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COMMENTARY

Biological constraints on configural odour mixture perception
Gérard Coureaud1,*, Thierry Thomas-Danguin2, Jean-Christophe Sandoz3 and Donald A. Wilson4

ABSTRACT
Animals, including humans, detect odours and use this information to
behave efficiently in the environment. Frequently, odours consist of
complex mixtures of odorants rather than single odorants, and
mixtures are often perceived as configural wholes, i.e. as odour
objects (e.g. food, partners). The biological rules governing this
‘configural perception’ (as opposed to the elemental perception of
mixtures through their components) remain weakly understood. Here,
we first review examples of configural mixture processing in diverse
species involving species-specific biological signals. Then, we
present the original hypothesis that at least certain mixtures can be
processed configurally across species. Indeed, experiments
conducted in human adults, newborn rabbits and, more recently, in
rodents and honeybees show that these species process some
mixtures in a remarkably similar fashion. Strikingly, a mixture AB
(A, ethyl isobutyrate; B, ethyl maltol) induces configural processing in
humans, who perceive a mixture odour quality (pineapple) distinct
from the component qualities (A, strawberry; B, caramel). The same
mixture is weakly configurally processed in rabbit neonates, which
perceive a particular odour for the mixture in addition to the
component odours. Mice and honeybees also perceive the AB
mixture configurally, as they respond differently to the mixture
compared with its components. Based on these results and others,
including neurophysiological approaches, we propose that certain
mixtures are convergently perceived across various species
of vertebrates/invertebrates, possibly as a result of a similar
anatomical organization of their olfactory systems and the common
necessity to simplify the environment’s chemical complexity in order
to display adaptive behaviours.

KEY WORDS: Odour-guided behaviour, Odour object, Elemental
perception, Comparative olfaction, Vertebrates, Invertebrates

Introduction
In complex sensory environments, the extraction of information is a
prerequisite to survival. For adult animals, odours (see Glossary) are
critically involved in behaviour but are rarely experienced as single
odorants (see Glossary). Animals must rapidly extract pertinent
information from the mass of environmental molecules and assign
meaning to certain mixtures before responding. To cope with this
complexity, the olfactory system either breaks down a complex
stimulus into its elements – elemental odour perception (see

Glossary) – or combines the elements into new, synthetic
information – configural odour perception (see Glossary). The
elemental strategy involves responding to certain (or all of) the
odorants within a mixture, i.e. to key odorants (e.g. Laloi et al., 2000;
Reinhard et al., 2010) or certain pheromones (e.g. Renou et al., 2015;
Wyatt, 2015). By contrast, the configural strategy results in the
attribution of additional or unique information (weak or robust
configural odour perception, respectively; see Glossary) to a whole
mixture, which carries a value distinct from that of its component
values (Kay et al., 2005; Lei and Vickers, 2008). This contributes to
the elaboration of stable, background-detached representations of
complex signals as meaningful objects (Stevenson and Wilson,
2007). Configural processing in olfaction may thus allow complex
patterns of stimuli to be grouped into perceptual units and facilitates
the representation of complex sensory ‘objects’ (e.g. partners, prey).
These processes are probably vital for organisms to maintain constant
perception of certain information despite changes over time (e.g.
circadian, seasonal changes) and to allow individuals to focus on the
most salient stimuli. These considerations about the adaptive
advantages of each perception mode are largely theoretical, and key
questions remain unanswered about the biological mechanisms that
support elemental/configural perception, e.g. under what
circumstances and through which mechanisms do complex odour
stimuli constitute for the receiver a sum of elements or blend into a
unique percept, and for what benefit?

Here, we begin by discussing configural processing of odour
mixtures that seem to be species specific and then consider non-
species-specific configural processing. Further, we present some
models of configural odour perception and possible neural
mechanisms underlying this perception. We conclude with
perspectives on the convergent configural perception of odour
mixtures between species, and future prospects for the field.

Configural odour perception in the animal kingdom
Many species of invertebrates and vertebrates show evidence of
configural perception (see Table 1 for some examples). Configural
processing allows behavioural responses to specific stimuli in a
species-specific manner, i.e. an organism from a given species can
be ‘tuned’ to respond (e.g. lay eggs, mate, feed) to a specific
combination of molecules presented in a specific ratio. Thus, a
mixture processed configurally by one species to evoke a particular
behaviour may be processed elementally by other species and
trigger no or a different behaviour.

