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Abstract—Pursuit-evasion is the problem of capturing mobile
targets with one or more pursuers. We use deep reinforcement
learning for pursuing an omnidirectional target with multiple,
homogeneous agents that are subject to unicycle kinematic
constraints. We use shared experience to train a policy for
a given number of pursuers, executed independently by each
agent at run-time. The training uses curriculum learning, a
sweeping-angle ordering to locally represent neighboring agents,
and a reward structure that encourages a good formation and
combines individual and group rewards. Simulated experiments
with a reactive evader and up to eight pursuers show that
our learning-based approach outperforms recent reinforcement
learning techniques as well as non-holonomic adaptations of
classical algorithms. The learned policy is successfully trans-
ferred to the real-world in a proof-of-concept demonstration
with three motion-constrained pursuer drones.

I. INTRODUCTION

Pursuit-evasion is the problem of capturing targets with
one or more pursuers, with applications in robotics such as
catching of a rogue drone or a ground target. With multiple-
pursuers, decentralized systems are beneficial to avoid single
points of failure. Classical algorithms for decentralized multi-
agent pursuit [1]–[3] often assume omnidirectional pursuers,
derive the local interaction rules from simple geometry and
do not learn or adapt to evader behavior. For multi-agent
teams consisting of wheeled robots or fixed-wing airplanes,
the non-holonomic kinematic constraints on the motion also
need to be considered. To our knowledge, decentralized
multi-agent pursuit subject to non-holonomic constraints has
not been studied extensively by classical approaches in the
literature. Deep Reinforcement Learning (DRL) has also been
successfully applied to multi-agent pursuit-evasion [4]–[7],
however, most approaches to date did not consider real-world
limitations such as local measurements and non-holonomic
motion constraints and did not offer a thorough analysis of
the system on operational metrics.

We propose a DRL approach to multi-agent pursuit.
We consider a decentralized scenario in which non-
communicating agents independently decide on their own
actions based on local information. While our approach
applies to any such system, in this paper, we focus on the
specific scenario of capturing a finite speed but faster evader
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with multiple, non-holonomic pursuers in a bounded arena
without obstacles. We treat pursuers as homogeneous agents
and use shared experience to train a single policy executed
independently by each agent at run-time. We use Twin
Delayed Deep Deterministic Policy Gradient (TD3) [8], a
state-of-the-art DRL algorithm that was successfully applied
to other domains [9], [10], with a state representation that
encapsulates relative positional information of neighboring
agents as well as the target and use a group reward structure
that encourages good formations. During training, curriculum
learning is applied to start with an easier version of the
problem and gradually learn the task with increasing diffi-
culty. In simulation experiments, we compare our approach to
three state-of-the-art approaches, two classical methods and
a DRL method. They are evaluated in terms of the capture
rate and average timesteps to capture. We conduct further
analysis on the effect of the number of agents, arena size, as
well as using variable linear speed, curriculum learning, and
formation score as part of the reward function. The trained
policy is demonstrated in a proof-of-concept physical system
with three pursuer drones subject to non-holonomic motion
constraints.

The organization of this paper is as follows. After re-
viewing the relevant literature in Sec. II, we define the
problem of interest in Sec. III. Our multi-agent DRL method
is presented in Sec. IV. We detail the experimental procedure
in Sec. V and present simulation results in Sec. VI. Finally,
we describe the real-world drone implementation in Sec. VII
before concluding with a brief discussion in Sec. VIII.

II. RELATED WORK

A. Multi-agent pursuit
Solutions to the pursuit-evasion problem either assume

the ‘worst-case’ adversary with infinite speed and complete
awareness of the pursuers, or average-case behaviors [11].
Although single-agent pursuit-evasion is studied extensively
in the literature [11], [12], its extension to multi-agent
systems still remains an open problem [13], of interest in
biology [13], physics [1], [3], and engineering [2], [14].

