 

dimorphism (prostrate or erect morph) that has been shown to affect the understory 

environment leading to distinct plant community assembly [30]. Yet, beyond these few 

examples, the interplay between community composition, species coexistence and 

genetic structure of species remains mostly unknown. For instance, the effect of the 

biotic context on the genetic structure of a species remains poorly investigated, 

especially for interspecific competition, and so are the consequences on the local abiotic 

conditions. Advances in DNA sequencing techniques enable now to investigate such 

processes at the whole genome level. 
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In this work, we investigated the genetic association of European beech (Fagus 

sylvatica) trees with their local environmental conditions. This species is a major 

deciduous tree in Europe, one of the most dominant late-successional tree species, and 

is of key interest at the economic level. We aimed at testing whether the structuration 

of genetic diversity of European beech trees varied with the species composition of 

their local environment. To do so, we assessed the structuration of genetic diversity of 

beech trees in both monospecific beech and multispecific beech-oak (Quercus 

pubescens) stands in situ across several sites, relying on whole genome analysis. 

 

2. Materials and Methods 
 

2.1 Sampling 

Sampling sites were located in three natural French forests: Luberon-Lagarde (Lagarde 

d’Apt), Grand Luberon (St Martin de Castillon), Ste Baume (Plan-d’Aups-Ste-Baume) 

[15] (SI Appendix, Fig. S1). ). The sampled forest are natural regenerations with no  

plantations or tree selections from what we know about their history. The sites have 

been choosen with forest managers of the French National Forest Office for this 

purpose. The Lagarde and Grand Luberon forests have not been managed for more than 

50 years, and as long as we know from the history of these forests. The Sainte Baume 

forest (protected with a national protection status from the French Forest National 

Office) has not been managed for more than 150 years (except cutting trees that were 

possibly dangerous for visitors). All sites have a limestone bedrock and a northwest 

exposition. In each site, two plots have been selected: a monospecific plot dominated 

by beech (Fagus sylvatica and a downy oak (Quercus pubescens) -beech multispecific 

plot with ca. 50% of each species in terms of total basal area (ie. cross-sectional area of 
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trees at breast height). The two kinds of plots have been sampled as close as possible 

from each other to limit topographic and climatic variations. Each plot corresponds to 

a 17.5m radius circle (ca 1000 m²). Four plots were sampled in the Ste Baume and 

Grand Luberon forests, and two in the Luberon-Lagarde forest, for a total of ten plots. 

For genomic analysis, leaves were harvested from three to five mature trees per plot 

and dehydrated in silica gel, in which were stored until DNA extraction. 

 

2.2 DNA extraction and sequencing 

25 milligrams of dried leaf samples were grounded and total DNA was extracted using 

DNeasy Plant Kit (Qiagen) according to the manufacturer instructions. DNA quality 

was checked using agarose gel and DNA quantification was performed on a Qubit 

fluorometer (Invitrogen, USA) with the Qubit dsDNA BR assay kit. 

Genomic DNA libraries were prepared and sequenced by Fasteris (Geneva, 

Switzerland). After DNA breaking, bead size selection enabled recovering inserts of 

350bp and libraries were prepared using Illumina Genomic Nano kit. Sequencing was 

performed for the 45 samples on a HiSeq4000 sequencer as paired-end reads of 150 bp 

to get an average 10x coverage for each sample. 

 
2.3 SNP mapping 

Raw reads were filtered using trimmomatic [31] to remove low quality sequences and 

length below 50 bases. Read mapping on Fagus sylvatica scaffolds [32] was performed 

using BWA 0.7.17 [33]. Samtools 1.9 and bcftools 1.9 enabled SNP calling and filtering 

[34]. Indels were removed together with SNPs located within a distance of 10 bases 
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around an indel. Low quality variants (qual<20) and low quality mapping (MQ<20) 

were discarded. Only biallelic sites were retained for which data were available for all 

populations, so the dataset do not contain missing data. A minor allele frequency filter 

was applied (5%). Allele counts from individuals were finally grouped for a plot to get 

plot population data.  