Several factors may alter the perception of odour mixtures,
although their respective roles remain to be clearly established.
First, the chemical nature of the mixed odorants plays a role: with
the same number of components, some mixtures are perceived
configurally and others elementally, sometimes as a result of
particular odorants being more salient than others (e.g. Thomas-
Danguin et al., 2014). This is the case for some food aromas (Laska
and Hudson, 1993). A similar effect has been found in rats, where
removing an individual odorant can affect the odour quality of the
whole mixture (Chapuis and Wilson, 2011). Second, the ratio of
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Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France. 4Department of Child &
Adolescent Psychiatry, New York University Langone School of Medicine and
Nathan S. Kline Institute for Psychiatric Research, New York, NY 10016, USA.

*Author for correspondence (gerard.coureaud@cnrs.fr)

G.C., 0000-0001-6754-3884; J.-C.S., 0000-0002-5423-9645; D.A.W., 0000-
0001-8918-2151

1

© 2022. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2022) 225, jeb242274. doi:10.1242/jeb.242274

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

mailto:gerard.coureaud@cnrs.fr
http://orcid.org/0000-0001-6754-3884
http://orcid.org/0000-0002-5423-9645
http://orcid.org/0000-0001-8918-2151
http://orcid.org/0000-0001-8918-2151


components can affect mixture perception. For example, rats
discriminate binary mixtures according to the molar ratios of their
components (Kay et al., 2003), which ensures mixture recognition at
higher/lower concentrations (Uchida and Mainen, 2008). The ratio
of odorants in binary mixtures is also the driving factor for
configural perception in insects (Clifford and Riffell, 2013), catfish
(Valentincic et al., 2000) and humans (Olsson, 1998). Third, the
perception of odour mixtures is affected by the number of
components: humans rarely identify more than 4 odorants in a
mixture (e.g. Livermore and Laing, 1998) and are thought to
perceive an ‘olfactory white’ in artificial 30-component mixtures
that span the physicochemical odorant space (Weiss et al., 2012).
Adult rats show difficulties identifying components within mixtures
including more than 3–4 components, whereas adult honeybees and
newborn rabbits display higher elemental abilities (e.g. Laloi et al.,
2000; Sinding et al., 2013).
The mechanisms underlying the neural processing of elemental

versus configural perception remain to be clarified. Neuroanatomical
similarities that exist between the olfactory systems of vertebrates and
invertebrates (Hildebrand and Shepherd, 1997; Eisthen, 2002)
suggest, however, that commonalities in the processing of odour
mixtures may exist (Box 1).
In summary, specific mixtures are perceived as the sum of odour

elements, whereas others are perceived as configural odour objects
in terrestrial/aquatic vertebrates and invertebrates, which present
remarkable similarities in their olfactory architecture. Could there be

common rules for complex odour processing across animals?
Below, we consider work that has recently addressed this question
by studying configural perception of the same mixtures in five
different species.

Non-species-specific configural processing
Cross-species analyses of defined perceptual functions can provide
unique insights to the basic processes underlying critical behaviours
(Jourjine and Hoekstra, 2021).We have used behavioural assays that
differ between species in order to test the robustness of the
suspected inter-species conservation of configural perception. Here,
we summarize the main findings obtained so far and their
generalization.

A model binary mixture, the AB mixture
We explored configural processing primarily using the binary AB
odour mixture, which has been designed to evoke configural
perception in human adults, i.e. the perception of a pineapple odour
completely different from the odours of the components A (ethyl
isobutyrate, strawberry odour) and B (ethyl maltol, caramel odour).
The perception of AB was compared between humans, rabbits,
rodents and bees, despite the lack of known biological significance
in the non-human species. The goal was to evaluate whether AB
could, by its physicochemical properties, generate configural
perception not only in humans but also in the other species.

Experiments in humans
As in every species, humans are exposed to odour cues that support
the categorization of objects and detection of noxious sources or
environments, and contribute to driving behaviours such as
food choices (Prescott, 2015) and inter-personal communication
(de Groot et al., 2017). Because most of these odours rely on the
perception of complex mixtures of odorants, we have been
developing a series of experiments to gain insight into the
processing of odour mixtures.

As configural processing should confer on a mixture an odour
quality that is not (or is less) present in the components, the sensory
paradigm used was based on a typicality rating task with the
pineapple odour as the target for the AB mixture (Le Berre et al.,
2008a, 2010; Barkat et al., 2012). Participants had to rate typicality
of distinct stimuli, delivered by a static olfactometric method,
according to the following question: ‘is this odour a good or a poor
example of the odour of pineapple?’.