Non-learning pursuit methods can be organized into de-
terministic and heuristic solutions. Deterministic methods
attempt to solve the problem with traditional mathematics
tools, such as pursuit curves analysis [12] and differential
games [2], [14]. Pursuit curve analysis formulates the trajec-
tory of the pursuer analytically using differential equations.
The system can then be solved to find the conditions of
capture. Although the problem can be stated simply, closed-
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form analytical solutions are hard to obtain even using
simplistic assumptions such as constant velocities and linear
trajectories. Differential games formulate pursuit as a game,
where the players must optimize an objective function, often
the episode duration. However, it is challenging to define
an appropriate objective function with increasing problem
complexity, such as with a larger number of agents or motion
constraints.

Heuristic solutions [1], [3], [15] inspired by behavior-
based decentralized approaches [16], use computational sim-
ulations that aim to find emergent group behavior based on
local observation [16], [17]. Angelani [3] proposed modeling
up to a hundred autonomous pursuers as particles based
on [16]. Muro [15] proposed small-scale hunter strategies
with up to 5 agents, arguing that the behavior observed
in wolf-pack hunts can be simulated with simple rules.
Janosov [1] re-examined the concepts of the Vicsek particle
model [3] in a more realistic scenario considering delays,
accelerations, prediction and a faster target. However, these
works assume access to information about the evader’s
position and velocity, which is not directly available from
onboard sensors.

The real-world applicability of many of the above ap-
proaches is limited due to their assumptions in observation
and actuation. [3] and [1] both consider an omnidirectional
particle model, which is not directly transferable to many
robotic platforms. In contrast, our observation model is
expressed relative to each agent, which can be found directly
using onboard sensors, such as LiDARs or depth cameras
[18]. We also consider a non-holonomic kinematic model,
suitable for car-like mobile robots or fixed-wing airplanes.
B. RL In Pursuit

The pursuit-evasion game is a highly studied task in multi-
agent RL [19]–[21]. However, most approaches apply only
to omnidirectional agents, which cannot be easily transferred
to real robotic applications without a loss in performance.
Lowe [4] presented an approach for multi-agent RL using
an adapted version of an actor-critic algorithm extended to
multi-agents. Their approach on the pursuit-evasion game
with omnidirectional agents outperformed Deep Determinis-
tic Policy Gradient (DDPG) [22]. Xu [7] considered pursuit-
evader games with non-holonomic agents, where new agents
can join the game. They adapted Bi-directional Recurrent
Neural Networks [23] and DDPG. However, they only con-
sider a situation with 3 and 5 agents. Furthermore, the
observation also assumes global information about other
agents, limiting the applicability to real-world situations.
A few pursuit-evasion works consider non-holonomic con-
straints [6], [24]. Hüttenrauch [6] studied multi-agent pursuit-
evasion systems by considering the agents as interchangeable
and the exact number irrelevant. They create a new state
representation based on mean embedding of distributions.
Their work focuses on scalability and shows that their system
can operate with up to fifty agents.

[25]–[27] learn a policy directly from images in a pursuit-
evasion scenario with one chaser and one evader. These
policies are then successfully transferred to a real-world

scenario and show good performance.
C. Curriculum Learning
Curriculum learning [28] is a learning paradigm to help

improve speed of convergence and reduce local minima by
gradually increasing the complexity of training data. This
learning paradigm has been been widely used for RL [29],
[30] and deep learning [31], and shown to solve problems
which were previously considered intractable [5].

Our work, while borrowing ideas from both classical and
learning-based methods, focuses on using DRL to improve
the pursuit performance and consider operational metrics
such as capture success rate and the average time to capture.
Furthermore, we propose a method that is suitable for sim-to-
real policy transfer with realistic observation models and non-
holonomic constraints. To our knowledge, we are the first
to demonstrate a real-world pursuit-evasion implementation
with multiple pursuers using a DRL policy.

