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A study of the greatest possible ratio of the smallest absolute value of a higher derivative of some function, defined on a bounded interval, to the L p -norm of the function.

Introduction

Let n be a positive integer, I = [a, b] a bounded segment of the real line, of length L = b -a. Define D n (I) as the set of real functions f defined on I, with successive derivatives f (k) defined and continuous on I for 0 k n -1, and f (n) defined on I = ]a, b[. We will use the notation This problem has been posed by Kwong and Zettl in their 1992 Lecture Notes [START_REF] Kwong | Zettl -Norm inequalities for derivatives and differences[END_REF] (see Lemma 1.1, p. 6). They give upper bounds for C * (n, p, I), but their reasoning and results are erroneous. In her 1993 PhD Thesis [START_REF] Huang | On extremal properties of algebraic polynomials[END_REF], Huang has pointed out that this problem is equivalent to a classical problem in the theory of polynomial approximation: that of determining the minimal L pnorm of a monic polynomial of given degree on a given bounded interval. Our purpose in this text is to give a new proof of the equivalence, and to list the consequences of the known results about this extremal problem for the evaluation of C * (n, p, I).

m n (f ) = inf a<t<b |f (n) (t)|.

First observations

Homogeneity

Defining g(u) = f (a + uL) for f ∈ D n (I) and 0 u 1, one has

g ∈ D n ([0, 1]) ; g (n) (u) = L n f (n) (a + uL) (0 < u < 1) ; g p = L -1/p f p .
Hence, C * (n, p, I) = C * (n, p, [0, 1])

L -n-1/p , (1) 
and one is left with determining C * (n, p, [0, 1]) = C(n, p), or in fact C * (n, p, I) for any fixed, chosen segment I. We will see that I = [-1, 1] is particularly convenient.

An extremal problem

One has

C * (n, p, I) = sup{m n (f )/ f p , f ∈ D n (I), m n (f ) = 0} = sup{m n (f )/ f p , f ∈ D n (I), m n (f ) = λ} (for every λ > 0) = λ/D * (n, p, λ, I),
where Also, since a derivative has the intermediate value property (cf. [START_REF]Mémoire sur les fonctions discontinues[END_REF], pp. 109-110), the inequality m n (f ) λ > 0 implies that f (n) has constant sign on I, so that

D * (n, p, λ, I) = inf{ f p , f ∈ D n (I), m n (f ) = λ} = inf{ f p , f ∈ D n (I), m n (f ) λ},
D * (n, p, λ, I) = inf{ f p , f ∈ D n (I), f (n) (t) λ for a < t < b}.
Thus, determining C * (n, p, I) is equivalent to minimizing f p for f ∈ D n (I) with the constraint f (n) (t) λ > 0 for a < t < b. We will denote this extremal problem by E * (n, p, λ, I).

The relevance of monic polynomials

Let P n be the set of monic polynomials of degree n, with real coefficients, identified with the set of the corresponding polynomial functions on I, which is a subset of

D n (I). Since m n (f ) = n! for f ∈ P n , one has D * (n, p, n!, I) D * * (n, p, I), (2) 
where

D * * (n, p, I) = inf{ Q p , Q ∈ P n }.
A basic fact in the study of the extremal problem E * (n, p, λ, I) is that ( 2) is in fact an equality. 

Let us review the history of Proposition 1. For p = ∞, it is a corollary to a theorem of S. N. Bernstein from 1937. Denoting by E k (f ) the distance (for the uniform norm on I) between f and the set of polynomials of degree at most k, he proved in particular that [START_REF] Bernstein | Extremal properties of polynomials and the best approximation of continuous functions of a single real variable. part i[END_REF], p. 48, inequalities (47bis)-(48bis)). Proposition 1 follows by taking f 1 (x) = x n and f 0 (x) = λf (x), where f is a generic element of D n (I) such that f (n) (t) n! for a < t < b, and λ > 1, then letting λ → 1.

