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ABSTRACT
Recent advances in practical fields like robotics and the miniaturization of many sensors and
actuators have turned autonomous vehicles into a reality. These systems come in many shapes
and forms depending on the medium and their design, but can be classified in one of two cate-
gories according to their mechanical configuration and number of actuators: fully actuated and
under actuated vehicles, the second group still poses many challenges for the automatic control
and robotics communities. This work introduces an easy methodology, based on quaternions,
for designing controllers for a class of under-actuated systems, such as multicopter vehicles. The
methodology starts from a fully actuated representation of the system and adapts it to be im-
plemented in under actuated systems. In addition, it allows the easy development of controllers
without take on care the coupled dynamics of the system. The proposed approach is based on
Lyapunov’s stability theory and is proven for certain criteria of the system’s dynamics. The
quadcopter configuration is used to validate the proposed methodology in simulations and in
experimental tests.
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1. Introduction
Autonomous vehicles, also known as unmanned systems in a more general view, are the in-
evitable result of modern industrialization and electronic miniaturization. Recent advances have
shortened the time between the development of these autonomous systems and their application
to the point that autonomous vehicles are already being actively used to some degree in multiple
fields. New evidence seems to imply that there are many advantages towards a more widespread
adoption of these kinds of systems, including, but not limited to, the reduction of greenhouse
emissions between 5% and 60% and up to 90% less fuel consumption in the whole transportation
industry as a whole according to Kopelias, Demiridi, Vogiatzis, Skabardonis, and Zafiropoulou
(2020). The emergence of an integrated transportation infrastructure which is already underway,
including policy making, and it is starting with autonomous vehicles according to Li, Sui, Xiao,
and Chahine (2019) and Hancock, Nourbakhsh, and Stewart (2019). One of the main subjects
in the technical end of unmanned systems is the ability for these to withstand uncertainties,
which helps to ensure a safe environment for the people that use and interact with them. In
essence, autonomous vehicle’s safety can be directly tied with the robustness property from a
control perspective.

Unmanned systems come in a wide variety of forms and shapes, but they are often mod-
eled as rigid bodies moving in a 3D environment. For example, Autonomous Ground Vehicles
(AGVs) tend to be limited to a planar movement while Unmanned Aerial Vehicles (UAVs) and
Autonomous Underwater Vehicle (AUVs) have a disposition to move anywhere in a 3D envi-
ronment. In this regard, autonomous vehicles can be classified as either fully actuated or under
actuated, depending on the amount and configuration of their actuators and their degrees of
freedom (DoF). Fully actuated rigid bodies can move in all six DoF of a 3D environment. Three
coordinates are used to establish their position in a 3D space while at minimum three coor-
dinates are required to provide enough information to obtain its orientation. Under actuated
systems have fewer than six DoF i.e. their movement is either restricted to a plane or other
spatial construct with fewer than six DoF, or one or more of their DoF are dependent among
each other. In the later case, the system is said to have coupled dynamics. This work focuses
mainly on one family of vehicles amid all the under actuated rigid bodies with coupled dynamics
systems. The main characteristic of this group is that the thrust force, which is generated by
the actuators and is considered a control input, has a fixed direction in the body frame i.e. the
only feasible way to change the vehicle’s position is by also changing its attitude, effectively
coupling the translation system with the orientation one. There are many types of vehicles that
belong to this family of systems, including multicopters, certain classes of underwater vehicles
and even autonomous ground vehicles can be modeled as a special case of this family of systems.

In general, the design of a control strategy for a fully actuated autonomous platform is
straightforward because a control law can be designed and proven stable independently for each
DoF. In sharp contrast, the control design of under actuated systems with coupled dynamics
represents a more complex challenge, which is the main reason why it is still an active research
subject. A common solution for this problem is to use an internal attitude control loop to guide
the actuator’s force with an outer control loop. Some examples of this approach include the
works presented in Kumar et al. (2020), Colmenares-Vázquez, Marchand, Castillo, and Gómez-
Balderas (2017), Shastry, Bhargavapuri, Kothari, and Sahoo (2018), Islam, Okasha, Idres, and
Mansor (2018), Islam and Okasha (2019) and Lees-Miller, Hammersley, and Wilson (2010),
to name a few recent works. This is commonly referred in the literature as the principle of
separation or high and low control levels. The main disadvantage of this design method is that
even when the stability of each individual control can be proven, the stability of the coupled
control is not a trivial matter. Control laws implemented using this design principle require that
the position control have a much smaller effect on the global control strategy than the attitude
controller in order to guarantee practical stability. The proposed control design methodology
takes into account the coupling of the high and low control levels in order to guarantee almost
global stability using the Lyapunov formalism. The only restrictions come from the physical
constraints imposed by the characteristics of the proposed family of systems.
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Many of the models presented in contemporary works such as Antonio-Toledo, Sanchez, Ala-
nis, Flórez, and Perez-Cisneros (2018), Pratama, Muis, Subiantoro, Djemai, and Ben Atitallah
(2018), Labbadi and Cherkaoui (2019), and Ahmad, Kumar, Bhandari, and Patil (2020), still
use Euler angles for the description of the attitude dynamics. This is one of the most widely
used forms to represent the orientation of an aerial vehicle and its main advantage is that they
can be considered as an intuitive way to describe the attitude of an aerial vehicle. However, the
intention of any control law applied to an autonomous vehicle is to have a computer, or a similar
machine, replace the tasks of the pilot. In this sense, the attitude representation of the mathe-
matical model is not trivial, as some representations tend to be more suited for implementation
as a control law. In this regard, Euler angles present some serious disadvantages for the design
and implementation of controllers, like the overhead trigonometric calculations needed in order
to rotate a vector from one reference frame into another. Other attitude representations can be
found in Shuster (1993), of which the main ones used in the context of autonomous vehicles
include rotation matrices and unit quaternions. In contrast with Euler angles, unit quaternions
are numerically more stable, because one can normalize them in order to mitigate the effect
of angle drift, and avoid the gimbal lock problem as stated in Morais, Georgiev, and Sprößig
(2014b), which often causes discontinuities in the implementation of control laws. Rotation ma-
trices are another formalism that is resilient to angle drift and avoids singularities. However, unit
quaternions use less space, as they store four numbers instead of the nine required by rotation
matrices, and require less operations in order to rotate a single vector from one reference frame
into another. There is also the requirement that rotation matrices need to be orthonormalized
in order to be resilient to numerical rounding errors, which is less efficient than just normalizing
a quaternion. The most common detriment for using unit quaternions in this context is due
to the unwielding effect. This issue allows exactly two unit quaternions to describe the same
attitude state at any one time, but can be eliminated if a restriction is applied to the range
of the scalar part. Because of the properties that unit quaternions have in the description and
implementation of attitude controllers, research into autonomous vehicles is turning away from
Euler angles and adopting unit quaternions as the standard, which can be seen in works such
as Ariyibi and Tekinalp (2020) and Lu, Ren, and Parameswaran (2020).

A key aspect of this work is the use of quaternions for the modeling and description of the
attitude dynamics in the proposed control law design. Using a strategy similar to the principle
of separation, a desired attitude quaternion is calculated and given to the orientation controller
that allows the body-fixed thrust of the vehicle to match the desired force of the position
controller. One of the cornerstone works in the determination of this desired quaternion is
from Markley (2002), which is used in most of the control strategies that deal with attitude
tracking using quaternions. An alternative proof for the desired quaternion formula is derived
and presented in this work using geometric properties and quaternion algebra, including the
quaternion exponential and logarithm functions as described in Morais, Georgiev, and Sprößig
(2014a). Displaying the formula in this manner facilitates the determination of the effects of the
attitude dynamics for the global stability proof.

The main contribution of our work is to present a control design methodology for a particular
family of under actuated systems. The proposed technique uses the concept of an equivalent
virtual system that has the same physical properties as the real system, like mass and shape,
but is considered to be fully actuated. Our approach starts with a control scheme designed
for this equivalent system, which will become the template of a proposed control law. The
idea is to facilitate the design the controller for the under actuated system from this virtual
control scheme such that the controlled under actuated system has similar dynamics to the
controlled virtual fully actuated system. Stability of these new control inputs is proven using
the Lyapunov formalism. Unmodeled dynamics can be analyzed as perturbations and a condition
for the stability of the under actuated system is presented based on the virtual controller for
the fully actuated system.

The key advantage of our technique is the generic implementation approach. Similar to
how Lyapunov analysis is used to verify stability in dynamic systems, the proposed method
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establishes conditions and properties that a virtual fully actuated control law needs to have
in order to be implemented in the proposed under actuated systems. This can be used to
complement or even expand on the control design for this particular family of systems.

Three example cases of the proposed process are introduced for illustrating the advantages
that our method offers with respect to other approaches. The first one uses a feedback control

R1Q1
for the equivalent fully actuated system and it is demonstrated that a linear control law can be
adapted for this kind of under actuated systems without linearize the system.

The second example is a passivity-based control that stabilizes the vehicle by changing the
potential energy of the overall system and injecting a dampening effect as seen in Brogliato,
Maschke, Lozano, and Egeland (2007). This energy shaping controller displays the capacity of
the method to adapt even to control strategies that involve physical properties of the platform,
like its kinetic energy dissipation and potential energy shape. The last proposed control law is a
non-linear strategy known as a separated saturations controller, which is used for stabilizing a
class of linear systems. Saturated controls have been proposed and studied in works like Castillo,
Dzul, and Lozano (2004), Xie and Lynch (2017) and Alatorre, Castillo, and Mondié (2016) and
applied in nonlinear systems. The main difference between these methods and the proposed
example is that it is shown in the Lyapunov analysis that the use of a saturated position control
makes the quadcopter system more robust, it is mainly due the fact that, in our approach we
consider the nonlinear system and not only its linear part.

The outline of the paper is presented as follows. In Section 2, preliminary concepts such
as the dynamic model of a rigid body are introduced. Here, we also include our case study.
In Section 3 the proposed control design methodology is presented in detail and its stability
proof based on the Lyapunov analysis is also included. In Section 4 the proposed methodology
is applied in a quadcopter platform by adapting three different control strategies from a fully
actuated equivalent model is described. The control algorithms were numerically simulated and
also experimentally tested using a physical quadcopter vehicle. The results of these tests are
presented in Section 5. Finally, the conclusions of the work are shown in Section 6. Appendix
A is included for providing a brief background in quaternion arithmetic and kinematics.

2. Preliminaries and problem statement

Remark 1. Quaternion variables are shown in bold, like q ∈ H. Vectors are presented with
arrows as Ω⃗ ∈ R3, and each of its elements using sub-indexes as Ω⃗ := [Ωx Ωy Ωz]

T . Scalars are
simply written as lowercase letters a ∈ R, and vector norms are described as ∥v⃗∥ ∈ R+.

Normalized vectors are described as v̂ :=
v⃗

∥v⃗∥
∈ R3, while matrices are written as uppercase

letters A ∈ Rn×m.
The identity matrix is written as In, where n ∈ Z is the dimension of the matrix.

