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Stabilization of Tangent and Normal
Contact Forces for a Quadrotor subject to Disturbances

C. Izaguirre-Espinosa1, A. Muñoz-Vazquez2, A. Sánchez-Orta3,
V. Parra-Vega3, R. Garcia-Rodriguez4, P. Castillo5, D. Arreguín-Jasso3.

Abstract— Force exertion, object manipulation, and
interaction are novel trending research topics of au-
tonomous flying robots that can yield hoovering.
Moreover, specifically with quadrotors, the vibration
caused by the high natural frequency of rotating
propellers exacerbates the problem of maintaining
contact and exerting force against a rigidly fixed
object. This contact vibration transfers back kinetic
energy to the quadrotor that, in worst-case scenarios,
surpasses its flying capabilities, which may lead to
a crash. This paper studies the problem of aerial
contact stabilization of a quadrotor equipped with a
hemispherical deformable tip, which accommodates
contact forces at a lower frequency. Thus two phe-
nomena not studied in the literature arise: the rolling
motion, and the deformation at contact. The contact
force stabilization restores the effects of deformation
while simultaneously endowing rolling by controlling
a tangent constrained force. A model-free continuous
attitude fractional controller to guarantee finite-time
attitude stabilization is proposed. The residual cou-
pled nonlinear dynamics yields the desired attitude
corresponding to a given contact force; thus, force
stabilization is achieved. Finally, experimental results
are presented to assess the performance of the pro-
posed approach.

I. Introduction
Recently, there has been great interest in the devel-

opment of theoretical and experiments of quadrotor’s
goal to interact with the environment, or to manipulate
cooperatively an object. These tasks involve force control
approaches [1]–[3]. However, these approaches are based
on ideal assumptions, such as either infinitesimal contact
point models that likely lead to high-frequency interac-
tions, which jeopardize the fragile quadrotor structure,
or assuming system’s exact knowledge, thus the model
becomes sensitive to parametric uncertainty. To circum-
vent the limitation of using infinitesimal point contact
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mechanics, there has been considered a contact area that
leads to a moving pressure point nonetheless, or de-
formable contact pad, violating their design assumptions.
Others study contact throughout attaching of a rigid ma-
nipulator to the quadrotor. If the contact occurs below
or above the CoM, a careful operation is required due
to zero dynamics being unstable [4]. When placing the
manipulator above, the hybrid force scheme decouples
Cartesian coordinates of force and velocity, then embeds
dynamics in independent velocity coordinates, [5], [6].
Interestingly, [7] considers an impedance force model in
the normal direction, with tangent friction component,
when contacting with a perch on top of the quadrotor
frame. Contact force is stabilized separately using a
disturbance observer; however, it lacks of a complete
stability analysis, [8]. Despite the practical advantages
of introducing a deformable passive damper as the tip
to avoid troublesome vibrations at contact, engaging
contact with such deformable soft tip against a rigid
surface has not been studied formally for underactuated
constrained quadrotors. Therefore, we abstract this as
the problem of force stabilization subject to a hemi-
spherical deformable tip that yields a moving contact
point while rolling, a problem that remains elusive in
the literature.

1) Our Proposal: When contact occurs with a given
force exertion between a curved soft tip and a rigid
object, a contact area arises; then, there exists a pressure
contact point where the maximum deformation arises.
This point may move due to the curved tip that endows a
rolling velocity, but simultaneously there arises a normal
force due to deformation. This phenomena introduces
a constraint tangent force that enforces a velocity con-
straint, which is nonholonomic for the general case. Al-
though the inclusion of the normal and tangential forces
has several advantages for critical quadrotor contact
tasks, its study has been neglected in the literature.

In contrast to previous works, our paper explicitly
considers such constraints without any linearization, [9],
it proposes a model-free continuous attitude controller
that stabilizes quadrotor contact when interacting with
curved soft tip against a rigid object. Motivated by
robotic hands equipped with soft fingertips, [10], the con-
tact force is applied throughout a deformable hemispher-
ical tip. Then, a fast and robust controller is proposed to
enforce a quasi-hovering state which endows an analysis
restricted to the xz plane. It is shown that contact force



depends on pitch angle, thus such angle is controlled in
finite-time to finally guarantee exerting the desired force.
In this way, our scheme stands for an active force control
for constrained quadrotors subject to a rolling constraint,
assuming that contact occurs with a deformable curve
surface to stabilize normal and tangential forces.