E n-1 (f 0 ) > E n-1 (f 1 ) (f 0 , f 1 ∈ D n (I)), provided that the inequality f (n) 0 (ξ) > |f (n) 1 (ξ)| is valid for every ξ ∈ I (cf.
This theorem of Bernstein was generalized by Tsenov in 1951 to the case of the L p -norm on I, where p 1 (cf. [START_REF] Tsenov | On a question of the approximation of functions by polynomials[END_REF], Theorem 4, p. 477), thus providing a proof of Proposition 1 for p 1. The case 0 < p < 1 was left open by Tsenov.

The study of the extremal problem E * (n, p, λ, I) was one of the themes of the 1993 PhD thesis of Xiaoming Huang [START_REF] Huang | On extremal properties of algebraic polynomials[END_REF]. In Lemma 2.0.7, pp. 9-10, she gave another proof (due to Saff) of Proposition 1 in the case p = ∞. For 1 p < ∞, she gave a proof of Proposition 1 which is unfortunately incomplete (cf. [START_REF] Huang | On extremal properties of algebraic polynomials[END_REF], pp. 28-30). Again, the case 0 < p < 1 was left open.

We present now a self-contained proof of Proposition 1, valid for 0 < p ∞. As it proceeds by induction on n, we will need the following classical-looking division lemma, for which we could not locate a reference (compare with [START_REF] Whitney | Differentiability of the remainder term in Taylor's formula[END_REF] or [START_REF] Schoenfeld | On the differentiability of indeterminate quotients[END_REF]).

Proposition 2 Let n 2 and f ∈ D n (I). Let c ∈ [a, b]. Put g(x) =    f (x) -f (c) x -c (x ∈ I, x = c) f ′ (c) (x = c). (4) 
Then g ∈ D n-1 (I). For every x ∈ ]a, b[ , one has

g (n-1) (x) = f (n) (ξ) n , where ξ ∈ ]a, b[. Proof Since f ′ is continuous, one has g(x) = 1 0 f ′ c + t(x -c) dt (x ∈ I).
Using the rule of differentiation under the integration sign, one sees that g is n -2 times differentiable on I, with

g (n-2) (x) = 1 0 t n-2 f (n-1) c + t(x -c) dt (x ∈ I).
As f (n-1) is continuous on I, this formula yields the continuity of g (n-2) on I.

The function g is n times differentiable on I \ {c} (this set is just I if c = a or c = b),
being a quotient of n times differentiable functions, with non-vanishing denominator. In the case a < c < b, we have now to check that g is n -1 times differentiable at the point c.

The function f (n-1) being continuous on I and differentiable at the point c, there exists a function ε(h), defined and continuous on the segment [a -c, b -c] (the interior of which contains 0), vanishing for h = 0, such that

f (n-1) (c + h) = f (n-1) (c) + hf (n) (c) + hε(h) (a c + h b).
Hence,

g (n-2) (x) = 1 0 t n-2 f (n-1) c + t(x -c) dt = 1 0 t n-2 f (n-1) (c) + t(x -c)f (n) (c) + t(x -c)ε t(x -c) dt = f (n-1) (c) n -1 + f (n) (c) n (x -c) + (x -c) 1 0 t n-1 ε t(x -c) dt
When x tends to c, the last integral tends to 0, so that the function g (n-2) is differentiable at the point c, with

g (n-1) (c) = f (n) (c) n • If x ∈ I \ {c}
, one may use the general Leibniz rule and Taylor's theorem with the Lagrange form of the remainder in order to compute g (n-1) (x) : 

g (n-1) (x) = d n-1 dx n-1 f (x) -f (c) • 1 x -c = f (x) -f (c) • (-1) n-1 (n -1)! (x -c) n + n-1 k=1 n -1 k f (k) (x) • (-1) n-1-k (n -1 -k)! (x -c) n-k = (n -1)! (c -x) n f (c) -f (x) - n-1 k=1 f (k) (x) k! (c -x) k = (n -1)! (c -x) n • f (n) (ξ) n! (c -x) n (
= f (n) (ξ) n • ✷
In the next proposition, we stress the main element of our proof of Proposition 1, namely the fact that the condition f (n) n!, for some f ∈ D n (I), implies that the absolute value of f dominates the absolute value of some monic polynomial of degree n.