The family of vehicles addressed in this work consists of any system that can be modeled as
a six degrees of freedom rigid body, where its attitude is completely actuated and its position
depends on a body-fixed thrust force affected by the gravity on the system (or any other constant
force). The main examples for this kind of vehicles are multi-copter aircrafts and some kinds of
under-water vehicles. The quadcopter vehicle will be used as a case of study for developing the
approach.

Rotors, in multi-copter vehicles, are usually designed without switch-plates. The rotor’s force
acts in a fixed direction, which is parallel to an axis in the body frame (usually the z axis). This,
combined with the fact that these aerial robots are commonly under-actuated, implies that the
translation dynamics are coupled with its attitude dynamics. This characteristic still represents
a challenge for the automatic control community.

Consider the following Newton-Euler model defining the mathematical representation of a
rigid body perturbed by external disturbances, in our case the rigid body is the quadcopter
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aerial vehicle

m ¨⃗p = R

 0
0∑
i
fi

+mg⃗ + ζ⃗p. (1)

J
˙⃗
Ω = τ⃗ − Ω⃗× J Ω⃗ + ζ⃗Ω (2)

where m and J are the system’s mass and inertia tensor, respectively. Ω⃗ represents the angular
velocity w.r.t. the body frame. p⃗ denotes the position vector of the system w.r.t. the inertial
reference frame. The term

∑
i

fi describes the effects of the forces produced by motors on the

rigid body. τ⃗ denotes the motor’s torques while R ∈ SO (3) symbolizes a rotation matrix. The

effect of the gravity on the system is denoted by g⃗ ∈ R3. The vector ζ⃗k ∈ R3;∀k ∈
{
p⃗, Ω⃗

}
represents nonlinear uncertainties like drag effects and/or wind turbulence.

The forces, fi and the torques, τi, in multi-rotor systems are usually related with the angular
velocity of the rotors (ωi), their forms depend in general of the number of actuators (rotors)
and the configuration of its arrangements. In addition, in these rotor craft vehicles its rotational
dynamics contains three torques and is considered actuated. The quadcopter vehicle represents
the most popular multi-rotor configuration, see Figure 1.

Figure 1.: Quadcopter configuration. Each rotor produces a force fi ∼ kiω
2
i ; where ki is a

constant aerodynamic parameter and ωi denotes the angular rate of motor i. τi introduces the
torque produced by motor i. I = XI , YI , ZI signifies the inertial frame and XB, YB, ZB means
the body frame.

The rotation matrix R, in (1), is one of the most commonly used methods to represent the
translational forces acting in the body frame to the inertial frame, or vice versa. In this work
a unit quaternion is used to represent the attitude of the system. Its relation with the forces
acting on the rigid body is explained in the following remark.

Remark 2. A rotation operation can be seen as a rigid transformation on a real three dimen-
sional space with the following properties:

• The position of the origin does not change.
• It is linear.
• It can be represented by an orthonormal rotation matrix.
• It does not affect the magnitude.

Further properties and discussions can be seen on Kalman (1989) and (Goldstein, Poole, &
Safko, 2002, Chapter 4). The rotation operation applied to any three-dimensional vector v⃗ ∈ R3

with these properties will be described as Rq (q, v⃗), which can be accomplished with a triple
quaternion product as

R1Q3

v⃗′ = Rq (q, v⃗) = q∗ ⊗ v⃗ ⊗ q. (3)
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where

q := cos
(ϖ
2

)
+ n̂ sin

(ϖ
2

)
(4)

where n̂ ∈ R3 is a unit vector representing the vehicle’s rotation axis and ϖ ∈ R its rotation
angle. Vectors v⃗ ∈ R3 are considered as pure quaternions with zero scalar part. v⃗′ is referenced
in the body frame while v⃗ is located in the inertial frame. The operator Rq (q, v) is linear as
proved in Morais et al. (2014b).

System (1)- (2) for multi-rotors with parallel motors can be also written using the quaternion
representation as

m ¨⃗p = q ⊗ F⃗th ⊗ q∗ +mg⃗ + ζ⃗p (5)

J
˙⃗
Ω = τ⃗ − Ω⃗× J Ω⃗ + ζ⃗Ω (6)

where

F⃗th :=

 0
0∑
i
fi

 (7)

is the vehicle’s thrust force vector in the body frame; its magnitude is often considered as a
control input, however, note its effect in the inertial frame directly depends on the system’s
attitude. The term q ∈ H is the system’s orientation in unit quaternion form and q∗ denotes
its conjugate term1.

From (5)- (6) notice that the actuation force is expressed in the inertial frame and can be

obtained from the thrust force F⃗th using the quaternion rotation operation. Observe also that
systems (1)- (2) and (5)- (6) are equivalent and both are under-actuated.

From literature, it can be appreciated that several control algorithms have been proposed for
controlling an aerial system represented in (1)- (2). Most of them use the principle of separation
for stabilizing the translational and the rotational dynamics (also known as high and low control
level in aerial vehicles community), others ones use the complete system for designing the control
algorithm in which some control inputs are used to stabilize more than one DoF. The results
are interesting and the control performance is well demonstrated in most cases. When using the
principle of separation the direction of the main thrust is usually given by the roll and pitch
dynamics. These angular dynamics governs the translational position in the horizontal plane
x, y, thus, it is easy to represent the longitudinal and lateral dynamics of the aerial vehicle with
respect to desired roll (ϕd ∼ f(y, ẏ)) and pitch (θd ∼ f(x, ẋ)) angles. The problem arising here
is the multitude of solutions for representing these angles and sometimes produce undesirable
performances in the aerial vehicle. In addition, the altitude performance is degraded with an
undesired damping when moving in lateral or longitudinal axis.

Nevertheless, the high non linearity of this representation, due to coupled dynamics, is
troublesome and tedious to deal with when designing global control strategies for the full system.
This is the main reason why this principle is proven stable either locally or just for some parts
of the system or particular cases. Some examples can be seen using energy-based or passivity
methodologies El-Badawy and Bakr (2016) -Kottenstette and Porter (2009).

1details of q∗ see (A.2)
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3. Virtual fully actuated dynamic model

In our approach, we propose a virtual fully actuated dynamic model for (5) – (6) based on a
unique desired quaternion avoiding multiple solutions to orientate the main thrust of the vehicle.
This solution offers a natural principle of separation between both dynamics (translational and
rotational) and allows the design to easily separate the control algorithms considering each
subsystem a different system from one another. In addition, our approach differs from those
previously explained in that it produces the exact combination of the quadcopter’s attitude and
thrust force necessary to change the translational dynamics in order to have a desired position
control. This result is exact and prevents the need of making further hypothesis on the system
due to approximations.

Therefore, the goal will be to to define the desired quaternion, qd ∈ H, fulfilling these

properties, such that, for given controllers F⃗th and τ⃗ stabilizing the whole system,

p⃗→ p⃗d
q → qd

}
=⇒ t→∞ (8)

where p⃗d (·) ∈ R3 defines a desired vector position and t is the time.

3.1. Desired quaternion characterization

Some necessary mathematical definitions are introduced to compute the desired quaternion.

Definition 1. Since the rotation operator does not affect the norm of a vector, the group where
this operator works can be limited to the set

Λ =
{
v⃗ ∈ R3 : ∥v⃗∥ = 1

}
. (9)

Any vector in R3 can be mapped to a corresponding vector in Λ by normalizing it.

Definition 2. An orthogonal unit vector group χ given two non-zero arbitrary normalized
vectors â, b̂ ∈ Λ can be defined as

χ
(
â, b̂

)
=

{
υ̂ ∈ Λ :

(
â− b̂

)
· υ̂ = 0

}
(10)

From Definition 2, observe that the set χ incorporates all unit vectors that are perpendicular
to the difference between â and b̂ and is the set that contains all possible values of n̂ for the
given vectors. This is explained in the following Lemma 1.

Lemma 1. Given non-zero unitary vectors â, b̂, n̂ ∈ Λ, the rotation operation Rq (·) , transforms

vector â into vector b̂, by rotating around axis n̂ ⇐⇒ n̂ ∈ χ with a rotation angle ϖ(â, b̂, n̂).

Proof. The sufficiency can be seen from the definition of rotation. The rotation operation does
not affect the component of â parallel to the rotation axis n̂ nor its counterpart for b̂, which
can be calculated as

â∥ := â · n̂
b̂∥ := b̂ · n̂ (11)

This implies that â∥ = b̂∥ ∴
(
â− b̂

)
· n̂ = 0 , ∀n̂ ∈ Λ, thus concluding sufficiency.

To prove necessity, it is assumed that the equality â · n̂ = b̂ · n̂ is satisfied, and given that
∥â∥ = ∥b̂∥ = 1, the perpendicular components of â and b̂ with respect to the rotation axis

â⊥n̂, b̂⊥n̂ can only be located in the circumference described by the intersection of Λ and the
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plane perpendicular to â⊥n̂, that is, the perpendicular components of each vectors â and b̂ move
on the circumference defined by the set

R1Q3{
υ̂ ∈ R3 : ∥υ̂∥ = 1, υ̂ − n̂× (n̂× â) cosα+ (n̂× â)sin α ,∀α ∈ R

}
∴ ϖ(â, b̂, n̂) exists such that, together with axis n̂, all the components for the rotation of â into

b̂ exist and are completely defined.

Lemma 1 can be used to find the set of all possible axes (and angles) that can be used to
rotate an arbitrary unitary vector into another arbitrary unit vector. Remark that the set χ(·)
has an infinite number of components in most cases (notably, when â ̸= b̂), therefore it is often
of interest to find only the solution that gives the smallest possible angle. The pair of axis and
angle with the lowest possible angle is often unique and will be used as a basis for the desired
attitude reference. Lemma 2 provides the way to find this pair.

Lemma 2. Given two normalized and arbitrary vectors â, b̂ ∈ Λ such that â ̸= b̂, the pair of
axis and angle

R1Q3{
n̂ ∈ χ(â, b̂);ϖ(â, b̂, n̂) ∈ R

}
which gives the lowest possible value of ϖ(â, b̂, n̂) is:{

ϖ = arccos
(
â · b̂

)
; n̂ =

â× b̂
sinϖ

}
.

Proof. First, we take any arbitrary axis η̂ ∈ χ(â, b̂) such that η̂ ̸= n̂ = â×b̂
sinϖ . Using this axis, the

rotation angle ϖ(·, η̂) is calculated between the vectors â⊥η̂ and b̂⊥η̂, which are perpendicular
to η̂.

R1Q3
The proposed shortest angle ϖ = arccos (â · b̂) is the angle between the vectors â and b̂,

and is also the rotation angle associated with the proposed axis n̂ = â×b̂
sinϖ . As η̂ was generated

arbitrary and different from n̂, if it can be shown that the angle ϖ(·, η̂) is bigger than the
proposed ϖ, then the proof would be complete.