 
2.4 SNP detection 

A GLMM model with logit link and a binomial error distribution was estimated 

between each SNP of the complete dataset and the plot type [35]. The R package lme4 

was used to calculate the models [36]. Using the allelic proportions of the alleles at a 

defined genomic position, the number of occurrences of each allele was calculated for 

a total count of 30, and these occurrence data were used as input for model 

determination. This strategy enabled to perform such calculations based on an equal 

total count of alleles at each genomic position. The plot composition was coded as 0 or 

1 respectively for monospecific and multispecific plots. To evaluate model 

performances, the likelihood ratio (LR) was calculated using the ANOVA function 

from the R car package with the model and null model as input. A Bonferroni correction  

was applied to the LR p-values as previously described [35]. Wald1 and Wald2 

coefficients were also used to evaluate model performances and were recovered from 

the GLMM model data produced [37]. As a control, we ran similar analysis on the 

complete dataset with three random variables in which the plot composition status was 

randomly assigned for each site.. 

The LFMM 1.5 program was used to confirm highly significant SNPs detected with the 

GLMM approach. It enables testing for the association of genomic loci with 
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environmental variables while taking into account the population structure through 

unobserved latent factors( [38] http://membres-

timc.imag.fr/Olivier.Francois/lfmm/index.htm). The number of latent factors was fixed 

to three with the K parameter. Genotyping data were provided as allelic proportions per 

population. LFMM implement an MCMC algorithm, the number of iterations in the 

Gibbs sampling algorithm was set to 30,000, and the number of burning iterations to 

15,000. We performed 6 in- dependent runs, and the Z-scores were combined using the 

Fisher-Stouffer method. The p-values were adjusted as described by LFMM manual 

(http://membres-timc.imag.fr/Olivier.Francois/lfmm/index. htm). 

 

2.5 Principal Component Analysis 

Population analysis was performed using Principal Component Analysis (PCA) in R 

with the FactoMineR and factoextra packages [39]. A covariance matrix was first 

calculated based on data from a randomly selected set of 10,000 SNPs across the beech 

genome and PCA was then performed. Different random datasets of different sizes 

where produced and teste. We also tried to filtered these datasets from potentially linked 

SNPs according to the linkage disequilibrium and get the same result. 

 

2.6 Tree growth analysis 

To determine Fagus sylvatica growth between mono- and multispecific plots, we 

calculated the plot productivity for each plot. For this purpose, productivity was 

investigated through basal area increments (BAI), based on the sampling of all beech 

trees in a plot and growth dynamic was evaluated using tree rings over 18 years during 
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the period from 1995 to 2013 (for detailed explanation, see supplementary data) 

[15][40][41]. 

 
 
3. Results 
 
3.1. Genomic sequencing 

Studied plots were located in three forests in the south of France (Fig. S1). In each 

forest, monospecific and multispecific plots were located as close as possible to ensure 

similar environmental conditions [40], while climate conditions between the three 

forests differed (Fig. S2).  

Genomic DNA from 50 beech trees collected in the three different forests have been 

sequenced and mapped onto Fagus sylvatica draft genome [32]. After filtering, 

1,163,710 Single Nucleotide Polymorhisms (SNPs) were retained, corresponding to a 

density of 1 SNP/437 bp. These SNPs were located on 5217 scaffolds of the genome 

assembly, which contains a total of 6491 scaffolds (N50=145kb), and they cover 94% 

of the genome estimated size (542 Mb). In order to get population data from the 

samples, a PCA was performed on different random sets of SNPs leading to identical 

groups. The results (Fig. 1) indicated a structuration in three distinct groups, strongly 

linked to the three sampled forests. All three groups contain trees from both 

multispecific and monospecific stands, and no clustering was observed depending on 

the tree community composition from which the samples originated (Fig. 1).     