Proposition 3 Let n 1 and f ∈ D n (I) such that f (n) (x) n! for every x ∈ ]a, b[ .
Then there exists a monic polynomial P of degree n, with all its zeros in I, such that the inequality |f (x)| |P (x)| is valid for every x ∈ I.

Moreover, if |f (x)| = |Q(x)| for every x ∈ I, where Q is a monic polynomial of degree n with real coefficients, then f (x) = Q(x) for every x ∈ I.

Proof

The assertion about the zeros may be obtained a posteriori, by replacing the zeros of P by their projections on I. The following proof leads directly to a polynomial P with all zeros in I.

We use induction on n.

For n = 1, the function f is continuous on [a, b], differentiable on ]a, b[ , with f ′ (x) 1 for a < x < b. If f (a) 0, one has, for a < x b, f (x) = f (a) + (x -a)f ′ (ξ) (where a < ξ < x), thus f (x) x -a. Hence, one has |f (x)| |x -a| for every x ∈ I. If f (b) 0, one proves similarly that |f (x)| |x -b| for every x ∈ I. If f (a) < 0 < f (b), there exists c ∈ ]a, b[ such that f (c) = 0. One has then, for every x ∈ I, f (x) = f (x) -f (c) = (x -c)f ′ (ξ) (where a < ξ < b).
Hence |f (x)| |x -c| for every x ∈ I, and the result is proven for n = 1.

Let now n 2, and suppose that the result is valid with n -

1 instead of n. Let f ∈ D n (I) such that f (n) (x) n! for every x ∈ ]a, b[ .
If f vanishes at some point c ∈ I, it follows from Proposition 2 that the function g defined on I by

g(x) =    f (x) x -c (x ∈ I, x = c) f ′ (c) (x = c),
belongs to D n-1 (I) and that, for every x ∈ ]a, b[ , one has

g (n-1) (x) = f (n) (ξ) n ,
where ξ ∈ ]a, b[, thus g (n-1) (x) (n -1)!. By the induction hypothesis, there exists a monic polynomial Q of degree n -1, with all its roots in I, such that |g(x)| |Q(x)| for every x ∈ I. Hence, one has the inequality |f (x)| |P (x)| for every x ∈ I, where P (x) = (x -c)Q(x) is a monic polynomial of degree n, with all its roots in I.

If f > 0, it reaches a minimum at some point c ∈ I. Again, it follows from Proposition 2 that the function g defined on I by (4) satisfies the required hypothesis for degree n -1. Thus there exists a monic polynomial Q of degree n -1, with all its roots in I, such that |g(x)| |Q(x)| for every x ∈ I. Hence, one has the inequality In other words, if 0 < p < ∞, the extremal problem E * (n, p, n!, I) has exactly the same solutions (value of the infimum and extremal functions) as the problem E * * (n, p, I) obtained by considering only monic polynomials of degree n, which one may even take with all their roots in I.

f (x) -f (c) = |f (x) -f (c)| |P (x)| (x ∈ I), where P (x) = (x -c)Q(x). It follows that |f (x)| = f (x) f (c) + |P (x)| > |P (x)| (x ∈ I) If f < 0,
For p = ∞, our reasoning does not prove that an extremal function for E * (n, p, n!, I) (if it exists) must be a polynomial. This is true anyway, as proved by Huang in [START_REF] Huang | On extremal properties of algebraic polynomials[END_REF], pp. 10-13.