The AB mixture, at the specific 30/70 ratio of A/B, evoked an
odour quality more typical of pineapple than of its components
(Fig. 1A) (Le Berre et al., 2008a). Not all mixtures of fruity and
caramel odours produced the configural perception of pineapple.
Indeed, in a binary mixture of ethyl caproate (fruity green-banana
odour) and furaneol (caramel odour), the pineapple odour typicality
of ethyl caproate itself was actually the highest (Fig. 1B) (Barkat
et al., 2012). Moreover, a very small variation of component
proportions impaired the mixture configuration and induced a
decrease in pineapple typicality (Le Berre et al., 2008a).

These results underline the specificity of configural odour
processing as a function of the stimulus chemical features.
Humans’ perceptual experience/expertise and attentional
processes can also modulate configural processing (Le Berre
et al., 2008b; Barkat et al., 2012; Sinding et al., 2015). For
instance, pre-exposure to the single components A and B further
altered configural processing of the AB mixture, a result not found
after pre-exposure to control components or mixtures (Fig. 1C)
(Sinding et al., 2015).

Glossary
Configural odour perception
Perception of an odour mixture wherein the mixture evokes a specific
odour, distinct from the odours of its individual components.
Electro-olfactograms
Negative electrical potential recorded at the surface of the olfactory
epithelium. It represents primarily/exclusively the summated generator
potential in the olfactory receptor neurons.
Elemental odour perception
Perception of an odour mixture wherein the perceptual quality of the
mixture matches one or the other of the components, and/or allows
identification of the components.
Hyper-addition
A case of odour mixture interaction observed when the magnitude of the
response (sensory or electrophysiological) for a mixture is higher than
the sum of responses to its components.
Hypo-addition
A case of odour mixture interaction observed when the magnitude of the
response (sensory or electrophysiological) for a mixture is lower than the
sum of responses to its components.
Odorant
A volatile chemical compound or mixture of chemical compounds that
induces an olfactory percept.
Odour
The perceptual quality emergent from odorants. Most natural odours are
composed of multiple different chemical compounds, many or all of
which may have unique perceptual qualities if experienced alone.
Partial addition
A case of odour mixture interaction observed when the magnitude of the
response (sensory or electrophysiological) for a mixture is higher than
the response to the stronger component, but lower than the sum of
responses to the components.
Robust configural odour perception
Perception of a mixture through the unique quality of the mixture itself, to
the detriment of the qualities of the mixture components.
Weak configural odour perception
Perception of a mixture through the quality of the mixture itself in addition
to the qualities of one or several of the mixture components.
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Experiments in rabbits
Olfaction allows rabbit neonates to suck during the once per
day nursing (Zarrow et al., 1965; Hudson and Distel, 1982).
The mammary pheromone (MP; 2-methylbut-2-enal) emitted
by adult females triggers neonatal orocephalic movements
used for nipple location/seizing (e.g. Coureaud, 2001; Coureaud
et al., 2010; Schaal et al., 2003). The MP is perceived among

150 volatiles that compose the rabbit milk, which highlights the
ability of pups to perceive at least some mixtures elementally.
Moreover, as the MP promotes the learning of new odours through
single-trial associative conditioning (Coureaud et al., 2006), we
used it to induce learning by the pups of odorants A and B, and
of mixtures of A/B, before later testing their orocephalic
responsiveness.

Box 1. Organisation of the olfactory system in vertebrates and in invertebrates and possible neural structures involved in
configural processing
In the figure, numbers indicate structures/neurons where mixture-specific properties can emerge (see ‘Potential neural mechanisms underlying configural
processing’ for details). During olfaction, odorants are sampled by olfactory receptors (ORs) located in the cilia of olfactory sensory neurons (OSNs) in the
olfactory epithelium of vertebrates or cuticular sensilla of insects (ORs from mammals and insects belong to different receptor families). In the brain, OSNs
enter the olfactory bulb (OB; in mammals) or antennal lobe (AL; in insects) and connect with second-order neurons [the mitral cells (mammals) or projection
neurons (insects)] (Buonviso and Chaput, 1990; Vosshall et al., 2000). OSNs expressing the same OR converge onto the same glomerulus, giving rise to
odorant-specific maps in theOB/AL (Joerges et al., 1997; Johnson and Leon, 2007; see also Friedrich and Korsching, 1997, for results in fishes). Regarding
superior brain areas, mammalian mitral cells project mainly to the anterior olfactory nucleus, anterior and posterior piriform cortex (aPC, pPC), lateral
entorhinal cortex and amygdala (Mori and Sakano, 2011). In insects, higher-order centres comprise the mushroom bodies (MBs) and the lateral horn
(Mobbs, 1982; Jefferis et al., 2007). The MBs are composed of numerous intrinsic neurons, the Kenyon cells, which are each highly selective to the
activation of a different combination of projection neurons (Perez-Orive et al., 2002). Thus, the architecture of the olfactory system presents similarities in
vertebrates and invertebrates from the periphery to higher-order levels. Hipp, hippocampus; Tha, thalamus; Amyg, amygdala; Hypo, hypothalamus; NLOT,
nucleus of the lateral olfactory tract; OT, olfactory tubercle; AON, anterior olfactory nucleus; TT, taenia tecta; KC, Kenyon cells; PN, projection neuron; LH,
lateral horn; Lo, lobula; Me, medulla.
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Table 1. Examples of configural odour processing in invertebrates and vertebrates