II. Quadrotor Dynamic Model Subject to a
Velocity Constraint

A. Motivation to Introduce a Deformable Contact Tip
A quadrotor that performs contact tasks with a de-

formable contact tip is characterized by kinetic energy
absorbed by elastic deformation. So the kinetic energy
at impact is of lesser magnitude, acting also as a low
pass filter that damps enormously and rapidly (faster
than the closed-loop response of the control system) the
contact forces, producing a natural frequency within the
limits of design. Although the Hunt-Crossley contact
force model is consistent with the intuitive notion of a
constitutive force that depends on the restitution coef-
ficient plus viscous damping, which represents the net
energy loss during impact, [11]. An adaptation of Hooke’s
law for hemispherical shape contact has been extensively
validated for deformable fingertip, [12], however at the
expense of introducing a Pfaffian velocity constraint due
to tip rolling, which has been overlooked in the literature
on quadrotors in contact tasks.

To model such phenomena, let the quadrotor be
equipped with a hemispherical soft tip to engage contact
with a rigid surface. Thus the hemispherical shape of
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(a) Lateral view of the quadrotor in con-
strained pose.

(b) The constrained quadrotor system and frames.

Fig. 1. The quadrotor performing a contact task with a deformable
contact tip.

radius R yields a varying contact point when rolling
onto the rigid surface, see Fig. 1(a). Hence, the rolling
constraint velocity can be modeled by φ̇ = żc −Rθ̇ = 0,
where zc is the contact altitude in z = zc − l sin(θ), for
pitch angle θ and the length l defined as the distance
from CoM to the contact point, then ż = żc − l cos(θ)θ̇.
Thus, the rolling constraint velocity is given as follows

φ̇ = ż + (l cos(θ)−R)θ̇ = Jφγ̇ ≡ 0 (1)

where Jφ = [0 0 1 0 (l cos(θ) − R) 0], and
γ̇ =

[
ẋ, ẏ, ż, ϕ̇, θ̇, ψ̇

]T
is the time derivative of γ =

[ξT , ηT ]T ∈ R6, for position ξ = [x, y, z]
T ∈ R3, and

Euler angles η = [ϕ, θ, ψ]
T ∈ R3. The linear operator

Jφ stands for the annihilator of velocities γ̇ at contact,
thus qualifying as the Pfaffian matrix of the constraint
at contact (1). Notice that, in general, Jφ ∈ Rr×6, for r
the number of independent contacts (in our case, r = 1),
spans the tangent subspace at contact. For convenience,
Jφ can be written Jφ = [Jφz, Jφθ]

T , where Jφz =
[0, 0, 1]T and Jφθ = [0, (l cos(θ) − R), 0] represent the
gradient of the rolling constraint with respect to z and
θ, respectively. Thus, using the principle of virtual work
and variational calculus, a workless constrained force
λ ∈ Rr (a Lagrangian multiplier) appears that enforces
the constraint (1). That is, λ is a non-dissipative tangent
force along the span of JTφ that enforces the constraint
and prevents slipping within the limits of the Coulomb
friction coefficients. Based on the arguments above, it is
compulsory to control λ to enforce the velocity constraint
from the tip rolling at contact.

B. Dynamic Model subject to Pfaffian Constraints and to
Disturbances

Let I = {êx, êy, êz} and A = {êbx, ê
b
y, ê

b
z} denoting

the inertial (Earth) and body fixed frame of quadrotor,
respectively, Fig. 1(b). The quadrotor is represented as
an airborne rigid body subject to a force and 3 moments

frame
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WallCoM
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Body

Lumped contact point

Quadrotor efector

Deformable tip

Contact line

Deformed area

Fig. 2. Details of the quadrotor at contact with a soft hemispherical
tip: normal and tangential forces arise due to elastic deformation
of tip material at contact.



produced from the thrust of the four rotors located at
equidistant length c, with respect to the center of mass
(CoM) that coincides with the origin of A, which is
also the geometric center, see Fig. 1(b), [13]. Since the
quadrotor has a hemispherical soft tip as the contact
tool, collinear to x-axis, the quadrotor is constrained to
the xz-plane, then deformation of soft tip arises along
the x-axis, see Fig. 1(a). Thus, there exists a maximum
penetration depth p due to the deformation, measured
along the line O⃗p − O⃗e, given by p = R − Dx, where
Dx stands for the distance of the center position of the
contact tool to the lumped contact point, see Fig. 2. In
addition, Fig. 2 shows that the CoM coincides with the
origin of the coordinate system associated to the body
fixed frame. However, notice that the contact point O⃗p
is unknown. Therefore, the contribution of the pitching
constraint is measured from O⃗e, taking the effect at θ.
Thus, the Newton-Euler constrained dynamic equations
are given by