Extremal polynomials

One may now use the results of the well developed theory of the extremal problem E * * (n, p, I) for polynomials. Thus, since the integral

b a |(x -x 1 ) • • • (x -x n )| p dx (x 1 , . . . , x n ∈ I) (or the value max x∈I |(x -x 1 ) • • • (x -x n )|
) is a continuous function of (x 1 , . . . , x n ), the compactness of I n yields the existence of an extremal (polynomial) function for E * * (n, p, I), hence for E * (n, p, n!, I).

It is a known fact that the polynomial extremal problem E * * (n, p, I) has a unique solution for all p ∈ ]0, ∞], but there is no proof valid uniformly for all values of p.

• For p = ∞, uniqueness was proved by Young in 1907 (cf. [START_REF] Young | General theory of approximation by functions involving a given number of arbitrary parameters[END_REF], Theorem 5, p. 340)) and follows from the general theory of uniform approximation (cf. [START_REF] Rivlin | An introduction to the approximation of functions[END_REF], Theorem 1.8, p. 28).

• For 1 < p < ∞, as proved by Jackson in 1921 (cf. [START_REF]On functions of closest approximation[END_REF], §6, pp. 121-122), this is a consequence of the strict convexity of the space L p (I).

• For p = 1, this is also due to Jackson in 1921 (cf. [START_REF] Jackson | Note on a class of polynomials of approximation[END_REF], §4, pp. 323-326).

• For 0 < p < 1, the uniqueness of the extremal polynomial was proved in 1988 by Kroó and Saff (cf. [START_REF] Kroó | On polynomials of minimal L q -deviation, 0 < q < 1[END_REF], Theorem 2, p. 184). Their proof uses the uniqueness property for p = 1 and the implicit function theorem.

We will denote by T n,p,I the unique solution of the extremal problem E * * (n, p, I). Uniqueness gives immediately the relation

T n,p,I (a + b -x) = (-1) n T n,p,I (x) (x ∈ R).
Another property of these polynomials is the fact that all their roots are simple. For p = 1, this fact was proved by Korkine and Zolotareff in 1873 (cf. [START_REF] Korkine | Sur un certain minimum[END_REF], pp. 339-340), before their explicit determination of the extremal polynomial (see §5.4 below), and their proof extends, mutatis mutandis, to the case 1 < p < ∞. For p = ∞, this is a property of the Chebyshev polynomials of the first kind (see §5.2 below). Lastly, for 0 < p < 1, this was proved by Kroó and Saff in [START_REF] Kroó | On polynomials of minimal L q -deviation, 0 < q < 1[END_REF], p. 187.

Define T n,p = T n,p,[-1,1] , and write n = 2k + ε, where k ∈ N and ε ∈ {0, 1}. It follows from the mentioned results that

T n,p (x) = x ε (x 2 -x n,1 (p) 2 ) • • • (x 2 -x n,k (p) 2 ) (x ∈ R), (6) 
where

0 < x n,1 (p) < • • • < x n,k (p) 1.
Kroó, Peherstorfer and Saff have conjectured that all the x n,k are increasing functions of p (cf. [START_REF] Kroó | On the zeros of polynomials of minimal L p -norm[END_REF], p. 656, and [START_REF] Kroó | On polynomials of minimal L q -deviation, 0 < q < 1[END_REF], p. 192).

Results on C(n, p)

The case n = 1

The value n = 1 is the only one for which C(n, p) is explicitly known for all p.

Proposition 4 One has C(1, p) = 2(p + 1) 1/p for 0 < p < ∞, and C(1, ∞) = 2.

Proof

By ( 6), one has T 1,p (x) = x, so that, for 0 < p < ∞,

D * * (1, p, [-1, 1]) = 1 -1 |t| p dt 1/p = 2/(p + 1) 1/p , and, by (3) 
, C(1, p) = 2 1+1/p /D * * (1, p, [-1, 1]) = 2(p + 1) 1/p . ✷
Note that the Lemma 1.1, p. 6 of [START_REF] Kwong | Zettl -Norm inequalities for derivatives and differences[END_REF], asserts that C(1, p) 2 • 3 1/p for p 2, and that bound is < 2(p + 1) 1/p for p > 2.