Species Behavioural context Reference

Invertebrates Bumblebees Attraction to plants Byers et al., 2014
Braconid wasp Host location/parasitism Morawo and Fadamiro, 2016
Fruit fly In-flight orientation Kundu et al., 2016
Honeybee Flower discrimination Wright et al., 2002
Moth Pollination Riffell et al., 2009
Spiny lobster Feeding Fine-Levy et al., 1989
Terrestrial slug Aversive guidance Hopfield and Gelperin, 1989

Vertebrates Catfish Food searching Valentincic et al., 2000
Humans Coffee flavour detection Czerny et al., 1999
Humans Food categorization Gottfried, 2009
Military dogs Explosive detection Lazarowski and Dorman, 2013
Rat Foraging Linster and Smith, 1999
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Fig. 1. Demonstration of configural perception of the ABmixture in four different species. In humans: (A) mean pineappleness of the ABmixture compared
with its components; (B) replication including the CD mixture (ethyl caproate+furaneol); (C) mean pineappleness of AB in participants pre-exposed to AB (group
G1), A and B separately (G2), a control mixture (G3), or the components of the control mixture (G4). In rabbits: (D,E,F) proportions of rabbit pups responding orally
to odorants A, B or C and to the AB, A′B′ or AC mixtures 24 h after the learning of AB (D), A (E) or A then B (F); (G) responses 48 h after the learning of AB then
re-exposure to A and B followed by NaCl or anisomycin (AN) injection. MP, mammary pheromone. In mice: (H) freezing of mice exposed to the conditioned
stimulus (CS)+ odorant A, the elemental mixture A′B′, the configural mixture AB, and the CS– odorant vanillin (Van); (I) hierarchical cluster analysis of mouse
single-unit ensembles recorded in the anterior piriform cortex (aPC) after exposure to A, B, the AB mixture or the A′B′ mixture (similar results were observed in
rats, not shown). In honeybees: (J,K) proboscis extension responses (PER) in a protocol in which bees received rewarded presentations of mixture components
(A/B, or hexanol/nonanol H/N) but non-rewarded presentations of the mixture (AB or HN); (L) comparison of differentiation scores (sum of responses to the
rewarded elementsminus those to themixture over thewhole procedure) for the AB andHNmixtures, and the control AC, BC andEFmixtures. *P<0.05, **P<0.01,
***P<0.001.
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The AB mixture appeared to be perceived configurally in pups at
the same 30/70 ratio as in humans: after conditioning to AB, the
pups responded to both AB and its components (Fig. 1D), whereas
after conditioning to A they responded to A (not to B or C; where C
is guaïacol), A′B′ (68/32 A/B ratio) and AC, but not to AB (Fig. 1E)
(Coureaud et al., 2008, 2009, 2011; Sinding et al., 2011). The pups
therefore perceive AB in the weak configural way (perception of
3 cues: the AB odour in addition to the A and B odours) and A′B′
and AC in the elemental way (perception of 2 cues only: the element
odours). After conditioning to A, the pups did not respond to AB
because it included 2 unfamiliar cues (out of 3) compared with A′B′
and AC (1 out of 2); conversely, when conditioned to AB, the pups
learned the 3 cues and could later respond to the mixture and its
elements. After learning of A then B, the pups responded to AB
(Fig. 1F) because they knew 2 of the 3mixture cues (Coureaud et al.,
2008).
The weak configural perception of AB has been confirmed