mξ̈ = −T Rêbz − Fc + JTφzλ+mgêz + dξ (2)
Ṙ = R[Ω×] (3)
JΩ̇ = −Ω× JΩ+ τ + L×RTFc +W−TJTφθλ+ dη (4)

subject to φ̇ = 0, where J ∈ R3×3 denotes the constant
inertia matrix with respect to the CoM expressed in
the body fixed frame A, ξ ∈ I denotes the operational
position coordinates of the CoM of the airframe, relative
to a fixed origin, Fc = fcêx stands for the contact force
with magnitude fc, R ∈ SO(3) is a rotation operator,
Ω = [Ωx,Ωy,Ωz]

T ∈ A represents the angular velocity of
the airframe, which is related to Euler angles velocities,
η̇, through the transformation matrix W as Ω = Wη̇.
T = f1+f2+f3+f4 ∈ R+ stands for the thrust generated
by rotors’ forces, where fi = κpω

2
i , κp > 0, and ωi is the

angular velocity of each motor. Let L = lêbx the vector
from the CoM to the contact point, g the gravitational
acceleration, and m denotes the mass of the quadrotor.
The term [Ω×] denotes the skew-symmetric matrix of
Ω, dξ, dη represent smooth bounded disturbances, and
τ = [τϕ, τθ, τψ]

T ∈ R3 in A, is the control torque.
Therefore, at this point, the control problem is to design
the 4-dimensional [T , τT ]T to stabilize the underactuated
6-dimensional disturbed quadrotor (2)-(4) in contact at
O⃗e and subject to (1), while exerting a given desired
constant force fcd .

C. Contact Force Model
Consider a lossless elastic deformable tip of the

quadrotor, see Fig. 2, then the hemisphere shape of
homogeneous material of constant density yields a resti-
tution force fc along x given by, [10],

fc = fc(p) =
EY p

2

cos(θ) (5)

where EY stands for the elastic Young modulus coeffi-
cient of the soft tip material, then constant in the linear

zone, which can be characterized in prior experiments.
It is now clear to discern that commanding θ in (5) will
command the value of fc, which we pursue next.

III. Control Design
A. Fractional Sliding Mode Attitude Control

Assuming the exerted force fc is orthogonal to the z-
axis, then without loss of generality assume that there
arises along the x-axis an explicit dependence of fc with
pitching angle θ, in accordance to (5); then, the desired
Euler angles may be chosen ηd = (0, θd, 0)T , for a
desired pitch angle θd. Given the parametric and model
uncertainties of position (2) and attitude dynamics (4),
and inspired by [14], let the following model-free frac-
tional sliding mode controller [15] for attitude control be

τ = −k tnI
ν
t sign(SΩ), (6)

where k > 0 is a feedback gain, sign (·) the discontinuos
signum function, SΩ the attitude error manifold given by

SΩ = Ωe + αRT
d qe, (7)

for α > 0 a positive constant, Ωe = Ω − Ωd represents
the angular velocity error, where Ωd = W (ηd)η̇d is
the desired angular velocity, corresponding to a desired
rotation matrix Rd and a desired quaternion qd, and
qe = (q0e, qe) = q ⊗ q∗

d = (q0, q) ⊗ (q0d,−qd) with
q0, q0d, q0e ∈ R and q, qd, qe ∈ R3. The term tnI

ν
t is

the Riemann-Liouville fractional differintegral operator
given by, [16], aI

ν
t f(t) = 1

Γ(ν)

∫ t
a
(t − ς)ν−1f(ς)dς for

ν ∈ [0, 1) the fractional order of the fractional integral,
f(t) is a locally integrable function, Γ(ν) stands for the
Gamma function, i.e. Γ(ν + 1) = ν! for ν ∈ N0.

Now, consider the open-loop attitude error

JṠΩ = τ + dΩ (8)

with dΩ = −J(Ωd − αRT
d qe) − Ω × JΩ + L × RTFc +

W−TJTφθλ + dη the lumped function of all model and
parametric uncertanties, as well as disturbances. The
stability properties of (8) in closed-loop with attitude
controller (6) are given in the following Theorem.