 

 

3.2. Detection of SNP allele association 
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To investigate a potential genomic association with tree community composition, a 

search for the association of SNP alleles with the community type was performed. We 

took into account for these analyses the population structure that was identified by PCA 

in order to reduce false positive detection. Such population effects were also controlled 

by the presence of both multispecific and monospecific stands at each sampling site. 

General Linear Mixed Models (GLMM) detection enabled to identify the most 

significant SNPs for their association with multispecific or monospecific beech 

communities. At a p-value threshold of 0.05 for the LR and the Wald2 test, we get 

24,619 positive hits, the lower corrected p-value for the LR being 4.4x10-22. Among the 

dataset, 43 SNPs allelic profile led to p-values lower than 10-16. Since a large number 

of mapped SNPs were available and therefore a high SNP density, we searched for the 

most significant regions associated to the stand status. For this purpose, a sliding 1.5kb 

window approach was performed and identified regions with at least two highly 

significant SNPs with p-values below 10-16 [35]. The window size was chosen 

according to the estimated LD in Fagus sylvatica [42], which was up to 1kb. We 

detected six regions (Table 1) located on different scaffolds of the genome assembly. 

 For the SNPs detected with the plot status (ie. monospecific or multispecific 

stand) variable into the region 119,197-120,737 on scaffold 635, a consistent result was 

obtained among the different sites with a similar behavior (e.g.  Fig. 2 shows two of 

these results for SNPs 119,197 and 119,226). In monospecific beech plots, two alleles 

were detected at an average ratio of 0.5 (Fig. 2 and Fig. 3A). In contrast, in multispecific 

beech-oak plots, only one allele was present. Such data thus indicate a clear shift in 

allele proportion for these SNPs in the plots according to their composition, which was 

detected at an equal level in all studied sites. A similar behavior was observed for SNP 



 

 

11 

 

128,466 on scaffold 655, with one major allele in multispecific plots while in 

monospecific plots two alleles were present at an average ration of 0.5, but with a 

variability higher than for the region 119,197-120,737 of scaffold 635 (Fig. 3B). In 

contrast, among the SNPs significantly associated to the community type, a different 

situation was observed on scaffold 2 and 2088. For this second class of SNPs, only one 

allele was detected in trees in monospecific beech plots, while two alleles were present 

in multispecific plots (Fig. 3C and 3D). A clear and consistent community effect was 

therefore detected in the different forests, showing that allele proportions at specific 

SNPs strongly vary according to community composition at the plot level. As a control, 

we performed a similar association detection with three random variables where the 

plot status (ie. monospecific or multispecific stand), was assigned randomly in each 

site. We obtained between 17,895 and 18,200 positive hits at a threshold of 0.05 for 

Wald2 and LR p-values. The profiles of the SNPs with the lowest pvalues didn’t reveal 

reproducible results among the different sites with these random variables (Fig. S3). If 

some low pvalues were in the range of those obtained with the true variables (e.g. Fig. 

S3 shows the SNP profile of one of them corresponding to a p-value of 9.83x10-22), this 

was linked to the weight attributed by the model to a high difference in two sites only. 

Low differences are observed in the 3 other sites (Fig. S3). We obtained similar results 

with the different random variables. 

 

3.3. Genomic annotations into the highly significant genomic regions 

Using the beech genome draft annotations and re-annotations using Arabidopsis 

thaliana or oak data as references, we investigated the occurrence of genes in the 
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detected regions for their association to the tree community composition. In trees the 

linkage disequilibrium has been shown to be low and reaching up to 1kb in Fagus 

sylvatica. Seven of the nine significant SNPs mentioned in Table 1 were located into 

genes, the three SNPs on scaffold 635 being in the same KHG-KDPG aldolase gene. 

On scaffold 2 the detected region matches with genes encoding a wall associated 

receptor kinase and a sterol 3-beta-glucosyltransferase. Genes related to ion transport 

and plant development or defense against pathogens were pointed out by significant 

SNPs on scaffold 655 and 2068. Different class of genes are therefore located into 

beech genomic regions associated with the community status.  