III. THE PURSUIT-EVASION SCENARIO

Our pursuit-evasion problem consists of multiple homo-
geneous, slower pursuers chasing a single, faster target. The
goal for pursuers is to move as a group so that the freedom
of the target is constrained to the point where one of the
pursuers ‘captures’ the target in the shortest time possible.
We consider a trial successful if, at any point during the
trial, the distance between the evader and at least one of the
pursuers is less than a given collision radius (di,T < dcap).
If the target is not captured within a fixed time period
Ttimeout, then a timeout occurs, and the trial is considered
unsuccessful. Collisions between pursuers do not result in a
failure, however, it is discouraged within the reward function
(Sec. IV-C), an important feature for collision avoidance in
real-world implementation (Sec. VII). The pursuer motions
are subject to non-holonomic kinematic constraints, while
the evader is omnidirectional and thus not subject to such
constraints. We adopt a unicycle model for each pursuer i:

ẋi = v cosψi (1a)
ẏi = v sinψi (1b)

ψ̇i = ω (1c)
where (x,y) is the position, ψ is the heading angle, v is

the linear velocity and ω is the angular velocity. We will
first assume that all agents have a constant v and the only
controllable variable is ω with limits ωmin ≤ ω ≤ ωmax,
following the classical formulation approach [1]. Later we
will relax this assumption to allow the pursuers to vary
both their angular and linear velocities. We approximate the
equations as a discrete model. The environment is a circular
arena with a radius of Rarena and without any obstacles in it.
Neither the pursuers nor the target can get out of the arena: if
they take an action that would end up outside Rarena, their
position is updated to be on the nearest arena border.

We assume that the pursuers can differentiate the agents
from the target. We further assume that each pursuer is
equipped with a sensor that provides the relative position
of the target as well as every other pursuer. All sensors
provide ground truth data without noise, unaffected by oc-
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clusions. The state representation of each agent is detailed in
Sec. IV-B.

IV. DEEP REINFORCEMENT LEARNING FOR PURSUIT

We formulate the task for a single pursuer to be a Markov
Decision Process (MDP) defined by tuple {S,A, R,P, γ}
where st ∈ S, at ∈ A, rt ∈ R are state, action and reward
observed at time t, P is an unknown transition probability
from st to st+1 taking at, and γ is a discount factor.
The DRL goal is to maximise the sum of future rewards
R =

∑T
t=0 γ

trt, where rt is provided by the environment
at time t. Actions are sampled from a deep neural network
policy at ∼ πθ(st), where at is the angular velocity ω of
an individual pursuer, which is saturated to be in the interval
[ωmin, ωmax].
A. Multi-Agent Deep Reinforcement Learning

As the Deep RL algorithm, we use Twin Delayed Deep
Deterministic Policy Gradient approach (TD3) [8], which
is an improvement over DDPG [22], designed to reduce
the overestimation of the value function. We consider all
agents to be homogeneous which allows us to use shared
experience to train all agents. This allows the agents to
train faster, as well as gathering more information from
every step in the environment. All agents are governed with
the same policy, however, at each time step the agents use
their local observations to individually take actions, resulting
in a decentralized system. For each number of agents we
train a different policy, which results in a total of nmax
policies, where nmax is the maximum number of pursuers
we analyze in this paper. This was because the length of the
state representation changes based on the number of pursuers
in the game.
B. State Representation

The state of a pursuer i, assuming a total of n pursuers,
is given by si = [ψi, ψ̇i, si,T , si,1, si,2, .., si,n−1], where ψ
is the heading with respect to a fixed world frame, si,T is
the state of the target relative to pursuer i and si,j is the
state of pursuer j relative to pursuer i. (Time indices are
dropped for the sake of clarity). The relative state of the target
with respect to pursuer i is si,T = [di,j , ḋi,T , αi,T , α̇i,T ]
and the relative state of pursuer j with respect to pursuer
i (i 6= j) is si,j = [di,j , αi,j ], where di,j is the Euclidean
distance between pursuers i and j and αi,j is the heading
error defined as the angle between the heading of pursuer i,
and the vector between i and j, as shown in in Fig 1. The
state representation consists of a total of 2n + 4 variables,
which scales linearly with the number of pursuers n.

Fig. 1: The state space for each agent i. T denotes the target and j denotes
another agent

An important consideration is how the si,j are ordered
in the state representation si. A straightforward way would

be to assign a unique identifier to each pursuer and always
represent them in the same order. However, this leads to
inefficiencies in learning as neural networks typically are
not permutation-invariant when operating on sets [32]. To
illustrate this, consider swapping the poses of two pursuers
with everything else being the same. With unique identifica-
tion ordering, the resulting state would be different than the
original, whereas since we have homogeneous agents, the
state should not change. To tackle this problem we assign
j values for each observation by sorting each other pursuer
with respect to their relative angle α.