(1) behaviourally: after conditioning to AB, pups displayed a longer
memory of A and B compared with the AB configuration (Coureaud
et al., 2014b); (2) pharmacologically: after conditioning to AB,
reactivation of the memory of A and B, then injection of anisomycin
(a blocker of reconsolidation), pups became amnesic for A and B
but still responded to AB (Fig. 1G); with A′B′, the same experiment
ended with no response to A, B or A′B′. This demonstrated the
independent perception and memory of the AB configuration
compared with the A/B components, although A′B′ was perceived
and retained as its components (Coureaud et al., 2014a).
Recent results highlight that the perception of AB changes from

weak to robust configural between postnatal days 2 and 9, whereas
that of A′B′ becomes weak configural at postnatal day 24, i.e. close
to weaning (Coureaud et al., 2020).

Experiments in mice and rats
Rodents have been used extensively for understanding odour
perception and memory. They have excellent odour discrimination
ability (Laska and Shepherd, 2007), though rodent odour
discrimination is shaped by both past experience (Chapuis and
Wilson, 2011; Chen et al., 2015; Rabin, 1988) and the nature of the
odour discrimination assay (Cleland et al., 2002). Discrimination of
odour mixtures from each other and from their components by
rodents is influenced by the identity and relative proportions of the
molecules involved in the mixture (Kay et al., 2003).
Evidence for configural processing of the ABmixture (30/70 A/B

ratio) has been found in mice using a standard odour-specific fear
conditioning task with odour A as the CS+ (i.e. predicts shock).
Animals froze significantly more in response to A than to the
configural odour AB, with some generalization to the elemental
odour mixture A′B′ (68/32 A/B ratio) (Wilson et al., 2020)
(Fig. 1H). Similarly, single-unit neural ensembles in the anterior
piriform cortex (aPC) – a region critically involved in odour
perception and configural processing (Gottfried, 2010; Wilson and
Sullivan, 2011) – processed AB as distinct from both A′B′ and the
components A and B as assessed with hierarchical cluster analysis in
both rats and mice (Wilson et al., 2020) (Fig. 1I). Interestingly, this
pattern was not observed in posterior piriform cortical ensembles,
consistent with the known distinct roles of the anterior and posterior
piriform in odour processing (Kadohisa and Wilson, 2006; Howard
et al., 2009).
Similar results were found with odour habituation/cross-

habituation assays (Coureaud and Wilson, 2019), a procedure
widely used as a metric of odour discrimination (e.g. in
humans: Rabin, 1988, Goyert et al., 2007; in rodents: Fletcher and

Wilson, 2001; Cleland et al., 2002). The rate of habituation can also
be used to extract information about the stimulus. For example, in
both humans (Caron and Caron, 1968, 1969; Cohen et al., 1975;
Hunter et al., 1982) and animal models (Brennan et al., 1984), the rate
of habituation is shaped by stimulus complexity: perceptually more
complex stimuli induce slower habituation. We hypothesize that an
odour perceived configurally should induce more rapid habituation
than an odour perceived elementally. In fact, in mice, the rate of
habituation to the elemental A′B′ mixture was significantly slower
compared with that to the configural AB mixture (Coureaud and
Wilson, 2019). Thus, the more rapid habituation to AB is consistent
with the hypothesis of a configural perception of AB (i.e. simple
stimulus) and elemental perception of A′B′ (i.e. complex stimulus).
These results also suggest that associative training or familiarity are
not required for the expression of this perceptual discrimination
between these two mixtures.

Experiments in honeybees
Configural processing of olfactory mixtures in honeybees has been
demonstrated using Pavlovian conditioning of the proboscis
extension response (Bitterman et al., 1983; Menzel, 1999; Giurfa
and Sandoz, 2012), in which bees learn to associate odours
(conditioned stimulus, CS) with a sucrose reward (unconditioned
stimulus, US). Negative patterning, a special type of differential
conditioning task, involves discriminating between a binary mixture
and each of its components. In this procedure, two odorants are
rewarded when presented alone (X+, Y+) but not when presented in
a mixture (XY–; Deisig et al., 2001). Negative patterning is a
difficult task for bees and only a small proportion manage to
differentiate the stimuli at the end of training (Deisig et al., 2001,
2002, 2003; Komischke et al., 2005; Devaud et al., 2015). Indeed,
each element (X or Y) is presented as often with the sucrose reward
as without, so configural processing of the mixture is necessary to
solve this task (Deisig et al., 2001; Devaud et al., 2015). Recently,
bees’ negative patterning performances were compared between AB
(91/9 – the ratio was adapted so that bees detected the two
components equally well) and a list of control mixtures (Wycke
et al., 2020).