In order to do this, an isosceles triangle ∆E is formed with vectors â and b̂ and with base
of length ∥â − b̂∥. The second isosceles triangle ∆D is formed with vectors â ⊥ η̂ and b̂ ⊥ η̂

and also has base of length ∥â − b̂∥. Because ∆E is isosceles and with the same base length
as ∆D, ∆E can be projected inside the base of ∆D, which transforms the problem from a 3D
perspective into a 2D plane. Therefore, it is a trivial geometric result to prove that ϖ < ϖ(·, η̂)
since â ⊥ η̂ < â and b̂ ⊥ η̂ < b̂, thus concluding the proof. A graphical example can be seen on
Figure 2.
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Figure 2.: Shortest axis and angle of rotation between two vectors according to Lemma 2.

On one hand, Lemma 2 allows us to find a unique unit quaternion that represents the
attitude, given two normalized vectors â, b̂ ∈ Λ in different coordinate frames with the smallest
possible rotation angle. This quaternion can be described as

R1Q3

qf = e

ln
(
b̂⊗ â∗

)
2 = cos

ϖ

2
+ n̂sin

ϖ

2
(12)

which can be seen as the square root of the unit quaternion â · b̂+ â× b̂ = cosϖ + n̂sinϖ,
and where â∗ = −â is the quaternion conjugate of a vector.

On the other hand, Lemma 1 provides the set of all possible attitudes that rotate a reference
vector into a desired direction in an axis-angle representation. For our study, this set can be
changed into a quaternion attitude set, given a body-fixed normalized vector F̂b with constant

direction and a desired normalized vector in the inertial frame F̂d :=
F⃗d

∥F⃗d∥
, thus the unique

desired quaternion is given by
R1Q3

qfd = e

ln
(
F̂d ⊗ F̂ ∗

b

)
2 = cos

ϖd

2
+ n̂dsin

ϖd

2
(13)

Notice that, the heading of the vehicle is not taken into account, thus, in order to impose a
desired heading, we impose

qψd = e

ψdF̂b
2 (14)

where ψd denotes the desired heading. Finally, it is obvious that the following set

Q =
{
qd ∈ H : qd = qfd ⊗ qψd ,∀ψd ∈ R

}
(15)

gives all the possible quaternions that rotate the force from the body frame to the desired
direction in the inertial frame. The term ψd is considered an independent DoF from the attitude
perspective, as it can be changed without affecting the final direction F̂d of the body vector F̂b.

9



Figure 3.: The relationship between the vectors F̂d and F̂b, and the angles ϖd and ψd.

3.2. Derivation of error dynamics

Notice that the desired quaternion is related with errors between vectors, therefore, it is neces-
sary to derive the error dynamics to acquire the equations that will be used to control system
(5) – (6).

Define the position error p⃗e ∈ R3 as p⃗e := p⃗ − p⃗d; then the position tracking objective can
be defined as t → ∞ =⇒ p⃗e → 0⃗. This implies that q ⊗ F⃗th ⊗ q∗ → F⃗u where F⃗u means the
desired thrust obtained from the control algorithm and will be defined later.

Rewriting system (5) in term of errors, it follows that

m ¨⃗pe = q ⊗ F⃗th ⊗ q∗ − F⃗u +mg⃗ + ζ⃗p (16)

Observe that, aerial vehicles cannot generate infinite energy to compensate infinite external
perturbations, mainly due to its physical properties. This means that the external perturbations
supported by the aerial system can be considered bounded. From our study, the perturbations
are considered to be uniform Lipschitz continuous, which also allows for the existence and
uniqueness of a solution for the proposed system. Hence, it implies that∥∥∥ζ⃗p∥∥∥ ≤ Lp ∥∥∥∥[ p⃗e

˙⃗pe

]∥∥∥∥ (17)

For the attitude error dynamics expression, it is first necessary to rewrite (15) in terms of

the main thrust in the body frame of the vehicle F⃗th and the desired thrust obtained from the
control law F⃗u in the inertial frame in the following manner:

qfd := e

ln
(
F̂u ⊗ F̂ ∗

th

)
2 ; qψd := e

ψdF̂th
2 (18)

The desired angular velocity Ω⃗d can be obtained by differentiating the desired attitude

qd ∈ Q, as defined in (15), w.r.t. time using quaternion kinematics, q̇ =
1

2
q ⊗ Ω⃗, which results

in

d

dt
qd =

d

dt

(
qfd ⊗ qψd

)
1

2
qd ⊗ Ω⃗d =

1

2
qfd ⊗ Ω⃗fd ⊗ qψd +

1

2
qfd ⊗ qψd ⊗ Ω⃗ψd

Ω⃗d = q∗ψd ⊗ Ω⃗fd ⊗ qψd + Ω⃗ψd

(19)

where Ω⃗d is defined in the body frame. The term Ω⃗ψd := ψ̇d F̂th is defined such that it has the

10



property ∥∥∥ ˙⃗
Ωψd

∥∥∥ ≤ LΩ⃗ψd
∥2 ln qe∥ (20)

for some LΩ⃗ψ
∈ R+ and qe := q∗d ⊗ q defines the quaternion error. Ω⃗fd

(
F̂u,

˙̂
Fu, F̂th

)
:= Ω⃗fd R1Q3

can be obtained from the quaternion F̂u ⊗ F̂ ∗
th = cosϖd + n̂d sinϖd as

d

dt

(
F̂u ⊗ F̂ ∗

th

)
=

˙̂
Fu ⊗ F̂ ∗

th

−ϖ̇ sinϖ + n̂ ϖ̇ cosϖ =
˙̂
Fu ⊗ F̂ ∗

th

F̂u ⊗ F̂ ∗
th ⊗ Ω⃗fd =

˙̂
Fu ⊗ F̂ ∗

th

Ω⃗fd = F̂th ⊗ F̂ ∗
u ⊗

˙̂
Fu ⊗ F̂ ∗

th

(21)

An important property of Ω⃗d is provided in the following theorem.

Theorem 3.1. The desired angular velocity Ω⃗d has the property∥∥∥Ω⃗d∥∥∥ ≤ LΩ⃗d
∥2 ln qe∥ (22)

for some LΩ⃗d
∈ R+

Proof. First, an expression for
˙̂
Fu is provided as

˙̂
Fu =

d

dt

F⃗u∥∥∥F⃗u∥∥∥ =
(
I3 − F̂u F̂ Tu

) ˙⃗
Fu∥∥∥F⃗u∥∥∥ (23)

A property of matrix
(
I3 − F̂u F̂ Tu

)
is

(
I3 − F̂u F̂ Tu

)
F⃗u = 0⃗, which can be proven using

F̂u F̂
T
u F⃗u = F̂u

∥∥∥F⃗u∥∥∥ = F⃗u.

The analysis will now focus on the product F̂th ⊗ F̂ ∗
u in equation (21). The vector part of

this product can be simplified to
R1Q3

V ec
{
F̂th ⊗ F̂ ∗

u

}
= F̂u × F̂th = −n̂dsinϖd (24)

which implies that
R1Q3∥∥∥V ec{F̂th ⊗ F̂ ∗

u

}∥∥∥ = ∥sinϖd∥ ≤ ∥2 ln qe∥ (25)

Note 3.2. The operator V ec {·} is defined in (A5)

From the properties of the quaternion triple product, it can be seen that Ω⃗fd ∈ R3. As the

term F̂th ⊗ F̂ ∗
u is multiplying Ω⃗fd , it can be concluded that there exists a constant LΩ⃗fd

such

that

∥∥∥Ω⃗fd∥∥∥ ≤ LΩ⃗fd
∥2 ln qe∥ (26)

11



From property (19), it can be seen that Ω⃗d has the property described in (22), thus con-
cluding the proof.

Differentiating Ω⃗d w.r.t. time results in

˙⃗
Ωd = q∗ψd ⊗

˙⃗
Ωfd ⊗ qψd −

1

2
Ω⃗ψd ⊗ q∗ψd ⊗ Ω⃗fd ⊗ qψd +

1

2
q∗ψd ⊗ Ω⃗fd ⊗ qψd ⊗ Ω⃗ψd +

˙⃗
Ωψd

= q∗ψd ⊗
˙⃗
Ωfd ⊗ qψd +

(
q∗ψd ⊗ Ω⃗fd ⊗ qψd

)
× Ω⃗ψd +

˙⃗
Ωψd

(27)

where

˙⃗
Ωfd = F̂th ⊗

(
˙̂
F ∗
u ⊗

˙̂
Fu + F̂ ∗

u ⊗
¨̂
Fu

)
⊗ F̂ ∗

th (28)

From equations (27) and (28), the following theorem can be stated.

Theorem 3.3. The vector
˙⃗
Ωd has the property∥∥∥ ˙⃗

Ωd

∥∥∥ ≤ L ˙⃗
Ωd
∥2 ln qe∥ (29)

for some L ˙⃗
Ωd
∈ R+

Proof. The first term of (27) ( q∗ψd⊗
˙⃗
Ωfd⊗qψd ) has the property depicted in (29) with the term

˙⃗
Ωψd and property (20). It can also be concluded that the second term

(
q∗ψd ⊗ Ω⃗fd ⊗ qψd

)
× Ω⃗ψd

also has the property depicted in (29) from Theorem 3.1. This implies that if
˙⃗
Ωψd in (28) has

the property (29), then the proof is complete.

Notice that the term
˙̂
F ∗
u ⊗

˙̂
Fu + F̂ ∗

u ⊗
¨̂
Fu in (28) has the following property

V ec
{

˙̂
F ∗
u ⊗

˙̂
Fu + F̂ ∗

u ⊗
¨̂
Fu

}
= 0

which implies that the first term in (28) has the property (29).

The second term is multiplied by F̂th ⊗ F̂ ∗
u , which was proven to have the property in the

proof of Theorem 3.1. Thus, concluding the proof.

Differentiating the quaternion error w.r.t. time, it follows that

q̇e = = d
dt (q

∗
d ⊗ q)

1

2
qe ⊗ Ω⃗e =

1

2
q∗d ⊗ Ω⃗I ⊗ q − 1

2
q∗d ⊗ Ω⃗I

d ⊗ q

Ω⃗e = q∗ ⊗
(
Ω⃗I − Ω⃗I

d

)
⊗ q = Ω⃗− Ω⃗d

(30)

where Ω⃗I and Ω⃗I
d are the angular velocity and the desired angular velocity in the inertial frame.

Differentiating Ω⃗e w.r.t. time results in

˙⃗
Ωe =

˙⃗
Ω− ˙⃗

Ωd = J−1
(
τ − Ω⃗× J Ω⃗ + ζ⃗Ω

)
− ˙⃗
Ωd (31)

Equation (31) can be rearranged into

J
˙⃗
Ωe = τ − Ω⃗× J Ω⃗ + ζ⃗Ωe (32)

12



where

ζ⃗Ωe := ζ⃗Ω − J
˙⃗
Ωd (33)

In order to take into account the perturbations present on system (6), and for the existence

and uniqueness of the solution for
˙⃗
Ωe in (32), it is assumed that this perturbation is uniform

Lipschitz continuous, which implies that it has the property∥∥∥ζ⃗Ω∥∥∥ ≤ Lζ⃗Ω
∥∥∥∥[ 2 ln qe

Ωe

]∥∥∥∥ (34)

It can be seen that ζ⃗Ωe has a similar property∥∥∥ζ⃗Ωe∥∥∥ ≤ Lζ⃗Ωe
∥∥∥∥[ 2 ln qe

Ωe

]∥∥∥∥ (35)

for some L
ζ⃗Ωe
∈ R+. This can be proven from properties (29) and (34).