The observation of the pursuers was designed to be easily
applicable on real platforms and is used commonly in con-
ventional single-agent pursuit [12]. The agent observations
do not require localization with respect to a global frame,
as local observations d and α are not referenced in global
coordinates and can be extracted using onboard sensors such
as laser scanners or cameras. Recent work [18] demonstrates
the feasibility of acquiring measurements such as range and
the relative angle between the pursuers, using only embedded
sensors in drones. For the heading ψ, a directional sensor
would be needed, such as a magnetometer.
C. Reward Structure
At each time step, each agent individually receives a

reward designed to incentivize the capture of the evader and
encourage a good formation of pursuers. The reward function
is:

ri =


rcaptor, if di,T ≤ dcap
rhelper, if dj,T ≤ dcap, ∃j 6= i

−wq q − wd di,target, otherwise
At each step that the target is not captured, each and every
agent receives a negative reward that is a weighted linear
combination of an individual reward (its distance to the target
di,target) and a group reward (q-score [13], which we call
the formation score in our work). The formation score is a
scalar number in the range [0, 2], which provides a metric for
evaluating the fitness of a formation of the pursuers (lower
is better). The formation score (q) is defined as:

q =
1

n

n∑
i=1

(d̂0T · d̂iT + 1) (2)

where d̂iT denotes a unit vector pointing in the direction
from agent i and the target, and n is the number of agents.
In this equation, the closest agent to the target is defined as
agent 0. The formation score encourages agents to spread
around the target (i.e., approach the target from different
directions) and penalizes the angular proximity between
agents. We introduce the formation score when there are
at least two agents, as the formation score for one agent
is not defined. Early experiments with the formation score
showed that when the formation is the only component of
the reward, pursuers would only form a good formation but
would not make an attempt to capture the evader. To avoid
this situation, we penalize the distance to the target, which
helps encourage the agents to get close to the evader while
being in a good formation. The weights wq and wd were
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chosen such that when the agents are close to the target,
the reward is dominated by the formation score, encouraging
good formation. However, when the agents are far from
the target, the reward is dominated by the distance to the
target, encouraging the agents to move closer to the evader.
We analyze the effect of the formation score on pursuit
performance in Sec. VI-G.

If the target is captured at a time step, then the pursuer
who captures the evader receives the reward rcaptor, while the
rest of the agents receive rhelper, such that rcaptor > rhelper.
This encourages each pursuer to go for the final capture while
encouraging collaboration.
D. Curriculum Learning

We apply a curriculum for learning by starting from
an easier version of the task and gradually increasing the
difficulty until the actual difficulty is achieved. There are
two main factors in determining the difficulty of a pursuit-
evasion game: the relative speed of the target with respect to
the pursuers and the capture radius dcap. We vary the capture
radius by starting from a large radius (so it is easier to capture
the target), then gradually making it smaller. This encourages
agents to not adopt a straightforward chasing tactic at the be-
ginning of learning but to form more sophisticated behaviors,
which could be transferred to smaller capture radii. We also
experimented with reducing the pursuer speed to reduce the
difficulty of the task, however, we found that pursuers mostly
learned to follow the evader directly, and it was harder to
explore more sophisticated behaviors afterward.

Curriculum learning helps exploration, especially during
the early stages of learning, because early, on it helps the
pursuers to capture the target, which would take a longer
time in the actual, and more difficult scenario. This helps
alleviate the sparse reward problem, which is a well-known
challenge in DRL [33]. We analyze the effect of curriculum
learning on the pursuit performance in Sec. VI-F.