The control mixtures included two mixtures known to be
elementally perceived in newborn rabbits: AC (67/33 ethyl
isobutyrate and guaïacol) and BC (17/83 ethyl maltol and
guaïacol) (Coureaud et al., 2009); and two mixtures often used in
bees (Guerrieri et al., 2005; Schubert et al., 2015): HN (50/50
1-hexanol and 1-nonanol) and EF (50/50 2-octanone and octanal).
The conditioning procedure included 6 blocks of 4 trials. In each
block, bees received a presentation of each single odorant alone
with a reward and two unrewarded presentations of the mixture
(1A+, 1B +, 2AB−). In the case of the AB mixture (Fig. 1J), bees
quickly differentiated between the components and the mixture. At
the end of training, responses to AB were much lower than
responses to A and B. These performances were compared with
those obtained with the four other mixtures. The second-best
performances were observed with the HN mixture (Fig. 1K). At the
end of training, the bees responded more to the elements than to the
mixture, but differentiation was less marked than for the AB
mixture. Likewise, for the 3 other mixtures, differentiation at the end
of training was generally low or non-existent. The amount of
differentiation observed between the elements and the mixture
throughout the training [responses to the components (CS+) minus
responses to the mixture (CS−)], was higher for AB than for all
other tested mixtures (Fig. 1L). The same was observed when
comparing differentiation at the end of training. Thus, in honeybees
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too, the mixture of A and B has remarkable qualities which suggest
configural processing of this mixture.

Generalization of the results
In humans and rabbits, results very similar to those observed with the
AB mixture have been obtained with a senary mixture. This mixture,
robust-configurally perceived in humans (called RC because it smells
like red cordial) is perceived in the weak configural mode in rabbit
pups at the same ratio of odorants as in humans (Sinding et al., 2013;
Romagny et al., 2014, 2018; Coureaud et al., 2020). Whereas the
6 odorants appear to contribute equivalently to the configural
perception of RC in rabbits (Romagny et al., 2014), in humans, 2
odorants mainly contribute to it (Romagny et al., 2018). The fact that
a limited number of key odorants may promote configural perception
has also been shown in psychophysical human food studies (e.g.
Rochelle et al., 2018).

Theoretical models of configural odour processing
Two main models have been proposed to explain configural
odour perception (Harris, 2006). The unique-cue theory proposes
that an XY mixture activates the representations of the X and Y
elements but also of a ‘U’ (unique cue) percept, specific to the
mixture (Rescorla et al., 1985). During learning, X, Y and U
separately receive associative strength, allowing the animal to
differentiate between mixtures and elements. Another theory
(Pearce, 1994) states that the mixture gives rise to a single
configural unit ‘XY’, and does not evoke elemental units. During
learning, animals may respond to the X/Y elements through a
generalization rule.
Our experiments generally support the unique-cue theory, which

predicts that during conditioning to the ABmixture, three main units
A, B and U are engaged. In rabbits, after conditioning to AB, pups
distinctively retain AB compared with A and B, and A and B can be
forgotten but not AB (Coureaud et al., 2014a,b). In humans, the
configural perception of AB is lower after learning of its odorants,
suggesting that the subjects’ attention is then mainly focused on the
elements’ odours (Le Berre et al., 2008b). Behavioural work in
honeybees also supports the unique-cue account (Deisig et al.,
2003; Lachnit et al., 2004) and imaging experiments show that
before any training, the neural representation of a mixture XY is not
the pure sum of the representations of X and Y (Deisig et al., 2006;
Chen et al., 2015). This difference may be used by the brain as a
unique cue. As associative learning modifies odorant
representations in the bee brain (Faber et al., 1999; Sandoz et al.,
2003; Fernandez et al., 2009; Chen et al., 2015; Locatelli et al.,
2016), the particular treatment of AB observed in our negative
patterning experiment may result from learning-induced plasticity.
A similar explanation could support the mouse fear conditioning
results and piriform mixture coding.
According to Pearce’s theory, mixtures are represented as single

configural units, which can support rapid acquisition of mixture-
specific behaviours (Pearce, 1994). Some of our results fit into this
framework. Thus, humans spontaneously perceive a pineapple
odour in the AB mixture, distinct from the strawberry/caramel
odours of A/B (such distinction does not appear with other binary
mixtures, or senary mixtures in Sinding et al., 2013). In rabbits, after
single conditioning to A, pups do not respond to AB, suggesting
spontaneous perception in the mixture of a cue different from the
sum of its elements. Similarly, the habituation rate shows different
processing of the AB and A′B′ mixtures in mice, with the simpler
configural mixture inducing more rapid habituation than the
elemental one.