3.3. Virtual fully actuated mathematical model

Theorem 3.4. Let there be two independent control laws F⃗u ∈ R3 and τ⃗ ∈ R3 stabilizing the
following fully actuated system

Ha :

{
m ¨⃗pe = F⃗u +mg⃗ + ζ⃗p

J
˙⃗
Ωe = τ⃗ − Ω⃗× J Ω⃗ + ζ⃗Ωe

(36)

along with their Lyapunov candidate functions

Vpe = f
(
˙⃗pe, p⃗e

)
:R6 → R+ with V̇pe ≤ 0 (37)

Vqe = g
(
qe, Ω⃗e

)
:

[
H
R3

]
→ R+ with V̇qe ≤ 0 (38)

Therefore, if condition

∂ g(qe,Ω⃗e)
∂Ω⃗e

J−1
(
τ⃗ − Ω⃗× J Ω⃗

)
≤ −

[∥∥∥∥∂ g(qe,Ω⃗e)∂Ω⃗e

∥∥∥∥ ∥∥J−1
∥∥L

ζ⃗Ωe
+

1

2

∥∥∥∥∂ g(qe,Ω⃗e)∂qe

∥∥∥∥] ∥∥∥Ω⃗e∥∥∥− [∥∥∥∥∂ g(qe,Ω⃗e)∂Ω⃗e

∥∥∥∥ ∥∥J−1
∥∥L

ζ⃗Ωe
+∥∥∥∥∑

i
fi

∥∥∥∥∥∥∥∥∂ f( ˙⃗pe,p⃗e)∂ ˙⃗pe

∥∥∥∥] ∥2 ln qe∥

(39)

is satisfied, then  pe
ṗe

ψ − ψd

 = 0⃗ (40)

for some desired ψd ∈ R. This implies that q ⊗ F⃗th ⊗ q∗ → F⃗u signifying that
∑
i
fi =

∥∥∥F⃗u∥∥∥,
hence controllers F⃗u and τ⃗ also stabilizes system (5) and (6).

13



Proof. Define the following Lyapunov candidate function for the rigid body system (16) and
(32) as

V
(
˙⃗pe, p⃗e, qe, Ω⃗e

)
= f

(
˙⃗pe, p⃗e

)
+ g

(
qe, Ω⃗e

)
(41)

Differentiating the above w.r.t. time results in

V̇
(
˙⃗pe, p⃗e, qe, Ω⃗e

)
=

[
∂ f

(
˙⃗pe, p⃗e

)
∂p⃗e

∂ f
(
˙⃗pe, p⃗e

)
∂ ˙⃗pe

][
˙⃗pe

q ⊗ F⃗th ⊗ q∗ + g⃗ + ζ⃗p

]
+[

∂ g
(
qe, Ω⃗e

)
∂qe

∂ g
(
qe, Ω⃗e

)
∂Ω⃗e

] 1

2
qe ⊗ Ω⃗e

J−1
(
τ⃗ − Ω⃗× J Ω⃗ + ζ⃗Ωe

)
 (42)

Adding the term
∂ f

(
˙⃗pe, p⃗e

)
∂ ˙⃗pe

(
F⃗u − F⃗u

)
= 0 to (42) yields

V̇
(
˙⃗pe, p⃗e, qe, Ω⃗e

)
=

[
∂ f

(
˙⃗pe, p⃗e

)
∂p⃗e

∂ f
(
˙⃗pe, p⃗e

)
∂ ˙⃗pe

][
˙⃗pe

F⃗u + g⃗ + ζ⃗p

]
+

∂ f
(
˙⃗pe, p⃗e

)
∂ ˙⃗pe

(
q ⊗ F⃗th ⊗ q∗ − F⃗u

)
+[

∂ g
(
qe, Ω⃗e

)
∂qe

∂ g
(
qe, Ω⃗e

)
∂Ω⃗e

] 1

2
qe ⊗ Ω⃗e

J−1
(
τ⃗ − Ω⃗× J Ω⃗ + ζ⃗Ωe

)


(43)

Notice that F⃗u is defined to stabilize the translational system in (36) implying that the first
part of (43) is negative semi-definite. Then

V̇
(
˙⃗pe, p⃗e, qe, Ω⃗e

)
≤

∂ f
(
˙⃗pe, p⃗e

)
∂ ˙⃗pe

(
q ⊗ F⃗th ⊗ q∗ − F⃗u

)
+[

∂ g
(
qe, Ω⃗e

)
∂qe

∂ g
(
qe, Ω⃗e

)
∂Ω⃗e

] 1

2
qe ⊗ Ω⃗e

J−1
(
τ⃗ − Ω⃗× J Ω⃗ + ζ⃗Ωe

)
 (44)

The term
∂ f

(
˙⃗pe, p⃗e

)
∂ ˙⃗pe

(
q ⊗ F⃗th ⊗ q∗ − F⃗u

)
can be further simplified by taking into account

that the length of the error vector q ⊗ F⃗th ⊗ q∗ − F⃗u is less than the length of the arc made
between the two vectors, that is

∥∥∥q ⊗ F⃗th ⊗ q∗ − F⃗u
∥∥∥ ≤ ∥∥∥∥∥ϖd

∑
i

fi

∥∥∥∥∥ ≤ ∥2 ln qe∥

∥∥∥∥∥∑
i

fi

∥∥∥∥∥ (45)
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Substituting this inequality into (44) results in

V̇
(
˙⃗pe, p⃗e, qe, Ω⃗e

)
≤ 1

2

∂ g(qe,Ω⃗e)
∂qe

(
q ⊗ Ω⃗e

)
+

∂ g(qe,Ω⃗e)
∂Ω⃗e

J−1
(
τ⃗ − Ω⃗× J Ω⃗ + ζ⃗Ωe

)
+∥∥∥∥∑

i
fi

∥∥∥∥∥∥∥∥∂ f( ˙⃗pe,p⃗e)∂ ˙⃗pe

∥∥∥∥ ∥2 ln qe∥

= 1
2

∂ g(qe,Ω⃗e)
∂qe

(
q ⊗ Ω⃗e

)
+

∂ g(qe,Ω⃗e)
∂Ω⃗e

J−1
(
τ⃗ − Ω⃗× J Ω⃗

)
+

∂ g(qe,Ω⃗e)
∂Ω⃗e

J−1 ζΩe +

∥∥∥∥∑
i
fi

∥∥∥∥∥∥∥∥∂ f( ˙⃗pe,p⃗e)∂ ˙⃗pe

∥∥∥∥ ∥2 ln qe∥

(46)

Using property (35), and the fact that q is a unitary quaternion, equation (46) can be
rewritten as

V̇
(
˙⃗pe, p⃗e, qe, Ω⃗e

)
≤

∥∥∥∥∂g(qe,Ω⃗e)∂qe

∥∥∥∥∥∥∥ Ω⃗e
2

∥∥∥+
∂g
(
qe,Ω⃗e

)
∂Ω⃗e

J−1
(
τ⃗ − Ω⃗× JΩ⃗

)
+∥∥∥∥∂g(qe,Ω⃗e)∂Ω⃗e

∥∥∥∥∥∥J−1
∥∥L

ζ⃗Ωe

∥∥∥∥[ 2 ln qe
Ωe

]∥∥∥∥+

∥∥∥∥∑
i
fi

∥∥∥∥∥∥∥∥∂f( ˙⃗pe,p⃗e
)

∂ ˙⃗pe

∥∥∥∥ ∥2 ln qe∥
≤ ∂g

(
qe,Ω⃗e

)
∂Ω⃗e

J−1
(
τ⃗ − Ω⃗× JΩ⃗

)
+[∥∥∥∥∂g(qe,Ω⃗e)∂Ω⃗e

∥∥∥∥∥∥J−1
∥∥L

ζ⃗Ωe
+

∥∥∥∥∑
i
fi

∥∥∥∥∥∥∥∥∂f( ˙⃗pe,p⃗e
)

∂ ˙⃗pe

∥∥∥∥] ∥2 ln qe∥+[∥∥∥∥∂g(qe,Ω⃗e)∂Ω⃗e

∥∥∥∥∥∥J−1
∥∥L

ζ⃗Ωe
+ 1

2

∥∥∥∥∂g(qe,Ω⃗e)∂qe

∥∥∥∥] ∥∥∥Ω⃗e∥∥∥
(47)

According to inequality (47), in order to ensure that V̇
(
˙⃗pe, p⃗e, qe, Ω⃗e

)
≤ 0, the condition (39)

must be met, thus concluding the proof.

4. Control design methodology

The algorithm to obtain the equivalent control law for the under actuated system from the
control scheme of the virtual fully actuated system is obtained as a direct result of Theorem
3.4 and can be seen in Algorithm 1.

Three classical controllers are described and used to control the aerial vehicle using the
model given in (36). The stability of each controller is ensured using Theorem 3.4.

4.1. State-feedback control

The most straightforward control methodology is to use a feedback of the state vector as a
control input.