V. SIMULATION EXPERIMENTS

We use the following simulation parameters: Ttimeout =
500 iterations, rewards rcaptor, rhelper; the weights wq and
wd were set to 10, 100, 0.1, 0.002 respectively. The capture
radius Rcap was set to 30 pixels for testing, although this
value was varied as part of curriculum learning. For fixed
linear velocity cases, the speed of the pursuers vp was 10
pixels per timestep, while the target’s speed vT varied from
0 to 20 pixels per timestep. The maximum angular rate ωmax
was fixed at π/10 per timestep. The number of pursuers
n varied between 1 and 8, initialized at random positions
within a circular area with a radius of 100 pixels, while the
evader was initialized at a random position between the arena
boundary and an inner circle with a radius of 300 pixels.
Arena radius Rarena = 430 pixels, except for the results
in Sec VI-C. We assume each pursuer can observe all other
pursuers, except for in Sec. VI-E.
A. Evader Behaviors

We implemented two behavior modes for the evader: Fixed
Paths and Repulsive. For both, we vary the relative speed of
the evader from 0.8 to 2 times the pursuer speed, with a step
size of 0.2. We conduct 100 trials for every speed level.

Fixed Paths: We propose a benchmark where the evader
follows three predefined paths, as shown in Fig. 2.

Fig. 2: Paths used by the evader for the fixed paths benchmark.

Repulsive: We use a potential field method with repulsive
forces only to find a motion vector. Each pursuer exerts a
repulsive force in the direction of the vector between the
pursuer and the evader. The arena boundary also exerts a
force so that the evader can avoid the wall. These forces
decrease proportionally to the distance squared. The resultant
vector is calculated by:

~v =
∑
j

(
~aj − ~e
d2j

) +
γ̂Rarena − ~e

d2w
(3)

where ~e is the current position of the evader, ~aj is the position
of agent j and dj is the distance to aj . γ is the direction of
the agent to the closest point on the wall, γ̂ is the unit vector
rotated by an angle of γ and dw represents the distance of
the agent to the wall.

B. Baseline methods
We implemented three baseline methods: Two classical

(Janosov [1] and Angelani [3]) and a DRL (Hüttenrauch
[6]) method. The approach by Hüttenrauch [6] was trained
on our simulation environment using their communication
set. This observation vector included relative angle, the
distance towards the target, and the heading of each of
the pursuers. It should be noted that this observation set
included more information than our model. Furthermore, this
information (orientation of neighbors) would likely require
explicit communication in a real-world application since it
can not be easily estimated from current embedded sensors.
We trained the policy for 4 million timesteps (same as our
approach, around 4 times as long as their original paper)
without curriculum learning (no curriculum learning was
used in their original work) and presented the best simulation
results.

We adapted the classical methods to use a non-holonomic
model. As these methods are designed for omnidirectional
agents, they are not directly comparable to our solution.
Therefore, we convert the outputs of these models into the
unicycle model using the following equations:

ψdesired = arctan
dy

dx
(4)

ω = K ∗ (ψ − ψdesired) (5)

The omnidirectional models have two outputs, dx and dy,
which are the velocity in the x and y direction respectively.
From this, we find the desired heading ψdesired of the
omnidirectional controller. We use a P controller on the error
between the desired heading ψdesired and current heading
ψ. We tune gain K such that the number of captures is
maximized in simulation trials.
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VI. SIMULATION RESULTS

In this section we evaluate our approach against baseline
algorithms presented in Sec.V-B. In Sec.VI-A we analyze
the performance on a fixed paths benchmark, followed by
analysis with a repulsive evader model. We conduct the
following analyses on the capture performance: effect of
number of pursuers (Sec.VI-B), arena size (Sec.VI-C), rel-
ative evader speed (Sec.VI-D), scaling number of agents
without retraining (Sec. VI-E), use of curriculum learning
(Sec.VI-F), and use of formation score (Sec.VI-G). Finally,
we qualitatively describe the emergent behaviour of the
multi-agent system in Sec.VI-H.

A. Fixed Paths

Fig. 3: Success rate and the average timesteps using the fixed paths
benchmark, for different number of agents

In these experiments, the evader followed fixed paths, as
explained in Sec.V-A. The pursuers were trained on the
repulsive evader only but were tested on the fixed paths
benchmark. The capture rate and the average number of steps
with respect to the number of pursuers are shown in Fig. 3.
While Janosov [1] get above 95% on the fixed paths bench-
mark for N > 2, Angelani [3] does not perform well on this
benchmark. Both our approach and Hüttenrauch [6] complete
the task successfully for n ≥ 3. The average timesteps to
capture for both DRL approaches is significantly lower than
the other approaches for the fixed paths benchmark, likely
because the classical algorithms attempt to corral the target.
In contrast, the DRL based approaches tended to be more
aggressive and intercept the evader quickly along the fixed
paths.
B. Effect of the Number of Pursuers

Fig. 4: Success rate and the average timesteps taken for the repulsive evader,
for different number of agents.