Theorem 1: Model-free Fractional Attitude
Control. Consider (8) in closed-loop with (6). For k >
J−1
ii

3+ν
1−ν maxi sup(a,b)

|dΩi(b)−dΩi(a)|
(b−a)ν , ∃tf < ∞ such that

SΩ(t) = 0, ∀t ≥ tf , where Jii stands for the ii element
of J .
Sketch of the Proof. Following our previous basic
results on fractional sliding modes, [14], [15], [17], [18] one
can easily follow developments to conclude the invariant
manifold SΩ = 0 is reached in finite time tf , then
afterwards tracking error qe → (1, [0, 0, 0]

T
) converges

exponentially, so does η → ηd. In consequence, after t >
tf , coordinates ϕ = ψ = 0 and θ = θd exponentially fast
in accordance to k and ν. Be aware that the fractional-
order integral acts as a low-pass filter, whose gain and
phase are modulated via ν ∈ [0, 1), still preserving sta-
bility and robustness properties against attitude lumped



disturbances dΩ of (8), even if it were non-differentiable,
the interested reader is referred to [14], [15], [18] for an
in-depth proof of the later claim. □
B. Force Control Design

1) Design of Desired Pitch Angle: Let us consider that
at initial condition, there exists stable contact and then
a hovering state induced by the attitude control τ , where
ϕ = ψ = 0 and θ = θd ≈ 0. The force control task is to
exert fcd along x onto the rigid surface, see Fig.1(a), then
we have that x = xc− l cos(θ), z = zc− l sin(θ), where xc
and zc represent the center position of the contact tool in
the x and z axes, respectively. In this condition, position
dynamics given by (2) becomes

mẍ = −T sin(θ) + fc + dx (9)
mz̈ = −T cos(θ) +mg + λ+ dz (10)

where fc represents the normal force acting along x,
see Fig. 2, dx and dz are respectively the x and z
components of disturbance dξ, and λ is the tangent force
along z. Solving for T , (9)-(10) leads to, [19], tan(θ) =
fc−mẍ+dx

m(g−z̈)+λ+dz . Then, we have

θ =
fc
mg

+ dθ (11)

for dθ = mg(dx−mẍ)+(mz̈−dz)fc
mg[m(g−z̈)+λ+dz ] + [θ − tan(θ)]. Observe

how θ is function of fc in (11), whose explicit relation
can be exploited to design θd to be a function also of the
desired contact force fcd along x. Take note that in quasi-
hovering state1 ϕ = ψ = 0 and θ = θd ≈ 0, then also
ẍ ≈ z̈ ≈ 0 and that tan(θ) ≈ θ needs to be enforced to
ameliorate the effects of dθ. Moreover, from (5) and (11)
and considering that cos(θ) ≈ 1 for such small angles, we
have that

θ =
fc
mg

(12)

where fc = EY p
2. Henceforth, in this condition, the

desired pitch angle becomes

θd =
fcd
mg

. (13)

2) Design of the Force Controller (a.k.a. the Controller
of Pitch): From (12)-(13), one obtains

∆θ =
∆fc
mg

+ dθ (14)

for ∆θ = θ − θd and ∆fc = fc − fcd . Since the attitude
controller enforces fast convergence of η ≈ 0, one has that
q ≈ 1

2η, and R ≈ W ≈ I, where I is the 3 × 3 identity
matrix; then, (7) can be approximated by

Sθ = ∆θ̇ +
1

2
α∆θ, (15)

Replacing each term in the right hand side of (15) by
(14) and its derivative, (15) can also be approximated in

1This is physically reasonable to consider in force control of
quadrotors because such configuration is the only one the quadrotor
can compensate its own weight.

quasi-hovering by Sf = ∆ḟc
mg + 1

2mgα∆fc. Taking the time
derivative of (15) and from (4), one obtains

Ṡf = τθ + df (16)

where df accounts for disturbances to the force dynam-
ics. On that account and consistently with Theorem 1,
the controller τθ becomes

τθ = −k tnf
Iνt sign(Sf ), (17)

Then, we have proved the following assertion.
Corollary 1: Consider the controller (17) in closed

loop with (16), then one obtains Ṡf = −k tnf
Iνt sign(Sf )+

df , which according to Theorem 1, there arises the finite-
time convergence of Sf , with exponential stabilization of
contact force bounded by a vicinity given by ∥∆fc∥L2 ≤
2mg
α

∥∥∥f (dθ, ḋθ)∥∥∥
L2

, where f
(
dθ, ḋθ

)
is a function that

accounts for disturbances induced by dξ and the dynam-
ics of the contact forces.

