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Minimum principle for the flow of inelastic non-Newtonian fluids in macroscopic heterogeneous porous media

The minimization of dissipation is a general principle in physics. It stipulates that a nonequilibrium system converges toward a state minimizing the energy dissipation. In fluid mechanics, this principle is well known for Newtonian fluids governed by Stokes equation. It can be formulated as follows: among all admissible velocity fields, the solution of the Stokes equation is the one that minimizes the total viscous dissipation. In this paper, we extend these approaches to non-Newtonian fluids in macroscopic heterogeneous porous media, or fractures. The flow is then governed by a nonlinear Darcy equation that can vary in space. In this case, a minimization principle can still be written depending on the boundary conditions. Moreover, such minimization principle can be derived either for the velocity or pressure field.

I. INTRODUCTION

The minimization of dissipation is a general principle in physics. It stipulates that a non-equilibrium system converges toward a state minimizing the energy dissipation. In fluid mechanics [START_REF] Happel | Low Reynolds number hydrodynamics[END_REF], this principle was stated by Helmholtz [START_REF] Helmholtz | Zur theorie der stationären ströme in reibenden flüssigkeiten[END_REF] and demonstrated by Korteweg [START_REF] Korteweg | Xvii. on a general theorem of the stability of the motion of a viscous fluid[END_REF] for Newtonian fluids governed by Stokes equation and with a velocity imposed on its boundary. It can be formulated as follows: given a fluid volume where the velocity is prescribed at its boundary, among all admissible velocity fields, the solution of the Stokes equation is the one that minimizes the viscous dissipation. Since then, this principle has been generalized to different boundary conditions [START_REF] Keller | Extremum principles for slow viscous flows with applications to suspensions[END_REF]. Another important result is the generalization of this principle to non-Newtonian fluids proposed by Bird [START_REF] Bird | New variational principle for incompressible non-newtonian flow[END_REF], which is also the basis of the augmented Lagrangian numerical method [START_REF] Duvaut | Inequalities in mechanics and physics[END_REF][START_REF] Fortin | The augmented lagrangian method[END_REF][START_REF] Glowinski | Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[END_REF][START_REF] Saramito | An adaptive finite element method for viscoplastic fluid flows in pipes[END_REF]. In this paper, we aim to extend this approaches to non-Newtonian fluids in macroscopic heterogeneous porous media.

Non-Newtonian fluids are found in many applications related to porous or fractured media. An important industrial application is, for example, enhanced oil recovery (EOR) (see [START_REF] Sorbie | The rheology of pseudoplastic fluids in porous media using network modeling[END_REF][START_REF] Sorbie | Polymer-improved oil recovery[END_REF][START_REF] Frigaard | Bingham's model in the oil and gas industry[END_REF]). Oil is usually recovered by displacing it with another fluid (e.g. water). The main problem lies in the fact that the displacing fluid is often less viscous, resulting in viscous fingering. The fingering tends to create preferential flow paths, leaving a large fraction of the oil. The idea is then to inject a non-Newtonian fluid in order to prevent fingering. Another interesting application is the description of blood in the capillary network, which should be regarded as a suspension and thus with a non-Newtonian viscosity: shear-thinning or yield stress [START_REF] Boyd | Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method[END_REF][START_REF] Bessonov | Methods of blood flow modelling[END_REF]. Non-Newtonian fluids (cements, polymers, etc.) are also commonly used for fracture sealing [START_REF] Tongwa | Evaluation of potential fracture-sealing materials for remediating CO2 leakage pathways during CO2 sequestration[END_REF].

A very recurrent problem when dealing with porous media is that of up-scaling. If the equations of motion are generally well known at the pore scale (typically ∼ 10 -3 m), a particular interest is to understand the flow at much larger scales (∼ 1 -10 3 m). This is usually done by deriving constitutive equations for average quantities at an intermediate scale. This is illustrated by the famous Darcy's law for Newtonian fluids, which relates linearly the mean flow rate to the macroscopic gradient of pressure.

At the microscopic level, Newtonian fluids obey the Stokes equation (neglecting inertia and compressibility):

ì 0 = -ì ∇p + µ∆ì v and ì ∇.ì v = ì 0, (1) 
where ì v is the fluid velocity, p is the pressure and µ the viscosity. After averaging over a large number of pores, it results the Darcy's law [START_REF] Darcy | Les fontaines publiques de la ville de Dijon: exposition et application[END_REF][START_REF] Whitaker | Flow in porous media i: A theoretical derivation of Darcy's law[END_REF][START_REF] Bear | Dynamics of Fluids in Porous Media[END_REF]:

ì u = - κ µ ì ∇P, (2) 
where ì u is the volume average of the microscopic velocity field, P is a macroscopic pressure field and κ is the permeability of the porous medium which depends on its nature (rock, sand, clay, etc.).