The success rate and average timesteps to capture the
repulsive evader with respect to the number of pursuers are
shown in Fig. 4. Our approach outperforms the competing
approaches in cases with a lower number of agents in terms
of the success rate. Hüttenrauch [6] performs well with
a larger number of agents, however, struggles with fewer
agents. Janosov [1] completes the task with a success rate
above 94% for n ≥ 4. However, it does not perform well with

fewer than four agents. Angelani [3] does not perform well
in this benchmark. Furthermore, with one or two agents, all
methods showed poor performance, as it is difficult to chase
a faster evader with few agents. Our approach takes more
time on average to complete the capture compared to [1].

C. Effect of arena size

Fig. 5: Success rate and average timesteps to capture with respect to the
multiplicative radius factor over Rarena. Experiments are conducted with
8 pursuers and the repulsive evader model.

As we showed in Sec. VI.B, with an increasing number of
agents, the task decreases in difficulty for a fixed arena size.
Therefore, with a larger number of agents, most approaches
can perform the task successfully. The pursuit-evasion game
is played in an obstacle-free arena, but the agents can use
the arena boundaries to constrain the evader movements.
In this section, we investigate the effect of larger arena
sizes using n = 3 agents. We do not retrain our agents
on the new arena size but use the model trained on the
original radius size rarea. As shown in Fig. 5, our approach
comfortably outperforms the other approaches in terms of
success rate as the arena size increases. This shows that the
learned policy can generalize to larger arenas. However, the
average number of timesteps to capture for our approach
is consistently higher than other approaches. We attribute
this result to using only the successful captures to obtain
the average number of timesteps: our approach can likely
find solutions to more difficult problems at the expense of
increased average duration to secure the capture.

D. Effect of Relative Evader Speed

Fig. 6: Success rate and the average number of timesteps to capture is shown
with respect to the ratio of evader speed to pursuers’ speed. Experiments are
run with three agents. Our approach achieves 100% accuracy for all cases
in this analysis.

In this section, we examine at the effect of relative evader
speed on capture success, for n = 3 pursuers. As shown
in Fig. 6, while our approach had 100% success rate at
all speed levels, all other methods had a drop-off at faster
evader speeds. As expected, our approach was the fastest in
capturing the target (only considering successful episodes).
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E. Scaling number of agents without retraining

Fig. 7: The success rate and average timesteps on the repulsive evader
benchmark, comparing our full approach (trained on the appropriate amount
of agents), the approach by Hüttenrauch [6] which was trained on four agents
and our approach which was limited to only see the closest four agents
during execution.

In this section, we examine the scalability of our approach
to an environment with more agents than the network was
trained on. For the 4 agent policy in Fig. 7, the agents
are trained in the 4 agent setting. At test time, the number
of agents increases (as indicated on the horizontal axis),
but each agent can only observe their 4 closest neighbors.
In contrast, both the N agent policy and Hüttenrauch [6]
were given information about all pursuers. The success of
our approach decreases with a larger number of agents, by
around 5% when there are more agents, as the agents cannot
coordinate fully. The other approaches reach 100% for a
larger number of agents. The four agent policy requires a
larger average number of timesteps to capture the target
compared to a more specialized policy, and this performance
penalty increases as more agents appear in the environment
compared to the number of agents during training. However,
the 4-agent policy tends to perform similarly to [6], which
was designed for scalability.

F. Effect of Curriculum Learning

Fig. 8: Comparison of capture success rate with and without curriculum
learning, with respect to the number of training steps. With curriculum
learning, the benchmark scores are much higher and more consistent.