Remark 1: The precision of force tracking can be
modulated by tuning the feedback gain α. Additionally,
the use of θ̇(t) instead of ḟc(t) sacrifices the exponential
convergence of ∆fc at the expense of obtaining finite-
gain input-output stability, [20], which from a practical
point of view, it is convenient since signal θ(t) is more
regular than signal fc(t), on one hand, but then the force
sensor is not needed, on the other hand.

IV. Experimental Study
1) Setup: An Optitrack motion capture system pro-

vided measurements of the state of the quadrotor, a
Parrot AR Drone 2.0 of 0.458Kg weight, handled by
a Desktop PC throughout wireless communication by
Gumstix processing ports, while a second PC handled
the data from the JR3 multi-axis force sensor, then
transmitted this data to the Desktop PC. The specific
details about the firmware structure of this platform,
the finesse in its tuning, including sensors and rate of
data transfer, can be found in [18]. The contact point
is computed using the length of the contact tool at
initialization, from therein the positive x direction. The
contact tool, seen in Fig. 3, was made of carbon fiber and
is rigidly attached to the frame of the Parrot AR Drone,
equipped with a rigid rod covered with a deformable
sponge to provide a circular shape at contact.

2) Tuning Gains: The Grünwald-Letnikov method
computed the numerical differintegrals with a buffer of
5000 elements. The differintegration order, ν, plays a
critical compromise in disturbance rejection with how
aggressive the control signal is. Previous to the force
experiments2, the tuning of control gains for the position
and attitude controller were obtained. It was calculated
that ν = 0.5 since ν < 0.5 generates an aggressive signal
that endangered rotors’ integrity, while ν > 0.5 creates
a phase delay high enough for the force disturbances to

2Experiments have been conducted in the Heudiasyc Laboratory
at the Université de Technologie de Compiègne, France.



Fig. 3. Experimental testbed showing quadrotor in contact to
a nylamid contact plate. The JR3 − 90M31 force sensor, rigidly
attached to an aluminum-made working table, measures online 6D
wrench at 1KHz, while visual markers provided the distinctive
visual features to measure the quadrotor state. Final sampling rate
was h = 10ms.

destabilize the quadrotor beyond recovery. Notice that
since we assumed no knowledge of the tip deformation,
a parametric uncertainty in the compliance behavior
produced a small uncertainty at the initial position, an
issue dealt with by the robust force controller. Remaining
control gains were α = 9, and k = 0.6. For the flight
tests is proposed that fd = 0.79N and θd = −10o, at the
contact point [xc, yc, zc] = [0, 0,−0.75]m, which is the
center of the contact plate, see Fig 4, thus [xd, yd, zd] =
[0.01, 0,−0.8]m.

3) Results: Fig. 4(c) shows how difficult it was to
regulate ψ, due to the resulting torque yielded contact
vibration as expected with a fc, exciting also a residual
moment in yawing. Continuous control signals provide
robustness against disturbances, as shown in Fig. 5.

Successful regulation of force is accomplished, as de-
picted in Fig. 6, wherein the ±1% of force sensor noise
is observed where quadrotor vibrations are damped out
by the soft material of the tip of the rod. Fig. 6 also
shows how the quadrotor rejects disturbances since the
beginning of the operation.

V. Conclusions
Two phenomena largely used in practice [21], but also

neglected in the literature as adding a hemispherical
deformable tip to the quadrotor to establish contact with
rigid smooth surface, have been studied in this paper.
Consequently, we explicitly addressed the tip rolling
and tip deformation. Such setup damps contact at the
expense of introducing a rolling velocity constraint at
contact, also neglected in the literature of quadrotor. The
novel model-free yet robust fractional proposed controller
stabilizes the full nonlinear aerodynamics, including dis-
turbances. Experiments show that the capacity to exert
forces is compromised by mass, thrust, and the desired
force (in the underactuated directions), altogether by
the radius and Young modulus of the deformable tip.

Overall, assuming full access to the state as customary,
our controller is easy to implement by virtue of its model-
free structure that requires only the integral of signum
of attitude error manifold. Moreover, force sensing is not
strictly required since the force model, prior character-
ization, can compute it. Finally, it is worth mentioning
that in [9], a variable substitution method for feedback
linearization is used in order to assure 1D contact force
by also using the dependence of pitch angle to desired
force, somewhat similar in spirit to our proposal, but a
different approach (our result is achieved without any
linearization).
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