Propose the following Lyapunov candidates functions

Vpe = f
(
˙⃗pe, p⃗e

)
= xTp Pp xp (48)

Vqe = g
(
Ω⃗e, qe

)
= xTΩ PΩ xΩ (49)

with xp :=
[
p⃗Te

˙⃗p Te
]T

and xΩ :=
[
(2 ln qe)

T Ω⃗Te
]T

and Pp, PΩ are positive real symmetric
matrices of appropriate dimensions.
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Algorithm 1 The control design methodology

Input: F⃗u

(
˙⃗pe, p⃗e

)
, τ⃗

(
q, Ω⃗

)
, Vpe , Vqe , ψd, ψ̇d ▷ See system (36) and definitions (37) and (38)

Ensure: Condition (39), V̇pe ≤ 0 , V̇qe < 0 ▷ See definitions (37) and (38)

qfd ← e

ln
(
F̂u ⊗ F̂ ∗

b

)
2 ▷ See definition (13)

qψd ← e

ψdF̂b
2 ▷ See definition (14)

qd ← qfd ⊗ qψd ▷ See set (15)
qe ← q∗d ⊗ q ▷ See (20)

Ω⃗ψd ← ψ̇d F̂th ▷ See (19)

Ω⃗d ← q∗ψd ⊗ Ω⃗fd ⊗ qψd + Ω⃗ψd ▷ See (19)

Ω⃗e ← Ω⃗− Ω⃗d ▷ See (30)∑
i
fi ←

∥∥∥F⃗u∥∥∥ ▷ See definition (7)

τ⃗ ← τ⃗
(
qe, Ω⃗e

)
▷ See system (2)

Output:
∑
i
fi, τ⃗

(
qe, Ω⃗e

)
▷ These are the control inputs of systems (6) and (7)

Differentiating (48) w.r.t. time results in

V̇pe =
∂f(x̄p)

∂x̄p

 ˙⃗pe
F⃗u
m

+ g⃗ +
ζ⃗p
m

 (50)

Proposing

F⃗u = −mKpt p⃗e −mKdt
˙⃗pe −mg⃗, (51)

Then,

V̇pe =
∂f(x̄p)

∂x̄p

 ˙⃗pe

−Kpt p⃗e − Kdt
˙⃗pe +

ζ⃗p
m


= xTp

([
0⃗ −Kpt

I3×3 −Kdt

]
Pp + Pp

[
0⃗ I3×3

−Kpt −Kdt

])
xp +

∂f(x̄p)

∂ ˙⃗pe

ζ⃗p
m

(52)

Gain matrices Kpt,Kdt ∈ R3×3 are chosen such that[
0⃗ −Kpt

I3×3 −Kdt

]
Pp + Pp

[
0⃗ I3×3

−Kpt −Kdt

]
= −Qp (53)

with Qp > 0. Therefore

V̇pe = −x̄Tp Qp x̄p +
∂f(x̄p)

∂ ˙⃗pe

ζ⃗p
m

(54)

From (17), it follows that
R1Q2

16



V̇pe ≤ −∥Qp∥ ∥xp∥2 + ∥Pp∥
Lp
m
∥xp∥2 = −

[
∥Qp∥ − ∥Pp∥

Lp
m

]
∥xp∥2 (55)

which implies that ḟ
(
˙⃗pe, p⃗e

)
≤ 0 if ∥Qp∥ > ∥Pp∥

Lp
m

.

A similar analysis can be made for the attitude dynamics with function (49) without any
loss of generality using the controller

τ⃗ = J
[
−Kpϑ (2 ln qe)−Kdϑ Ω⃗e

]
+ Ω⃗× JΩ⃗, (56)

and the following Lyapunov candidate function[
0⃗ −Kpϑ

I3×3 −Kdϑ

]
PΩ + PΩ

[
0⃗ I3×3

−Kpϑ −Kdϑ

]
= −QΩ (57)

with QΩ > 0 and with gain matrices Kpϑ,Kdϑ ∈ R3×3 chosen properly for holding the equality.
Therefore, this results in

ġ
(
Ω⃗e, qe

)
≤ −

[
∥QΩ∥ − ∥PΩ∥

∥∥J−1
∥∥ L

ζ⃗Ωe

]
∥xΩ∥2 (58)

which implies that ġ
(
Ω⃗e, qe

)
≤ 0 if ∥QΩ∥ > ∥PΩ∥

∥∥J−1
∥∥ L

ζ⃗Ωe
.

Analysis of condition (39)

It has been proven that the proposed control laws stabilize system (36). Following the design
scheme in Theorem 3.4, the inequality (39) will be analyzed for the proposed control laws in
order to determine asymptotic stability.

Substituting (51) into (39) results in

−∥PΩ∥
∥∥∥Ω⃗e∥∥∥(∥Kpϑ∥ ∥2 ln qe∥+ ∥Kdϑ∥

∥∥∥Ω⃗e∥∥∥) ≤ −
[
∥PΩ∥

∥∥∥Ω⃗e∥∥∥∥∥J−1
∥∥L

ζ⃗Ωe
+

1

2
∥PΩ∥ ∥2 ln qe∥

] ∥∥∥Ω⃗e∥∥∥−[
∥PΩ∥

∥∥∥Ω⃗e∥∥∥∥∥J−1
∥∥L

ζ⃗Ωe
+

∥Pp∥
∥∥∥ ˙⃗pe

∥∥∥∥∥∥∥∑
i
fi

∥∥∥∥] ∥2 ln qe∥
(59)

The analysis can be simplified by splitting and regrouping the terms in (59) based on terms

depending on ∥2 ln qe∥ and others depending solely on
∥∥∥Ω⃗e∥∥∥. On one hand, the terms depending

on ∥2 ln qe∥ are grouped in the following inequality

−∥PΩ∥
∥∥∥Ω⃗e∥∥∥ ∥Kpϑ∥ ∥2 ln qe∥ ≤ −

(∥∥J−1
∥∥L

ζ⃗Ωe
+ 1

2

)
∥PΩ∥

∥∥∥Ω⃗e∥∥∥ ∥2 ln qe∥

−∥Pp∥
∥∥∥ ˙⃗pe

∥∥∥∥∥∥∥∑
i
fi

∥∥∥∥ ∥2 ln qe∥

=⇒ −∥PΩ∥
∥∥∥Ω⃗e∥∥∥ ∥Kpϑ∥ ≤ −

(∥∥J−1
∥∥L

ζ⃗Ωe
+ 1

2

)
∥PΩ∥

∥∥∥Ω⃗e∥∥∥
−∥Pp∥

∥∥∥ ˙⃗pe

∥∥∥∥∥∥∥∑
i
fi

∥∥∥∥
=⇒ ∥Kpϑ∥ ≥

∥∥J−1
∥∥L

ζ⃗Ωe
+ 1

2 +
∥Pp∥∥ ˙⃗pe∥

∥∥∥∥∑
i

fi

∥∥∥∥
∥PΩ∥∥Ω⃗e∥

(60)
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In this case, the effect produced by the coupled dynamics on the stability of the system is
mainly presented in the last term of (60), which can be defined as

ϵϑ :=

∥Pp∥
∥∥∥ ˙⃗pe

∥∥∥∥∥∥∥∑
i
fi

∥∥∥∥
∥PΩ∥

∥∥∥Ω⃗e∥∥∥ (61)

and depends on the vehicles thrust force and the velocity dynamics.
Substituting ϵϑ into (60) yields

∥Kpϑ∥ ≥
∥∥J−1

∥∥ L
ζ⃗Ωe

+
1

2
+ ϵϑ (62)

Observe that, if ∥PΩ∥ >> ∥Pp∥, then ϵϑ ≈ 0, which makes its effect negligible. Therefore, the
condition is met if Kpϑ is chosen such that (62) is enforced.

On the other hand, the terms from (59) that depend solely on
∥∥∥Ω⃗e∥∥∥ can be grouped as

−∥PΩ∥
∥∥∥Ω⃗e∥∥∥2 ∥Kdϑ∥ ≤ −∥PΩ∥

∥∥∥Ω⃗e∥∥∥2 ∥∥J−1
∥∥ L

ζ⃗Ωe

=⇒ ∥Kdϑ∥ ≥
∥∥J−1

∥∥ L
ζ⃗Ωe

(63)

If Kdϑ is chosen in order to enforce (63), it can be concluded that system (5) - (6) is

asymptotically stable to the equilibrium point (40) with control inputs F⃗u and τ⃗ .
For this controller, the stability was proven in the presence of perturbations with some

conditions to hold. However, the disadvantage of using a state feedback controller is that the
variable ϵϑ could make the system unstable under certain conditions. The condition ϵϑ ≈ 0 can
be ensured by limiting the initial conditions of the system. This in turn limits the stability to
be local rather than global.

4.2. Energy shaping controller

Energy shaping is a technique that is closely associated with the control of kinematic chains,
like robotic arms. The premise is to change the dynamics of the system in order to have a
different mechanical impedance. The main objective of the proposed controller is to change the
potential energy of the system in order to mitigate the effects that the couple dynamics have
on the system. The fundamentals and a more thorough description of this type of control can
be found in Brogliato et al. (2007).

The Lyapunov candidate functions can be proposed as the total energy of the translation
and attitude systems, respectively. An additional term is added in order to change the location
of the global minimum of the potential energy.

R1Q3

Vpe =
m ˙⃗p Te

˙⃗pe
2

+Kpt log (coshp⃗e) (64)

Vqe =
Ω⃗Te J Ω⃗e

2
+ ϕ (qe)− ϕmin (65)

The terms Kpt log (coshp⃗e) > 0 and ϕ (qe)−ϕmin > 0 describe the desired shape of the new
potential energy imposed to system (36). ϕmin ∈ R is a constant term such that ϕ (1) = ϕmin
and Kpt is a gain matrix. ϕ (qe) : H→ R3 is defined such that

18



∂ϕ (qe)

∂ (2 ln qe)
= Kpϑ sinh (2 ln qe)− ζ⃗ϑe (66)

A useful property of ϕ (qe) is that it is convex and has only one minimum. This can be seen
from the fact that ∥Kpϑ sinh (2 ln qe)∥ ≥ Lζ⃗Ωe ∥(2 ln qe)∥ and R1Q3

∂2ϕ (qe)

∂ (2 ln qe)
2 ≥ Kpϑcosh(2 ln qe)− Lζ⃗Ωe > 0 (67)

with the assumption that ζ⃗ϑe is assumed to be Lipschitz continuous on the state (2 ln qe) and
Kpϑ is a gain matrix.

Note 4.1. This type of controller uses what is known as energy storage functions as shown in
(64) and (65), which are functions that can calculate the amount of energy a system has. In this
context, energy can be associated with real physical parameters like kinetic or potential energy,
or it can be seen as an objective form to measure a control goal.

These energy storage functions normally have relatively few restrictions, like being positive
and convex. In our case, hyperbolic functions were chosen because they meet these two properties
while returning relatively big values when the system is far from its desired state. This allows
the control to exhibit an aggressive nonlinear behavior the further away the system is to the
reference, but its effects are mild if the errors are small.