Fig. 8 compares the effect of using our curriculum learning
strategy described in Sec IV-D, for n = 3 agents. The
network was trained 3 times. At regular intervals, we stop
training and evaluate the policy on the repulsive evader
benchmark. The results show that curriculum learning is
beneficial for capture performance: it converges to about
100% success rate after 1.5 million training steps, whereas
without curriculum learning, the average success rate was
below 80% even at 4 million training steps. Furthermore,
the performance with curriculum learning was much more
consistent, as evidenced by the low variance among the three
runs.

Formation Score

No Formation Score Formation Score

No Formation Score

Fig. 9: Using a formation score as a dense reward results in more captures,
in less number of timesteps on average.

Fig. 10: “Split Up” strategy learned by three pursuers. Timestep (T) and
formation scores (Q) are shown at three snapshots. The target is shown as
the black circle. The agents start in a random direction (Left), push the
agent towards the wall splitting into two groups (Middle) before going for
the capture (Right).

G. Effect of Formation Score in Reward Function
As described in Sec. IV-C, we provide a partial reward at

every timestep in order to encourage good formations. We
analyze the effect of supplying this dense reward component
to each agent. Fig. 9 compares the evolution of the capture
performance with and without the formation score with
respect to the number of training steps. These experiments
were conducted with n = 3 agents. As shown in the Fig. 9,
benchmark scores were slightly higher when the formation
score is used as part of the reward. Furthermore, when
the formation score is used, the average capture time for
successful episodes is decreased.
H. Qualitative Analysis of Emergent Behavior
We observe two interesting learned emergent behaviors

that often lead to successful captures: ambushing and splitting
up.

Fig.10 shows the splitting up behavior with n = 3 agents.
This behavior was more common with a smaller number of
agents. The agents tend to split up into two groups, trying
to push the evader into a wall before attempting to block the
two opposite directions. This tactic works well as the evader
is backed against the wall and has limited room to escape.

Fig. 11 shows the ambushing behavior with n = 8 agents.
This behavior was more common with a larger number of
agents. The agents tend to form a circle, attempting to move

Fig. 11: “Ambush” strategy learned by 8 pursuers. Timestep (T) and
formation scores (Q) are shown at three snapshots. The target is shown
as the black circle. The agents start in random directions (Left), move as a
circle (Middle) ambush the target and capturing it (Right)
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Fig. 12: “Stalking” strategy learned by three pursuers with velocity. Timestep
(T) and formation scores (Q) are shown at three snapshots. The target is
shown as the black circle. The agents start in random directions (Left), slow
down and angle themselves such that they can surround the target (Middle)
and capture it (Right).

such that they can surround the evader and then approach
from all directions. This seems to be a distinct behavior from
the ’Split Up’ behavior, as the agents do not use the walls
as much, preferring to surround the evader as a pack, similar
to pack behaviors observed in Muro’s work [15]. When the
agents execute this strategy to trap the evader, it is often very
difficult for the evader to escape.
I. Variable Linear Velocity

Previous sections considered constant linear speed and
variable angular speed for pursuers, primarily because this
is an assumption for classical algorithms. We now consider
the more general case, where agents can also vary their linear
velocity between 0 and vp. Therefore, we train the network
with two outputs: linear and angular velocity. We consider the
3 agent scenario, in which the agents achieve 100% capture
rate with and without velocity control, in both the fixed and
reactive benchmarks.

The agents often displayed a “Stalking” strategy as il-
lustrated in Fig. 12. With this strategy, the agents move
towards the target before slowing down and waiting until
the opportunity presents itself to capture the evader. This
behavior may have analogs in nature, where pursuers will
stalk their prey and position themselves such to maximize
the likelihood of attack [34].

VII. DEMONSTRATION ON DRONES

We demonstrate our approach on three autonomous quad-
copter drones pursuing a human-controlled target drone.
Drones are typically modeled as holonomic vehicles; how-
ever, under certain conditions can act as non-holonomic
vehicles (e.g. high-velocity maneuvering such as in [35]).
The use of drones, classically a holonomic vehicle, will also
allow us to compare classical holonomic works (such as
[1] and [3]) to our work on the same platform in future
work. Furthermore, by constraining the motion, there is an
interesting property while considering a frontal camera as a
sensor: the drone will move only in the direction of the field
of vision, tightly coupling the perception to the movement.