 

3.4. Fagus sylvatica growth analysis 

Since our results highlight genetic differences between beech trees in monospecific vs. 

multispecific plots, we then questioned whether such differences affect the growth of 

beech trees in between monospecific and multispecific plots. For this purpose, we 

compared the growth patterns of beech trees in the two kinds of plots across 18 years, 

using basal area increment (ie. increment of cross-sectional area of trees at breast 

height) as a proxy for growth. In all sites, the measured growth was close between trees 

in multispecific vs. monospecific plots, as only small differences were observed (Fig. 

4). Therefore, genotypes that are filtered by mono- or multispecific biotic environments 

showed similar growth patterns in their respective community composition conditions.  
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4. Discussion  
 
In this work, using a genetic association approach at the whole genome level in beech 

trees, we observed a genetic differentiation at some specific SNPs between the 

monospecific and multispecific plots. This association was found reproducibly in all 

the studied sites, which shows the consistence of this association and strongly suggests 

that local environmental conditions into these plots act to filter the present genotypes 

of beech trees. A consistent result of genetic profiles for associated SNPs was observed 

in different forests with different beech populations and distinct climatic and soil 

environments. It is known that environmental parameters are involved in plant local 

adaptation, and studies of this process have actually a particular interest to understand 

the impact of climate parameters variations due to the ongoing climate change [27]. To 

explain the distinct genetic profiles observed according to the plot community 

composition, a hypothesis could be that micro-environmental variations act to favor 

some genotypes and lead to an allelic enrichment at some SNP positions. This 

phenomenon would be at a sub-population level since these observations were made in 

specific plots in the population and would be linked to micro-variations that we have 

been unable to characterize so far. 

Indeed, the trees of the two species composing the study forests are not uniformly 

distributed in these forests. They occur in patches of various sizes and with various 

levels of species mixing. In this study, the plots have been chosen in the field to 

compare two extreme situations: monospecific plots dominated by a single species or 
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multispecific plots with ca. 50 % of each species [41]. These forests have not been 

managed for at least 50 years, the observed patterns are thus naturally occurring, which 

means that the species composition is the result of long-term filtering from local 

environmental conditions [43]. It is noteworthy that it is very unlikely that the observed 

heterogeneity between plots is the result of differential seed dispersion, as the paired 

monospecific and multispecific plots were very close to each other (50 m maximum). 

To explore putative causes of these short-distance variation, the climatic parameters of 

the different plots have been investigated using both climatic databases and local 

measurements. Soil data have been also collected and analyzed for different parameters. 

Using these environmental data, we did not find any significant environmental factors 

that would explain the forest heterogeneity in terms of community composition. We 

cannot exclude, however, that micro-environmental variation occur among the plots 

that were impossible to properly measure. In this context, some local conditions may 

either favor one of the two species, leading to a monospecific plot, or allowing the two 

species to coexist, resulting in a multispecific plot. Such micro-spatial environmental 

variations have been reported in specific conditions such as between normal and 

contaminated soils in mine boundaries [44]. Another example was reported between 

hilltops and bottomland plots in tropical forest [45] leading to divergence in quantitative 

traits of forest trees, but with topographical variations and in a range of distance larger 

than what we observed in our sampling sites (300m). 

The genetic structuration that we have characterized is based on the comparison of 

mono- and multispecific plots. Therefore, apart from some potential micro 

environmental variations between the plots as stated above, another possible 

explanatory factor is the difference in biotic environments between plots. In 
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multispecific plots, the presence of oak trees as neighbors for beech trees may influence 

genetic filtering of alleles of beech trees. Beech and oak have different physiological 

characteristics, and thus tend to respond differently to competition and climate 

conditions, as already shown in these same forest plots [40]. When present side by side 

in a plot, tree-tree interaction or indirect effects on the environment of the neighboring 

tree may influence what tree genotypes are filtered. Tree-tree interactions have already 

been shown to affect growth patterns of individual trees [40] or their architecture [46]. 