Actually, we propose that odour mixture processing could lie in
between the two theoretical frameworks. Thus, because of the
stimulus properties (e.g. structural features of odorants targeting
specific olfactory receptors, concentration of odorants shaping
receptor response) and/or coding processes, some mixtures would
be perceived elementally and others configurally. Then, under
the effect of experience and odour learning/attentional processes,
the initial perception may be tuned to either the elements or the
configuration. In this respect, it has been shown in rats with mixtures
other than AB/A′B′ that elemental perception can be conditioned
such that sniffing can modulate which odours in a mixture are
perceived, i.e. that the physical properties of both the odorants and
the mucosa contribute to the ease with which odorants can be
detected in a mixture (Rojas-Líbano and Kay, 2012). Ultimately,
odour mixture processing may allow organisms to decrease
environmental complexity by building experience-dependent
perceptual associations (e.g. Wilson and Stevenson, 2003; Deisig
et al., 2003; Gerber et al., 2011; Coureaud et al., 2014a).

Potential neural mechanisms underlying configural
processing
The neural substrates underlying configural perception remain to be
clearly determined, though some clues exist at different levels
within the olfactory system.

At the periphery, each olfactory receptor (OR) and olfactory
sensory neuron (OSN) responds to a variety of odorants so that
molecular identity is encoded by the combination of activated ORs/
OSNs (e.g. Malnic et al., 1999; Duchamp-Viret et al., 2000). The
overlapping responses and proximity of OSNs favour interactions
during mixture processing. Electrophysiological comparisons
between OSN responses to mixtures versus their components
have revealed diverse interactions, such as hypo-addition, partial
addition, hyper-addition (see Glossary), inducing inhibition or
enhancement effects reconcilable with perception in a variety of
species (e.g. Ache et al., 1988; Chaput et al., 2012; El Mountassir
et al., 2016), including insects (e.g. Akers and Getz, 1993; Ochieng
et al., 2002; Su et al., 2011; Deisig et al., 2012). Single sensory cell
responses (Xu et al., 2020; Pfister et al., 2020; Rospars et al., 2008;
Singh et al., 2019) highlight that interactions occurring at the OR
level (Box 1, interaction 1) can account for interactions at the OSN
level, and contribute to receptor-mediated computation of mixture
information in the olfactory epithelium prior to transmission to the
olfactory bulb. This would enhance the capacity of the olfactory
system to discriminate between some mixtures and their
components (Kurian et al., 2021).

In newborn rabbits, recent recordings of electro-olfactograms
(EOG; see Glossary) in olfactory turbinates suggest that the
configural AB mixture is differently processed by ORs compared
with the elemental A′B′ and AC mixtures (Duchamp-Viret et al.,
2021). Direct mixture-related interactions at the OR are presumably
related to the physicochemical features of the odorants (Sanz et al.,
2008); therefore, diverse species sharing homologous ORs or
presenting similar response spectra may show similar mixture
interaction patterns at the olfactory periphery and thus similar
constraints on mixture perception. Although this explanation could
theoretically apply for insects, insect ORs belong to a completely
different receptor family (Benton, 2006). Therefore, if this
hypothesis holds for both mammals and insects, evolutionary
convergence in the response ranges of their ORs responding to the
AB mixture should be invoked.

In addition, interactions between peripheral neurons, in particular
OSNs housed within the same sensillum, exist in insects (Box 1,
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interaction 2). For instance, inhibition between adjacent OSNs,
without the use of chemical synapses, has been observed in
Drosophila (Su et al., 2012). Thus, unique encoding of mixtures
similar to the ligand–ligand interactions evoked above may take
place within an insect sensillum. Interactions between mammalian
OSNs can also occur through ephaptic interactions between axons
as they pass to the olfactory bulb (Blinder et al., 2003), which could
serve a similar function.
More centrally, input from different ORs converges, directly or