We use direct sim-to-real transfer, where the policies used
to control the drone behaviors are trained in the simulation
environment described in Sec.III. The input to the actor
network was the normalized relative positions of the target
and neighbors. The policy output for each agent is a single
number, the angular velocity. We artificially constrain the
motions of the pursuer drones to emulate a system with 2D
agents with the unicycle kinematic model: 1) Each drone

is constrained to a fixed height. The pursuer drones are at
the same height, however, the evader is constrained to a
different altitude, which allows the pursuers to get closer to
the evader than if they were at the same altitude. 2) Angular
input velocities generated by our approach are converted to
input signals for low-level attitude control.

A low-level, non-linear controller runs onboard each drone
for tracking velocity reference signals: it takes the requested
linear and angular velocities as input and calculates the
torque and thrust for the quadcopter. Details for the low-
level controller implementation can be found in [36]. The
controller is also responsible for stabilizing the quadcopter’s
altitude and maintaining safety. It implements collision avoid-
ance, constrains the drones to a circular arena of 3m radius,
and limits the maximum speed to 1.2m/s.

The experiments took place in an indoor flight arena
equipped with a motion capture system, which was used to
track the pose of all agents. A centralized motion capture
system was used in this implementation due to the ease
of prototyping; however, all information needed by our
algorithm can be captured using onboard sensors, similar
to [18]. Parrot AR Drone 2 was used for all drones. The
behavior of each pursuer was calculated on a local computer
and transmitted wirelessly to the drone at 20Hz. Details for
the hardware implementation can be found in [37]. This
setup between drones and a local computer is reminiscent
of a centralized system; however, our methodology is also
suitable for a decentralized system if onboard processors on
each drone can be used for neural network inference. For
a decentralized system, each drone would also need to be
equipped with a directional sensor such as a magnetometer.

Fig. 13: Snapshots from real-world demonstration with 3 motion-constrained
drones. We can see the emergence of the “Split Up” behavior: The pursuers
are initially close to each other, then spread toward the target, and finally,
regroup by cornering the target.

Snapshots from a successful demonstration can be seen
in Fig.13. During the training of the networks, we do not
consider the non-linear dynamics of the quadcopter. Direct
sim-to-real transfer is possible because DRL policy provides
high-level navigation decisions, while a lower-level controller
manages the attitude of the drone and assures safe navigation.

VIII. CONCLUSION

We proposed a DRL approach to multi-agent pursuit with
non-holonomic pursuers and an omnidirectional target. We
consider a decentralized system where each agent individ-
ually decides on its own actions using local observations
only. Simulation experiments show that our approach, applied
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to non-holonomic agents, outperforms the state-of-the-art
in heuristic multi-agent pursuit methods and a recent DRL
based approach. Our results show that multi-agent pursuit
benefits from curriculum learning and a reward based on
agent formation, which we borrowed from the group-pursuit
literature. In a demonstration with drones constrained to a
fixed height and governed by the unicycle kinematics model,
we demonstrate that direct sim-to-real transfer is possible.

A limitation of the current work is the need to train a
network for each number of observable agents. This can be
partially mitigated by using the same network and fixing the
number of observable pursuers, as demonstrated in Section
VI-E. Furthermore, it could be interesting to learn fixed-size
state representation for neighboring agents by using deep
sets [32], mean embeddings (similar to [6]) or making use
of Graph Neural Networks [38]. Other interesting directions
of future work include exploring scenarios with numerous
evaders, integrating smarter evader strategies by using the
idea of safe-reachability [39], [40], or implementing the
evader as an RL agent and training both the evader and
pursuer simultaneously similar to [41].

To enable more realistic applications, we also aim to
extend the method from planar to 3D motion in the future.
This will require careful consideration of the angular repre-
sentation to avoid representational singularities. Furthermore,
we aim to consider more realistic kinematic and perception
models and include other constraints such as more unstruc-
tured environments with obstacles and varying arena sizes,
a limited field of view, explore sim-to-real transfer further,
and real-world applications to non-holonomic robots such as
wheeled robots.
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