The case p = ∞

This is the classical case, solved by Chebyshev in 1853 by introducing the polynomials T n defined by the relation T n (cos t) = cos nt (now called Chebyshev polynomial of the first kind): the unique solution of the extremal problem

E * * (n, ∞, [-1, 1]) is 2 1-n T n .
Let us record a short proof of this fact.

Take I = [-1, 1] and suppose that P is a monic polynomial of degree n satisfying the inequality P ∞ 2 1-n T n ∞ = 2 1-n . Then, for λ > 1 the polynomial

Q λ = λ2 1-n T n -P is of degree n, with leading coefficient λ -1. Moreover, it satisfies (-1) k Q λ (cos kπ/n) = λ2 1-n -(-1) k P (cos kπ/n) > 0 (k = 0, . . . , n)
By the intermediate value property, Q λ has at least n distinct roots, hence exactly n, and these roots, say x 1 , . . . , x n , have absolute value not larger than 1. Hence,

|Q λ (x)| = (λ -1) |(x -x 1 ) • • • (x -x n )| (λ -1)(1 + |x|) n (x ∈ R).
When λ → 1, Q λ (x) tends to 0 for every real x, which means that P = 2 1-n T n .

One deduces from this theorem the value of C(n, ∞). One has

D * * (n, ∞, [-1, 1]) = max |x| 1 2 1-n T n (x) = 2 1-n , hence C(n, ∞) = 2 n • n!/D * * (n, ∞, [-1, 1]) = 2 2n-1 n! (7) 
(compare with the upper bound C(n, ∞) 2 n(n+1)/2 n n of [START_REF]Dieudonné -Foundations of modern analysis[END_REF], 3 (a), p. 185). This result is essentially due to Bernstein (1912, cf. [1], p. 65).

Qualitatively, the result expressed by [START_REF]On functions of closest approximation[END_REF] was nicely described by Soula in [START_REF] Soula | Sur une inégalité verifiee par une fonction et sa dérivée d'ordre n[END_REF], p. 86, as follows.

Bernstein's principle: the minimum of the absolute value of the n-th derivative of an n times differentiable function and the maximum of the absolute value of the n-th derivative of an analytic function have similar orders of magnitude.

The case p = 2

In this case, the extremal problem E * * (n, 2, [-1, 1]) is an instance of the general problem of computing the orthogonal projection of an element of a Hilbert space onto a finite dimensional subspace. Here, the Hilbert space is L 2 (-1, 1), the element is the monomial function x n , and the subspace is the set of polynomial functions of degree less than n. The solution follows from the theory of orthogonal polynomials: the extremal polynomial for E * * (n, 2, [-1, 1]) is

2 n (n!) 2 (2n)! P n (x) (|x| 1),
where P n is the n-th Legendre polynomial, defined by

P n (x) = 1 2 n n! d n dx n (x 2 -1) n .
Hence,

D * * (n, 2, [-1, 1]) = 2 n (n!) 2 (2n)! P n 2 = 2 n (n!) 2 (2n)! 2 2n + 1 ,
(see [START_REF] Whittaker | Watson -A course of modern analysis[END_REF], §15•14, p. 305) and

C(n, 2) = 2 n+ 1 2 • n!/D * * (n, 2, [-1, 1]) = (2n)! n! √ 2n + 1, (8) 
a result given by Soula in 1932 (cf. [START_REF] Soula | Sur une inégalité verifiee par une fonction et sa dérivée d'ordre n[END_REF], pp. 87-88).