Differentiating (64) w.r.t. time yields

V̇pe = m ˙⃗p Te
¨⃗pe + (Kpt tanh p⃗e)

T ˙⃗pe

Propose

F⃗u = mg⃗ −Kdt
˙⃗pe −Kpt tanh p⃗e (68)

then

V̇pe = ˙⃗p Te

[
−Kdt

˙⃗pe −Kpt tanh p⃗e + ζ⃗p

]
+ (Kpt tanh p⃗e)

T ˙⃗pe

= ˙⃗p Te

(
−Kdt

˙⃗pe + ζ⃗p

)
. (69)

Consider that perturbation into the translation system depends only on the velocity error as∥∥∥ζ⃗p∥∥∥ ≤ Lp ∥∥∥ ˙⃗pe

∥∥∥ (70)

Thus, (69) can be simplified into

V̇pe ≤ − (∥Kdt∥ − Lp)
∥∥∥ ˙⃗pe

∥∥∥2 ≤ 0 (71)

Using the Krasovskii-LaSalle’s invariant set theorem, the translational system equations in (36)

and property (70), it can be concluded that the largest invariant set occurs when F⃗u = −mg⃗,
which implies that the translation system in (36) is asymptotically stable if ∥Kdt∥ > Lp.
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Differentiating (65) w.r.t. time results in

V̇qe = Ω⃗Te J
˙⃗
Ωe +

∂ ϕ (qe)

∂ (2 ln qe)

T

Ω⃗e (72)

Propose
R1Q3

τ⃗ = Ω⃗× J Ω⃗−Kdϑ Ω⃗e −Kpϑ sinh (2 ln qe). (73)

Then
R1Q3

V̇qe = Ω⃗Te

[
−Kdϑ Ω⃗e −Kpϑ sinh (2 ln qe) + ζ⃗Ωe

]
+ ∂ ϕ(qe)

∂ (2 ln qe)

T
Ω⃗e

= Ω⃗Te

[
−Kdϑ Ω⃗e −Kpϑ sinh (2 ln qe)+

ζ⃗ϑ̇e + ζ⃗ϑe

]
+
[
Kpϑ sinh (2 ln qe)− ζ⃗ϑe

]T
Ω⃗e

= Ω⃗Te

[
−Kdϑ Ω⃗e + ζ⃗ϑ̇e

] (74)

Let us assume from (35) that the effects of the perturbation ζ⃗Ωe can be separated as ζ⃗Ωe =

ζ⃗ϑ̇e + ζ⃗ϑe , then ∥∥∥ζ⃗ϑe∥∥∥ ≤ Lζ⃗Ωe ∥2 ln qe∥ (75)

and ∥∥∥ζ⃗ϑ̇e∥∥∥ ≤ Lζ⃗Ωe ∥∥∥Ω⃗e∥∥∥ (76)

Therefore (74) becomes

V̇qe ≤ −
(
∥Kdϑ∥ − Lζ⃗Ωe

) ∥∥∥Ω⃗e∥∥∥2 ≤ 0 (77)

Using the Krasovskii-LaSalle’s invariant set theorem, the rotational system equations in (36)
R1Q3

and property (76), it can be concluded that the largest invariant set is, in the worse case, when

Kpϑ sinh (2 ln qe) = ζ⃗ϑe , which only occurs at the origin by the fact that ∥Kpϑ∥ > 2L
ζ⃗Ωe

(see

following analysis). Therefore, the attitude system in (36) is asymptotically stable.

Analysis of condition (39)

Substituting (73) into (39), it follows that
R1Q3

∂g(qe,Ω⃗e)
∂Ω⃗e

J−1
[
KdϑΩ⃗e +Kpϑsinh (2 ln qe)

]
≥

[∥∥∥∥∂g(qe,Ω⃗e)
∂Ω⃗e

∥∥∥∥∥∥J−1
∥∥Lζ⃗Ωe

+

1

2

∥∥∥∥∂g(qe,Ω⃗e)
∂qe

∥∥∥∥] ∥∥∥Ω⃗e

∥∥∥
+

[∥∥∥∥∂g(qe,Ω⃗e)
∂Ω⃗e

∥∥∥∥∥∥J−1
∥∥Lζ⃗Ωe

+∥∥∥∥∑
i

fi

∥∥∥∥∥∥∥∥∂f( ˙⃗pe,p⃗e)
∂ ˙⃗pe

∥∥∥∥] ∥2 ln qe∥

=⇒ Ω⃗T
e

[
KdϑΩ⃗e +Kpϑsinh (2 ln qe)

]
≥

[∥∥∥Ω⃗e

∥∥∥Lζ⃗Ωe
+

1
2

(
Kpϑsinh (2 ln qe)− ζ⃗ϑe

)] ∥∥∥Ω⃗e

∥∥∥
+
(∥∥∥Ω⃗e

∥∥∥Lζ⃗Ωe
+

∥∥∥ ˙⃗pe

∥∥∥∥∥∥mg⃗ −Kdt
˙⃗pe−

Kpt tanh p⃗e∥) ∥2 ln qe∥

(78)
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The terms depending on ∥2 ln qe∥ are grouped in the following inequality
R1Q3

1
2

∥∥∥Ω⃗e∥∥∥ ∥Kpϑ∥ ∥sinh (2 ln qe)∥ ≥
(
1
2

∥∥∥Ω⃗e∥∥∥Lζ⃗Ωe + ∥∥∥ ˙⃗pe

∥∥∥ ∥mg⃗−
Kdt

˙⃗pe −Kpt tanh p⃗e

∥∥∥) ∥2 ln qe∥
≥

[
1
2

∥∥∥Ω⃗e∥∥∥Lζ⃗Ωe + ∥∥∥ ˙⃗pe

∥∥∥(∥mg⃗∥+ ∥∥∥Kdt
˙⃗pe

∥∥∥+
∥Kpt∥)] ∥2 ln qe∥

=⇒ ∥Kpϑ∥ ∥sinh (2 ln qe)∥ ≥
[
L
ζ⃗Ωe

+
2∥ ˙⃗pe∥(∥mg⃗∥+∥Kdt ˙⃗pe∥+∥Kpt∥)

∥Ω⃗e∥

]
∥2 ln qe∥

(79)

The effect produced by the coupled dynamics on the stability of the system is presented in
the following term

ϵϑ :=
2
∥∥∥ ˙⃗pe

∥∥∥(∥mg⃗∥+
∥∥∥Kdt

˙⃗pe

∥∥∥+ ∥Kpt∥
)
∥2 ln qe∥∥∥∥Ω⃗e∥∥∥ (80)

A key difference between this term and the one presented in (61) is that, as the translation
control law (68) is bounded in the position dynamics because of the term −Kpt tanh p⃗e, ϵϑ has
a constant effect that does not depend explicitly on the state variable p⃗e. Substituting (80) into
(79) results in

R1Q3

∥Kpϑ∥ ∥sinh (2 ln qe)∥ ≥ L
ζ⃗Ωe
∥2 ln qe∥+ ϵϑ (81)

If only small translation velocities are considered, then ϵϑ ≈ 0, which implies that if ∥Kpϑ∥ >
2L

ζ⃗Ωe
is enforced, the condition is met for these terms.

The terms that depend solely on
∥∥∥Ω⃗e∥∥∥ can be grouped as

∥∥∥Ω⃗e∥∥∥2 ∥Kdϑ∥ ≥
∥∥∥Ω⃗e∥∥∥2 Lζ⃗Ωe

=⇒ ∥Kdϑ∥ ≥ L
ζ⃗Ωe

(82)

where Kdϑ is chosen in order to enforce the previous inequality, which results in system (5) -
(6) being asymptotically stable with control inputs (68) and (73).

4.3. Separated saturations control law

A more thorough description for this type of controller can be found in Castillo et al. (2004).
The advantage of a control law based on separated saturations is that it takes into consideration
the inherent nature that most actuators have a bounded operation limit. This type of nonlinear
behavior is problematic in control strategies that assume an unbounded operation limit. The
main objective of the proposed controller is to bound the total effect of the position control law
in order for the attitude controller to better reach the orientation reference.

Let us start by defining the saturation function ςβ (·) : Rn → Rn for a vector a⃗ ∈ Rn and a
positive constant scalar β ∈ R+ as

R1Q3
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ςβ (⃗a) :=

{
a⃗ , ∥a⃗∥ < β
β sgn (⃗a) , ∥a⃗∥ ≥ β (83)

where the sign function sgn (·) : Rn → Rn is defined element-wise.
Propose the following controllers based on saturation functions,

F⃗u = mg⃗ −Kdt ςβd

(
˙⃗pe

)
−Kpt ςβp

(
Kdt p⃗e + ˙⃗pe

)
τ⃗ = Ω⃗× J Ω⃗−Kdϑ Ω⃗e −Kpϑ (2 ln qe)

(84)

where Kpt,Kdt,Kpϑ,Kdϑ ∈ R3×3
+ are constant gain matrices such that Kpϑ > 2L

ζ⃗Ωe
,

Kdϑ > L
ζ⃗Ωe

, ∥Kdt∥ > Lp.

The perturbation into the translation system is assumed to be very small and absorbed into
the effects of the term ζ⃗Ωe . Using the function Vqe given in (49), propose the following Lyapunov
candidate function for the translation system

Vpe =
˙⃗p Te

˙⃗pe
2

+

(
˙⃗pe +Kdt p⃗e

)T (
˙⃗pe +Kdt p⃗e

)
2

(85)

Differentiating Vpe , w.r.t. time results in

V̇pe =
˙⃗p Te

[
−Kdt ςβd

(
˙⃗pe

)
−Kpt ςβp

(
˙⃗pe+

Kdt p⃗e)] +
(
˙⃗pe +Kdt p⃗e

)T [
−Kpt ςβp

(
˙⃗pe +Kdt p⃗e

)]
= − ˙⃗p Te Kpt ςβp

(
˙⃗pe

)
−
(
˙⃗pe + ˙⃗pe +Kdt p⃗e

)T
Kpt ςβp

(
˙⃗pe +Kdt p⃗e

) (86)

where the term − ˙⃗p Te Kpt ςβp

(
˙⃗pe +Kdt p⃗e

)
was factored from the first term to the second. Taking

into account the inequality
∥∥∥ ˙⃗pe

∥∥∥ ≤ ∥∥∥ ˙⃗pe +Kdt p⃗e

∥∥∥, V̇pe can be further simplified

V̇pe ≤ − ˙⃗p Te Kpt ςβp

(
˙⃗pe

)
−
(
˙⃗pe +Kdt p⃗e

)T
Kpt ςβp

(
˙⃗pe +Kdt p⃗e

)
≤ 0 (87)

Similarly for the rotational dynamics, differentiating Vqe given in (49), w.r.t. time results in
the equation (58). Therefore, the controllers presented in (84) stabilize system (36).

Analysis of condition (39)

Following the design scheme in Theorem 3.4, the inequality (39) will be analyzed for the proposed
control laws in order to determine asymptotic stability.

Substituting (84) into (39) results in

−∥PΩ∥
∥∥∥Ω⃗e∥∥∥(∥Kpϑ∥ ∥2 ln qe∥+ ∥Kdϑ∥

∥∥∥Ω⃗e∥∥∥) ≤ −
[
∥PΩ∥

∥∥∥Ω⃗e∥∥∥∥∥J−1
∥∥L

ζ⃗Ωe
+

∥Pp∥
∥∥∥ ˙⃗pe

∥∥∥∥∥∥∥∑
i
fi

∥∥∥∥] ∥2 ln qe∥
−
[
∥PΩ∥

∥∥∥Ω⃗e∥∥∥∥∥J−1
∥∥L

ζ⃗Ωe
+

1

2
∥PΩ∥ ∥2 ln qe∥

] ∥∥∥Ω⃗e∥∥∥
(88)
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The terms depending on ∥2 ln qe∥ are grouped in the following inequality

−∥PΩ∥
∥∥∥Ω⃗e∥∥∥ ∥Kpϑ∥ ∥2 ln qe∥ ≤ −

(∥∥J−1
∥∥L

ζ⃗Ωe
+ 1

2

)
∥PΩ∥

∥∥∥Ω⃗e∥∥∥ ∥2 ln qe∥

−∥Pp∥
∥∥∥ ˙⃗pe

∥∥∥∥∥∥∥∑
i
fi

∥∥∥∥ ∥2 ln qe∥

=⇒ −∥PΩ∥
∥∥∥Ω⃗e∥∥∥ ∥Kpϑ∥ ≤ −

(∥∥J−1
∥∥L

ζ⃗Ωe
+ 1

2

)
∥PΩ∥

∥∥∥Ω⃗e∥∥∥− ∥Pp∥∥∥∥ ˙⃗pe

∥∥∥∥∥∥∥∑
i
fi

∥∥∥∥
=⇒ ∥Kpϑ∥ ≥

∥∥J−1
∥∥L

ζ⃗Ωe
+ 1

2 +
∥Pp∥∥ ˙⃗pe∥

∥∥∥∥∑
i

fi

∥∥∥∥
∥PΩ∥∥Ω⃗e∥

(89)

In this case, the effect produced by the coupled dynamics on the stability of the system is
mainly presented in the last term of (89), which can be defined as

ϵϑ :=

∥Pp∥
∥∥∥ ˙⃗pe

∥∥∥∥∥∥∥∑
i
fi

∥∥∥∥
∥PΩ∥

∥∥∥Ω⃗e∥∥∥ (90)

and depends on the vehicle’s saturated thrust force

∥∥∥∥∑
i
fi

∥∥∥∥ and the velocity dynamics, which

also tends to be saturated if the effect of the translation controller is successfully applied to the
system.