indirectly, which may be critical for odour mixture processing
(Wilson and Sullivan, 2011). Within the olfactory bulb (OB)/
antennal lobe (AL) of mammals/insects (Box 1, interaction 3),
lateral inhibition modifies the information projected to higher-order
areas and therefore contributes to mixture representation (Dulac,
2006; Deisig et al., 2010; Szyszka and Stierle, 2014). The ratio of
configural mixtures is also coded in the AL in some insects (Lei
et al., 2013). In mammals, mitral/tufted OB cells respond to
odorants alone or in mixtures, but the firing rates evoked by
mixtures (compared with elements) are partially suppressed
(Kadohisa and Wilson, 2006; Davison and Katz, 2007). Inhibition
may result from overlapping activation patterns favoured by the
physicochemical similarity between mixed odorants (Grossman
et al., 2008). Moreover, perceptual responses rely not only on which
specific ensemble of cells is activated but also on the relative
temporal sequence of cell activation (Chong et al., 2020). In line
with configural processing, computational modelling suggests that
mixing odorants with similar glomerular patterns results in lateral
inhibition, leading to information loss about the odorants which
could favour specific bulbar activation and coding for the mixture
by itself (Linster and Cleland, 2004). Such phenomena may explain
why, in pseudo-conditioned rabbit pups, the AB and A′B′ mixtures
induce similar activation in the OB glomerular layer, although AB
induces higher activation than A′B′ in the granular layer (Schneider
et al., 2016). Moreover, in pups conditioned to B, AB induces
higher activation than A′B′ at the glomerular level, and the opposite
at the granular level (Schneider et al., 2016). In the AL of honeybees
and fruit flies, processing by local neurons changes mixture
glomerular activity maps so that they are more different from
those of the components at its output (projection neurons) than at its
input (Deisig et al., 2006, 2010; Silbering and Galizia, 2007).
Mixture-specific representations can be found in higher-order

centres (Box 1, interaction 4); for instance, in the olfactory cortex
(e.g. Litaudon et al., 1997; Wilson, 2003; Barnes et al., 2008;
Bekkers and Suzuki, 2013). Piriform cortical neurons can
discriminate a mixture from its components in adult mammals,
while the OB still computes the mixture as the sum of odorants (rats:
Wilson, 1998, 2000). More precisely, the aPC and posterior
piriform cortex (pPC) can respectively encode odorant identity and
similarity/quality (rats: Kadohisa and Wilson, 2006; humans:
Gottfried, 2009, 2010; Howard et al., 2009). The ensemble
single-unit data from rodents suggest that the unique quality of
the configural mixture is differentially encoded in the aPC.
Similarly, in newborn rabbits, the piriform cortex is distinctively
activated by the configural/elemental AB/A′B′ mixtures, although
the configural/elemental distinction occurs in both aPC and pPC
(Schneider et al., 2016). In humans, recent functional magnetic
resonance imaging data obtained using the configural AB mixture
suggest the specific involvement of the left orbital part of the
inferior frontal gyrus in configural processes (Sinding et al., 2021).
In insects, the mushroom bodies, which house neurons (Kenyon
cells) that are only activated by concomitant patterns of second-
order neurons from the AL, may present configural units activated

only by a mixture and not by its components (Sandoz, 2011),
supporting successful performance in configural learning tasks (see
also Devaud et al., 2015). Such units could be especially numerous
in the case of the AB mixture, allowing high discrimination
performance.

Conclusions
How odour mixtures are perceived, and whether there are
general rules across species regarding elemental and configural
mixture processing, is poorly understood despite the biological
relevance of these questions. The comparative approach reviewed
here has identified that the same AB mixture triggers the perception
of a particular odour quality different from the qualities of its
elements in various phyla: lagomorphs, rodents, primates and
insects. The results are expressed regardless of the behavioural
assay. Moreover, the AB mixture does not have any known intrinsic
biological value, except in humans, where it was designed to
generate the perception of pineapple. These findings support
convergence in configural perception in both vertebrates and
invertebrates, at least in the species described here, and lead us to
hypothesize that physicochemical properties of some odorants (e.g.
chemical family, concentration, volatility) and component ratios
promote configural processing at the receptor and/or central circuit
level, whereas other odorants do not.

More generally, we propose that organisms from different phyla,
exposed to similar constraints during development at the individual
level, and during evolution at the species level, may have conserved
important neurophysiological mechanisms to efficiently process
odour mixtures. Such mechanisms would support the decrease
of perceptual complexity of the chemosensory environment and
enhance the ability of organisms to behave selectively toward social
and non-social odours contributing critically to their adaptation.
This may explain why different species present converging traits in
the way they perceive the same mixtures of odorants. Further
experiments are required to precisely understand this processing of
odour mixtures in the animal kingdom, and the diverse fascinating
ways species, including humans, represent by smell the world in
which they are living.
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