Regarding indirect effects, beech trees are more sensitive to dry conditions than downy 

oak [41]. However, such changes have mostly been discussed in the light of plasticity 

[46][47] and long-term legacy of the biotic environment (plurispecific vs. monospecific 

interactions in this case) on the genetic structure of a tree species has never been shown, 

to our knowledge. 

A third hypothesis could be also that the observed association of SNPs with the plot 

composition is linked to a combination of the two first hypotheses with both micro-

environmental variations and biotic factors linked to the species of the tree neighbors. 

 
 
The highly significant SNPs detected were mostly located in genes, and since LD is 

low in trees, we checked the function of these genes. Highly positive signals were 

obtained for the region 119,197-120,737 on scaffold 635. The three positive SNPs are 

located within a KHG KDGP aldolase gene and a clear shift in allelic proportion was 

measured when beech grow with downy oak as neighbor at the community level. This 

aldolase is the key enzyme of the Entner-Doudoroff pathway (ED) [48]. Common 

pathways to produce ATP and reducing power from glucose are the glycolysis 

(Embden-Meyerfod-Parnas pathway) and the oxidative pentose phosphate pathway. 
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The ED pathway is an alternate way to perform this process that uses the KHG KDGP 

aldolase to produce Glyceraldehyde-3-Phosphate from 2-keto3-deoxy6-

phosphogluconate. This metabolic pathway has been described in prokaryotes and more 

recently in cyanobacteria and plants [48]. In plants, the ED pathway has been shown to 

be active in tobacco or Hordeum vulgare for example, but not all species tested. 

Analysis of the drought stress response in tobacco at the metabolite level showed a 70 

fold increase in 4-hydroxy-2-oxoglutaric acid (KHG) in such condition and KHG 

aldolase was suggested to play a role in stress recovery as in E. coli [49].  

A second set of candidate genes is known to be developmentally regulated and involved 

in pathogen response in other species. A first gene is a member of the cell wall-

associated kinase family encoding a receptor-like protein kinase which is part of the 

pathogen response in Arabidopsis thaliana [50][51]. We also identified a Major Latex 

Protein (MLP) encoding gene [52]. In Morus multicaulis, a gene of this family protect 

against pathogens, but a role in drought resistance has also been reported in Arabidopsis 

[53]. Mixing tree communities have been shown as a way to improve tree protection 

against pest and pathogens [11][12][54]. The last two candidate genes are a cation 

chloride transporter and a sterol-3-beta-glucosyl-transferase. Both of them have been 

shown to take part in plant salt tolerance in other species [55][56]. The detected genes 

are therefore involved in stress responses. So far, genetic association studies for the 

trees of the Fagaceae family have been mainly focused on climate parameters or 

functional traits [27], and are supported by increasing genomic data becoming available 

for these species with the recent progresses in sequencing [57]. Some studies have 

highlighted the role of plant genotypes into the composition of ecological communities, 

affecting different trophic levels like for example insects, soil microbial communities, 

arthropods [58], but intraspecific diversity can also have some influence at the same 
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trophic level [28]. In this study focusing on the genomic level, we highlighted that tree 

community composition may influence species local genetic composition. These data 

provide candidate genes for such a process that may help improving our knowledge 

about tree interactions and may be valuable in the understanding of mixed forest 

assembly and functioning. 

 

5. Conclusion 

With ongoing climate change, warmer and drier conditions are expected to occur in 

Southern Europe. Therefore a better understanding local adaptation to environmental 

conditions (eg. drought stress) appears as a key stake for long-lived organisms such as 

trees [17]. If our findings should be confirmed in other conditions and for other species, 

they nevertheless strongly suggest that genetic issues should also be considered to better 

understand diversity effects on community ecology and ecosystem functioning, since 

the genetic pool may differ according to the tree community composition in natural 

forests. As mixed tree communities are viewed as a way to sustain biodiversity [59], 

and maintain forest ecosystem functioning, notably by promoting resistance and 

resilience against climate change [60], our results highlight how genetic effects may 

also contribute to creating differences in resistance and resilience to climate change as 

well as in ecosystem functioning between mixed and monospecific forests. 