Substituting ϵϑ into (89) yields

∥Kpϑ∥ ≥
∥∥J−1

∥∥ L
ζ⃗Ωe

+
1

2
+ ϵϑ (91)

Observe that, if ∥PΩ∥ >> ∥Pp∥, then ϵϑ ≈ 0, which makes its effect negligible. A key differ-
ence with the state-feedback controller presented before is that this condition is less restrictive

because the terms

∥∥∥∥∑
i
fi

∥∥∥∥ and
∥∥∥ ˙⃗pe

∥∥∥ are bounded due to the nature of the separated saturations

control scheme. Therefore, the condition is met if Kpϑ is chosen such that (91) is enforced.

The terms from (88) that depend solely on
∥∥∥Ω⃗e∥∥∥ can be grouped as

−∥PΩ∥
∥∥∥Ω⃗e∥∥∥2 ∥Kdϑ∥ ≤ −∥PΩ∥

∥∥∥Ω⃗e∥∥∥2 ∥∥J−1
∥∥ L

ζ⃗Ωe

=⇒ ∥Kdϑ∥ ≥
∥∥J−1

∥∥ L
ζ⃗Ωe

(92)

If Kdϑ is chosen in order to enforce (92), it can be concluded that system (5) - (6) is
asymptotically stable to the equilibrium point (40) with control inputs (84).

5. Results

The proposed control approach has been validated with numeric simulations and experimental
results. This corroborates its effectiveness to stabilize the family of under actuated systems
using different control schemes.

5.1. Simulations

The simulations are made using two different scenarios (A and B) that are designed to test
the agility and robustness of the proposed controllers. The general physical parameters of the
vehicle are shown on Table 1.

R1Q4
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J g m

diag
([
0.006 0.006 0.4

] [
kgm2

])
9.81

[m
s2

]
1.2 [kg]

Table 1.: Physical parameters used for the numerical simulations.

Scenario A In this scenario, the aerial vehicle must follow a circular trajectory with a constant
radius (2 [m]), height (2 [m]) and speed (2 [m/s]). In this case, the free DOF of the vehicle is
used to force the front of the quadcopter to always look at the inside of the circle in order to
completely test the attitude controllers. In order to be able to stay within the circle, the platform
needs to exert an almost constant force pointing at the center of the circle. The desired speed
is directly proportional to the magnitude of this force, and forces the quadcopter to have an
inclination w.r.t. the ground level.

We have simulated the performance of the three proposed controllers, for paper length
restrictions, we include here the performance of the Separated Saturations Controller (SSC)
(84). Nevertheless, the results of the other control laws (51) and (68) can be found in the

Editorsupplementary material.

Observe in Figure 4 the good performance of the system when following the circular trajec-
tory. Notice also from Figures 4 and 5 that the imposed constraints are satisfied.
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(a) 3D path when using the SSC algorithm.
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(b) Translational reference tracking

Figure 4.: Simulation results for scenario A when using the SSC. The position of the vehicle is
depicted using markers of different kinds, and the desired trajectory is shown using solid lines.

The virtual control, which is the desired force obtained by the position control part of the
algorithm, is illustrated for the SSC in Figure 6. The force in the z axis is located near a
constant value because it is opposing the gravity’s effect on the system. Figure 7 illustrates the
real thrust force and torques of the system. The real thrust force is computed from the virtual
control inputs.
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Figure 5.: Speed plot of the vehicle for scenario A.
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Figure 6.: Control inputs performance of the controller SSC. The force is scaled because of the
parameters of the motors.
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(a) Real-thrust force performance.
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(b) Torque behaviors.

Figure 7.: Real-time performances of the real control inputs in the system for scenario A and
when using the SSC algorithm. The thrust and the torques are both scaled.

Figure 8 depicts the rotational subsystem behavior. The left figure illustrates how the quater-
nion reference (computed from control inputs using (13) and (14)) is tracked by the controller
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(84). The equivalent Euler angles representation is shown in the right column for illustration
purposes. Notice in Figure 8b that the pitch and roll angle are changing from 7 ◦ for keeping
the imposed velocity constraint.
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(a) Quaternion reference tracking when using the
SSC algorithm.
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Figure 8.: Quadcopter attitude simulation for scenario A using the separated saturations con-
troller (84).
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Figure 9.: Quadcopter yaw ψ attitude for the simulation of scenario A using the separated
saturations controller (84). The angle is shown using a polar plot in order to showcase the circle
maneuver. The radius of the plot represents time in seconds.

R1Q4
Scenario B In this scenario, we propose a quick change of reference into the system with
constant acceleration to observe the quadcopter’s reaction. The goal here is to analyze the
reactivity of the drone when it needs to flee suddenly from an incoming danger. The trajectory
is described in two movements : the first one is a constant acceleration reference in one axis and
the parameters used are the distance (2 [m]) to advance, and the desired time (0.7 [s]) to reach
it. The second movement is a constant position reference for a fixed waiting time of 3 [s], before
returning to the original position and repeating. Again, we have validated this scenario for the
three proposed controllers. In this case, we have choose to present the performance of the system
when using the state feedback controller (51). The other graphs from the other controllers can

Editorbe located in the supplementary material.

Observe from Figure 10a that the altitude for the vehicle tends to remain constant through-
out the maneuver. Most controllers in these types of scenarios for the quadcopter platform tend
to sacrifice the altitude for a gain in speed. Because of how our proposed strategy successfully
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separates the translational from the attitude dynamics, the changes in the altitude dynamics
can be considered negligible. Notice also from Figure 10b that the virtual control input for the
x axis remains close to zero, while for the y axis is changing. It is due to fact that the only
movement of the aerial vehicle is in the y axis.
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(a) The position of the vehicle using the SFC. The
reference trajectory is only applied on the y axis.
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(b) The virtual control inputs for the SFC.

Figure 10.: Position performance of the system and virtual control inputs from simulation using
Scenario B and the SFC algorithm.

In Figure 11 the real thrust force and torques applied into the system are illustrated. Notice
from the zoom in Figure 11b that the only parameter that is changing is the torque for the y
axis and the others remain close to zero.
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(a) The thrust force used by the SFC

10 15 20 25 30
Time [s]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Sc
al
ed

 to
rq
ue

 [N
m
γ]

−0.10

−0.05

0.00

0.05

0.10
⃗τx
⃗τy
⃗τz

(b) The torques used by the SFC

Figure 11.: Simulation results for scenario B when using the SFC. The thrust and the torques
are both scaled.

The attitude performance and its corresponding reference for this scenario when the con-
troller (51) is applied can be seen in Figure 12. The orientation control is able to closely follow
the changes in the reference of the position controller. Notice also in Figure 12b the Euler angle
representation of this attitude performance. In this figure it can be appreciated that the aerial
vehicle reaches aggressive pitch angles of |60◦|.
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(a) Quaternion reference tracking when using (51).
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Figure 12.: Quadcopter attitude simulation for scenario B when using the controller (51).

5.2. Experimental results

Three experiments were performed on an AR-Drone 2.0 commercial UAV, the factory firmware
was substituted by the one included in our FLAIR framework, see Sanahuja (2016). For vali-
dating our control proposition, the translational information (position and velocity) were esti-
mated by a motion capture system, while the rotational states were obtained from the drone’s
inertial measurement unit. For real-life scenarios, a GPS RTK sensor can be used for measur-
ing/estimating the position of the aerial vehicle and for improving measurement or completing
the remained states an observer (as Kalman Filter) can be used.

R1Q4In our experiments, the embedded system runs in soft real-time and the sampling period
is on average 5.516212206539637 [ms], with a minimum delay of 2.1970272064208984 [ms] and
a maximum delay of 7.708466053009033 [s]. Notice that even under these circumstances with
delays, the strategy was robust enough to yield successful results in all scenarios.

The flight-tests scenarios are the same ones used in simulations, nevertheless, an additional
scenario (C) is proposed to showcase the robustness of the strategy against external conditions.
Scenario C consists on giving the vehicle a constant position reference and use an external wind
blower machine to try to destabilize the system.

R1Q4Scenario A In this scenario (tracking a circular trajectory), the parameters for the flight tests
are ; circle trajectory radius 1.5 [m], altitude 1.2[m] and velocity ≈ 2.5 [m/s]. In the following
figures, the system performances are illustrated when using the controller SSC. The other control

Editorperformances for this scenario are presented in the supplementary material . A video illustrating
these results can be accessed at https://youtu.be/PaHk3fyeShc

Notice from Figure 13 the well performance of the system when using the control algorithm
(84). Observe from Figure 13b that all the states converge to the desired values for tracking the
trajectory. In addition, the performance presented in Figure 13 shows a stable position tracking
error. This can indicate how robust control algorithms can be obtained for a quadcopter platform
using the proposed design methodology even in real-world scenarios. Notice from Figure 14 that
the desired velocities imposed in the vehicle are well tracked.
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(a) 3D system performance when tracking a circular
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(b) Real-time position behavior of the system.

Figure 13.: System real-time performance for scenario A and using the SSC algorithm.
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Figure 14.: Speed plot of the vehicle for Scenario A in real-time experiments.

The virtual and the real control inputs for this controller (SSC) are depicted in Figures 15
and 16. Notice from these figures a similar performance obtained from simulations.
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Figure 15.: Virtual control inputs performances.
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(a) The thrust force used by the SSC

18 20 22 24 26 28 30 32
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

Sc
al
ed

 to
rq
ue

 [N
m
γ]

−0.2

−0.1

0.0

0.1

0.2

⃗τx
⃗τy
⃗τz

(b) The torques used by the SSC

Figure 16.: Real control input behavior for scenario B when using the SSC. The thrust and the
torques are both scaled.