The case p = 1

The problem E * * (n, 1, [-1, 1]) was solved by Korkine and Zolotareff in [START_REF] Korkine | Sur un certain minimum[END_REF]: the extremal polynomial is 2 -n U n (x), where U n is the n-th Chebyshev polynomial of the second kind, defined by the relation U n (cos t) = sin(n + 1)t/ sin t.

Therefore, one has

D * * (n, 1, [-1, 1]) = 2 -n 1 -1 |U n (x)| dx = 2 -n π 0 |U n (cos t)| sin t dt = 2 -n π 0 |sin(n + 1)t| dt = 2 -n π 0 sin u du = 2 1-n , and 
C(n, 1) = 2 n+1 • n!/D * * (n, 1, [-1, 1]) = 2 2n n!. (9) 

Bounds for C(n, p)

We begin with a simple monotony result.

Proposition 5 For every positive integer n, the function p → C(n, p) is decreasing on the interval 0 < p ∞.

To prove the second inequality of (10), we just compute Q p p when Q(t) = (t -1/2) n :

1 0 |t -1/2| np dt = 2 (1/2) np+1 np + 1 • ✷
For 0 < p < 1, we can also prove the following result.

Proposition 7 Let n be a positive integer, and p such that 0 < p < 1. One has

1 C(n, p) 2 2n n! 1 2 (8/π) 1/p .

Proof

The first inequality is just C(n, 1) C(n, p).

To prove the second inequality, let r and s such that 1 < s < 2 and r -1 + s -1 = 1. Define

I 1 (s) = 1 -1 dt (1 -t 2 ) s/2 I 2 (s) = 1 -1 |t| (s-1)/s dt √ 1 -t 2 •
The integrals I 1 (s) and I 2 (s) may be computed, using the eulerian identity

1 0 t x-1 (1 -t) y-1 dt = B(x, y) = Γ(x)Γ(y) Γ(x + y) (x > 0, y > 0).
The results are

I 1 (s) = 2 1-s Γ(1 -s 2 ) 2 Γ(2 -s) I 2 (s) = Γ 1 -1 2s Γ( 1 2 ) Γ( 3 2 -1 2s ) •
Now, let Q ∈ P n and put p ′ = p/r. By Hölder's inequality, one has

1 -1 |Q(t)| p ′ dt √ 1 -t 2 1 -1 |Q(t)| p ′ r dt 1/r 1 -1 dt (1 -t 2 ) s/2 1/s = Q p ′ p I 1 (s) 1/s .
It was proved by Kroó and Saff (cf. [START_REF] Kroó | On polynomials of minimal L q -deviation, 0 < q < 1[END_REF], pp. 182-183) that

2 (n-1)p ′ 1 -1 |Q(t)| p ′ dt √ 1 -t 2 1 -1 |T n (t)| p ′ dt √ 1 -t 2 = π 0 |cos nu| p ′ du = π 0 |cos u| p ′ du = 1 -1 |t| p ′ dt √ 1 -t 2 1 -1 |t| 1/r dt √ 1 -t 2 (one has p ′ = p/r < 1/r) = I 2 (s).
Therefore, with I = [-1, 1],

Q p 2 1-n I 2 (s) 1/p ′ I 1 (s) -1/p ′ s = 2 1-n A(s) 1/p (1 < s < 2), (11) 
where A(s) = I 2 (s) s/(s-1) I 1 (s) -1/(s-1) .

Hence The result follows. ✷

A(s) = 2 Γ 1 -1 2s s Γ( 1 2 ) s Γ(2 -s) Γ(1 -s 2 ) 2 Γ 3 2 -1

An open question

Finally, observing that

C(n, 2) ∼ 2 π • 2 2n n! (n → ∞),
(an exercise on Stirling's formula from ( 8)), we ask the following question.

Is it true that, for every p > 0, the quantity 2 -2n C(n, p)/n! tends to a limit when n tends to infinity?