They may also question the use of tree plantations as key nature-based solutions against 

climate change. In fact, most of these plantations are monospecific, and our findings 

may thus call for a better consideration of genetic issues in the massive tree planting 

programs currently under development.  
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Figures and Tables 

Fig. 1. Analysis of beech population structure into the sampling area. 

A random set of 10,000 SNPs was used to define the population structure through 

Principal Component Analysis (PCA). Plot names are mentioned indicating the massif 

where the plot is located : SB (Sainte Baume), GL (Grand Luberon), LA (Luberon 

lagarde). Mono and multispecific community plot names contain respectively _m and 

_ph. The first two dimensions of the PCA were plotted. 

 

Fig. 2. Allelic profiles of two SNPs highly associated to the community composition 

status. 
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Barplots of allelic proportion as a percentage of total allele count at the position were 

drawn for SNPs 119,197 and 119,226 located on scaffold 635 of the draft Fagus 

sylvatica genome assembly. Sampling site names are indicated. Black bars correspond 

to multispecific beech-oak plots and grey bars to beech monospecific community 

plots. 

 

Fig. 3. Average allelic proportion of four positive SNPs. 

Barplot of average allelic proportion were drawn from the calculated average 

proportion at a position over the 5 mono or multispecific community studied plots. 

Standard deviations are indicated. Data are provided for 4 SNPs significantly 

associated to the community status : A) scaffold635 position 119,197 B) scaffold655 

position 128,466 C) scaffold2 position 24219 D) scaffold2 position 68595. 

 

Fig. 4.  Beech productivity into the studied sites. 

Basal area increment was calculated as indicated for multispecific plots and the 

associated monospeficic plot of the same sampling site as a productivity estimate. Site 

names mentioned the corresponding sampling massif SB (Sainte Baume), GL (Grand 

Luberon), LA (Luberon lagarde). Black bars correspond to multispecific beech-oak 

plots and grey bars to beech monospecific community plots. 
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Table 1 Fagus sylvatica SNPs highly associated with the tree community 
composition. Candidate genes are indicated when available.  
 
Scaffold         SNP position         corrected_pvalue                   gene____________            

Scaffold_635  119197         4.14e-22          KHG-KDPG aldolase 

Scaffold_635  119226         5.84e-19          KHG-KDPG aldolase 

Scaffold_635  120737         6.05e-18          KHG-KDPG aldolase 

Scaffold_2    24219         3.16e-20          Wall associated receptor kinase 

Scaffold_2    71526         8.16e-18          Sterol 3-beta-glucosyltranferase 

Scaffold_2    90214         2.38e-19          - 

Scaffold_2    90865         4.12e-19          - 

Scaffold_655  128466         1.84e-18          Cation chloride cotransporter 

Scaffold_2068    39162         4.19e-18          MLP 31 defense response 
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Material and Method SI


Tree growth analysis


We studied growth dynamics using tree rings for the last 18 years before sampling, i.e. 

from 1995 to 2013 (Jourdan et al 2019). All cores were cross-dated using specific species 

pointer years, as described in Lebourgeois and Merian (2012), but without series 

standardization. This analysis allowed ensuring that chronologies were synchronized, without 

correcting for interannual variations amplitude. Here, productivity was represented by basal 

area increment BAI instead of diameter increment in Lloret et al. (2011). Diameter increments 

were transformed into BAI using measured DBH (Biondi and Qeadan, 2008). Some cores 

were too difficult to read accurately (blurred distinction between rings) and were thus not 

reliable and have been removed for the analyses. 


	 We used annual BAI at the stand level. The annual productivity at year y (BAIy) was 

calculated by summing the BAI of the trees for each plot:


	 (1)


with n being the number of trees in the plot and BAIiy being the basal area increment of tree i 

at year y.
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