Figure 17 illustrates the rotational subsystem behavior. Observer in Figure 17a the attitude
quaternion performance of the system. This figure is difficult to analyze, nevertheless, we added
in Figure 17b its corresponding Euler angle representation. The discontinuities that occur both
in the reference and the attitude of the quadcopter in Figure 17a is a consequence of enforcing
the restriction q0 ≥ 0 in order to compensate for the unwinding effect of the quaternion rep-
resentation. Even though this restriction makes it seem like the movements are discontinuous,
this is not the case.
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(a) Attitude quaternion performance.
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Figure 17.: Quadcopter attitude real-time performance for Scenario A when using the separated
saturations controller.

30



0°

45°

90°

135°

180°

225°

270°

315°

18.05 s

21.04 s

24.03 s

27.02 s

30.01 s

ψ

Figure 18.: Quadcopter yaw ψ attitude for the experiments of scenario A using the separated
saturations controller (84). The angle is shown using a polar plot in order to showcase the circle
maneuver. The radius of the plot represents time in seconds.

R1Q4
Scenario B In this scenario (sudden changes of references with constant acceleration), the
parameters for the flight tests are; time used for the translation 0.8 [s], resting time 5 [s], and
desired altitude of 1.2[m]. In the following we introduce the results when applying the controller
SSC (84). The performances of the other controllers can be seen in the supplementary material.

EditorA demonstration video of this case is available at https://youtu.be/8G9s12AloP8

From 19a observe the well performance of the system for tracking the reference in the y
axis, notice also that the altitude remains close to the desired value and the x position is close
to zero. Similarly, from Figure 19b observe that the virtual force for the y axis is changing for
moving the vehicle to the desired values. The virtual force in the z axis also changes for keeping
the desired altitude. The performance of the real control inputs in the system can be seen in
Figure 20.
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(a) The position of the vehicle using the SSC. The
reference trajectory is only applied on the y axis.
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(b) The virtual control inputs for the SSC.

Figure 19.: Position results and virtual control inputs for the experiments using Scenario B and
the SSC.
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(a) The thrust force used by the SSC
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(b) The torques used by the SSC

Figure 20.: Real control input performances obtained in scenario B when using the SSC. The
thrust and the torques are both scaled.

The attitude performance and its reference for experimental tests in Scenario B using the
SSC can be seen in Figure 21. The orientation control is able to closely follow the changes in
the reference of the position controller as showed in Figure 19a. Notice from Figure 21b that
the pitch angle reaches aggressive values of |45◦|.
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(a) Quaternion reference tracking using the SSC
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(b) Euler angles equivalent representation of the at-
titude tracking performance using SSC.

Figure 21.: Quadcopter attitude performances obtained from real-time experiments for Scenario
B and using the separated saturations controller (84).

R1Q4
Scenario C: In this scenario the goal is that the quadcopter remains at hover and closes
to its desired position while it is exposed to strong external and unknown disturbances. This
scenario is used to verify that the proposed method generates controllers that are robust against
external perturbations. These external disturbances were produced using a wind blower capable
of generating winds at 60 [km/h] and it was placed between 1 [m] and 1.5 [m] from the drone.
The parameters for the flight tests are : zd = 1.5 [m], xd = 0.05 [m] and yd = 0.2 [m]. In
the following graphs the experimental results when the controller SFC (51) is applied into the
system. The other performances of the other two controllers are presented in the supplementary

Editormaterial. A video exposing these experiments is available at https://youtu.be/7D2BKoUSF-I

In Figure 22a the position performances of the system when applied the controller for this
scenario are presented. In Figure 22b their respective virtual control inputs. Observe from Figure
23 the real thrust force and torques applied to the aerial platform.
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(a) Position performances of the system when it is
exposed to wind gust.
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(b) Virtual control behaviors for achieving the de-
sired mission.

Figure 22.: Position results and virtual control inputs for the real-time experiments using Sce-
nario C and the control law (51).
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(a) Thrust force performance obtained from the vir-
tual control inputs.
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(b) Control torques applied to the aerial platform.

Figure 23.: Real control input performances obtained in scenario B when using the SFC. The
thrust and the torques are both scaled.

The attitude behavior with respect to their references for this scenario C can be seen in
Figure 24. Observe that the orientation control torques (in Figure 11b) are able to keep the
system closely to the desired position even in presence of external disturbances. For better
appreciate this performance its corresponding Euler angle representation is given in Figure
24b. Notice from Figure 22a that our controller is robust with respect to unknown and external
disturbances. For improving system’s performances other solutions, as well as robust controllers,
are to use observers for estimating the perturbations and include them into the closed-loop
system.
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(a) Quaternion attitude performances.
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(b) Euler angles equivalent representation of the at-
titude tracking performance.

Figure 24.: Quadcopter attitude performance obtained in Scenario C and using the state feed-
back controller. Notice that the inclination required to compensate the disturbances is robustly
managed by the controller.

6. Conclusions and Discussions

A method to control a family of under actuated systems was designed, validated, simulated and
tested in this work. The main characteristic of this family of systems is that the direction of the
actuator’s translation forces, the ones that change the position of the vehicle, directly depends
on the attitude state of the system. Many vehicle platforms can be included in this category,
like multicopter platforms, underwater vehicles, fixed-winged aircraft, to name a few.

The design strategy started with a viable controller for an equivalent fully actuated rigid-
body dynamic model. This control law must consist of two independent control algorithms, one
for the position dynamics and one for the attitude system, and they both need to have associated
with them a Lyapunov candidate function that guarantees stability for the fully actuated system.
The orientation dynamics are represented using quaternions. These controllers must also satisfy
condition (39).

Once a suitable pair of control laws has been selected, the attitude control can be adapted
to the original under actuated system by means of an internal quaternion reference trajectory,
defined in equation (15). Section 3 delves deeper into the mathematical basis and construction
of this reference trajectory. In comparison with other reference trajectories, it can be shown
that the one proposed is optimal in the sense that it indicates the shortest rotation that the
system must do in order to align the desired thrust force with the real one, as shown in Lemma
2. This in itself gives the proposed method an edge over others methodologies that use Euler
angles. The design and implementation of the proposed control strategy for the under actuated
system was presented in Theorem 3.4.

In order to corroborate the presented strategy, three example cases with different control
paradigms were designed with the proposed method, numerically simulated and tested in a
physical quadcopter platform. Two different scenarios were used for the simulation results,
which allowed us to verify the stability of the selected method for the three distinct controllers.
All of them result in a stable response of the quadcopter platform while following the input
trajectory. The experimental results were obtained in three different scenarios designed to test
the robustness and agility of the three controllers. The resulting systems were stable even in the
presence of perturbations or aggressive references. The fact that the simulation and experimental
results did not diverge too far from one another speaks in favor of the exactitude and practical
application of the presented method.

In general, it is preferable to design a controller for a completely actuated system than
for an under actuated one. This is because the later includes dynamical dependencies between
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state variables that can complicate the corroboration and design of control laws, which is not
the case for fully actuated systems. The key advantage of the proposed design approach is that
it can adapt a control strategy designed for fully actuated systems to be used in an under
actuated platform. The sate-feedback controller shows that the algorithm can be used with
linear controllers if one includes a gravity compensation term. The energy-shaping controller
and the separated saturations control are examples of nonlinear control strategies that can also
be adapted and used to the presented method.

Another popular approach to design controllers for the proposed family of under actuated
systems is to use an internal attitude control loop to guide the actuator’s force with an outer
control loop. The stability results in these types of design strategies greatly depend on the
robustness of the inner control loop. Even though the proposed strategy uses a similar approach,
a key advantage of our method is that the stability of the whole system is guaranteed using the
Lyapunov theory formalism. This makes the stability results be almost global and only limited
by the physical properties of the platform itself. It can even lead to control strategies that work
well for aggressive or rapid maneuvers of the platform, as the stability of the system can be
analyzed as a whole instead of by parts.
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Appendix A. Quaternion Background

Quaternions, also called hyper-complex numbers and represented with an H, are a special group
that form an algebraic ring with division. They were first described by Irish mathematician Sir
William Rowan Hamilton Altmann (1989) .

They can be represented in many ways, but the one presented here is as a sum of a scalar
component along an imaginary vector as seen in Campa and Camarillo (2008) and Kuipers et
al. (1999).

q = q0 + q⃗ = q0 +
[
q1 q2 q3

]T (A1)

where q ∈ H, q̄ ∈ R3 depicts the complex vectorial part of q, and q0 ∈ R denotes the scalar part
of q.

A.1. Quaternion Product

The main operation in quaternion algebra is the quaternion product, which is defined as

q ⊗ r = (q0 r0 − q⃗ · r⃗) + (r0 q⃗ + q0 r⃗ + q⃗ × r⃗) (A2)

where r ∈ H, with vector part r⃗ ∈ R3 and scalar part r0 ∈ R.

A.2. Quaternion Conjugate and Norm

The quaternion conjugate q∗ ∈ H is defined as q∗ = q0− q⃗, while the quaternion norm, ∥q∥ ∈ R,
is defined as

∥q∥ =
√
q ⊗ q∗ =

√
q20 + q21 + q22 + q23 (A3)

A.3. Quaternion Inverse

The quaternion inverse is obtained from q−1 =
q∗

∥q∥
. Only unit quaternions are used for the

attitude representation of a rigid body, that is ∥q∥ = 1. Thus, q−1 = q∗.

A.4. Quaternion Scalar and Vector Parts

Even though it was mentioned at the beginning of the section that any quaternion can be
expressed as the sum of a real scalar component and a vector imaginary part, there are still
operations and analysis that would benefit from an operation design to extract either of these
components. In order to achieve this, two operations are defined for an arbitrary quaternion
q ∈ H. The first one extracts the real scalar part

Sca {q} := 1

2
(q − q∗) = q0 (A4)

while the second one extracts the imaginary vector part
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V ec {q} := 1

2
(q + q∗) = q⃗ (A5)

A.5. Quaternion Natural Logarithm

The quaternion natural logarithm mapping is defined as
R1Q3

ln q =

 ln ∥q∥+ q⃗

∥q⃗∥
arccos

q0
∥q∥

, ∥q⃗∥ ≠ 0

ln ∥q∥, ∥q⃗∥ = 0
(A6)

For unit quaternions, the above logarithmic mapping is reduced to
R1Q3

ln q =


q⃗

∥q⃗∥
arccos q0, ∥q⃗∥ ≠ 0

0, ∥q⃗∥ = 0
(A7)

This mapping is useful to change any unit quaternion to the axis-angle representation, in
which the quaternion is represented as an axis over which the vehicle will rotate, and a rotation
angle.

θ⃗

2
= ln q,

˙⃗
θ = ω (A8)

where θ̄ ∈ R3 is the vector which contains the axis-angle representation, in which θ̄
∥θ̄∥ describes

the unitary axis over which the rotation is applied, ∥θ̄∥ represents the magnitude of the
rotation, and ω is the vehicle’s angular velocity.

A.6. Quaternion kinematics

The kinematics of a rigid body in terms of its orientation and the angular velocity with respect
to the body frame are given in Goldstein et al. (2002) by

q̇ =
1

2
q ⊗ ω (A9)
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