,

  Let p be a positive real number, or ∞. The problem addressed in this article is that of determining the best constantC * = C * (n, p, I) in the inequality m n (f ) C * f p (f ∈ D n (I)),with the usual convention when p = ∞, here: f ∞ = max |f |.

  the last equality being true since D * (n, p, µ, I) = µ λ D * (n, p, λ, I) D * (n, p, λ, I) if µ λ.

Proposition 1

 1 For all n, p, I, one has D * (n, p, n!, I) = D * * (n, p, I). It follows from this proposition that C * (n, p, I) = n!/D * * (n, p, I) and, by (1), C(n, p) = L n+1/p n!/D * * (n, p, I).

  where ξ belongs to the open interval bounded by c and x)

  the reasoning is similar by considering a point c ∈ I where f reaches a maximum. Let us prove the last assertion. The hypothesis |f | = |P | is equivalent to the equality f 2= P 2 , that is (f -P )(f + P ) = 0. The set E = {x ∈ I, f (x) + P (x) = 0} has empty interior, since f (n) (x) + P (n) (x) = 0 on every open subinterval of E, whereas f (n) (x) + P (n) (x)2n! on I. The set I \ E is therefore dense in I ; its elements x all verify f (x) = P (x), hence f = P on I by continuity. ✷ Proposition 1 is an immediate corollary of Proposition 3: by taking f and P as stated there, one has |f (x)| |P (x)| for every x ∈ I, so that b a |f (x)| p dx b a |P (x)| p dx, (5) for every p > 0 (for p = ∞: max |f | max |P |). Moreover, if p < ∞, equality in (5) implies that |f | = |P | on I, hence f = P .

2s s 1 /(s- 1 )( 1 1 • 1 )Proposition 8

 111118 < s < 2). Putting f (s) = ln Γ(s), one has ln A(s) = ln 2 + sf (1 -1/2s) + sf (1/2) + f (2 -s) -2f (1 -s/2) -sf (3/2 -1/2s) s -When s tends to 1, the last fraction tends to = ln π -3 ln 2,with the usual notationf ′ = Γ ′ /Γ = ψ. It follows that A(s) → π 4 (s → 1).Together with[START_REF] Kwong | Zettl -Norm inequalities for derivatives and differences[END_REF], this gives the inequalityD * * (n, p, [-1, 1]) 2 1-n (π/4)1/p and (3) now implies C(n, p) 2 2n-1 n!(8/π) 1/p . ✷ We now prove an inequality involving three values of the function C. Let p, q, r be positive real numbers such that Let m and n be positive integers. Then, C(m + n, p) (3), one has to prove that D * * (m + n, p, I) D * * (m, q, I) • D * * (n, r, I),where I is a segment of the real line.In fact, if P ∈ P m and Q ∈ P n , thenP Q ∈ P m+n henceD * * (m + n, p, I) p I |P (t)Q(t)| p dt I |P (t)| q dt p/q • I |Q(t)| r dt p/rby the definition of D * * (m + n, p, I) and Hölder's inequality. The greatest lower bound of the last term, when P runs over P m and Q runs over P n , is D * * (m, q, I) p • D * * (n, r, I) p .
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Proof

Let I = [0, 1]. Equivalently, we will see that the function p → D * * (n, p, I) is increasing. This is due to the fact that, for a fixed f ∈ L ∞ (I) such that |f | is not equal almost everywhere to a constant, the function p → f p is increasing (a consequence of Hölder's inequality). Thus, for every Q ∈ P n and 0 < p < p ′ ∞,

✷ In particular, ( 7) and ( 9) yield the inequalities

The next proposition implies that the limit of C(n, p) when p tends to 0 is (2e) n n!.

Proposition 6 For every positive integer n and every positive real number p, one has

Proof

Equivalently, we will prove that

where

, where 0 x 1 , . . . , x n 1. One has

attains its minimal value, namely -1 -ln 2, when x = 1/2. This implies the first inequality of [START_REF] Kroó | On polynomials of minimal L q -deviation, 0 < q < 1[END_REF].