At the geological scale the type of material may however spatially vary leading to a macroscopic heterogeneous permeability field. The understanding of the large-scale flow then requires the resolution of the heterogeneous Darcy's law:

ì u = - κ(ì r) µ ì ∇P and ì ∇. ì u = 0. (3) 
The κ(ì r) field can be determined experimentally using different methods ( borehole, pumping tests). Many models have also been proposed in the literature, the most popular being parallel strata of different natures or the log-normal distribution (see for example [START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF][START_REF] Gelhar | Three-dimensional stochastic analysis of macrodispersion in aquifers[END_REF][START_REF] Renard | Calculating equivalent permeability: A review[END_REF][START_REF] Kostenko | Numerical study of Bingham flow in macroscopic two dimensional heterogeneous porous media[END_REF]). This equation is 2D is also equivalent to the "cubic law" commonly used to solved the flow in heterogeneous fractures [START_REF] Tsang | Hydromechanical behavior of a deformable rock fracture subject to normal stress[END_REF][START_REF] Brown | Fluid flow through rock joints: The effect of surface roughness[END_REF]. It is also important to remember that this equation is also used to solve the flow in fractures with heterogeneous openings, generally referred to as the Reynolds equation [START_REF] Reynolds | On the theory of lubrication and its application to Mr. Beauchamp tower's experiments, including an experimental determination of the viscosity of olive oil[END_REF][START_REF] Zimmerman | Lubrication theory analysis of the permeability of rough-walled fractures[END_REF][START_REF] Mourzenko | Permeability of a single fracture; validity of the Reynolds equation[END_REF][START_REF] Hewitt | Obstructed and channelized viscoplastic flow in a Hele-Shaw cell[END_REF][START_REF] Roustaei | Non-Darcy effects in fracture flows of a yield stress fluid[END_REF].

All the above mentioned equations apply to Newtonian fluids. A question that naturally arises is: how should this approach be modified when considering non-Newtonian fluids? While there is a very large variety of non-Newtonian fluids [START_REF] Bird | Useful non-Newtonian models[END_REF][START_REF] Bird | Dynamics of polymeric liquids[END_REF][START_REF] Coussot | Rheometry of pastes, suspensions, and granular materials: applications in industry and environment[END_REF], there are classical approaches in the case where there is a relationship between shear rate γ and the shear-stress τ( γ). The approach (see for instance [START_REF] Christopher | Power-law flow through a packed tube[END_REF][START_REF] Sadowski | Non-Newtonian flow through porous media. i. theoretical[END_REF][START_REF] Mckinley | Non-Newtonian flow in porous media[END_REF][START_REF] Slattery | Flow of viscoelastic fluids through porous media[END_REF][START_REF] Hirasaki | Analysis of factors influencing mobility and adsorption in the flow of polymer solution through porous media[END_REF][START_REF] Chauveteau | Rodlike polymer solution flow through fine pores: Influence of pore size on rheological behavior[END_REF][START_REF] Pearson | Models for flow of non-Newtonian and complex fluids through porous media[END_REF][START_REF] Lopez | Predictive network modeling of single-phase non-Newtonian flow in porous media[END_REF][START_REF] Sochi | Pore-scale network modeling of ellis and herschel-bulkley fluids[END_REF][START_REF] Balhoff | Modeling the steady flow of yield-stress fluids in packed beds[END_REF]) consists in determining an effective shear rate γ pm in order to relate it to an effective shear-stress (or viscosity). By defining a typical length scale λ (pore size, grain diameter, √ κ, etc.) and using the average flow velocity u, a typical shear rate γ e f f ∝ u/λ can be defined. Using the mean pressure gradient, a typical shear stress τ e f f ∝ λ∇P can be defined. The idea is then to use these quantities in the rheological function γ = f (τ) to derive a generalization of Darcy's law in the form : u ∝ f (∇P), where the pre-factors must be determined (experimentally, numerically or theoretically). It is therefore expected that the flow/pressure curve will keep the overall shape of the rheological curve. Similarly to the permeability, it is also expected that the prefactors should depend on the local structure of the medium. This function should thus vary spatially.

In the present article, we aim to demonstrate that in this case, the flow also obey to a minimum principle. We need to make two hypothesis. First, the local porous medium is assumed to be isotropic, which implies that the velocity field is collinear and opposite to the pressure gradient. The second hypothesis is that the rheological function is an increasing monotonic function and thus inversible.

In this case, it can be assumed that the non-linear heterogeneous Darcy's law can be written in the form:

ì u = -f (ì r; || ì ∇P||) ì ∇P || ì ∇P|| or ì ∇P = -g(ì r; || ì u||) ì u ||u|| (4a) and ì ∇. ì u = 0, (4b) 
with f (ì r; y) and g(ì r; y) positive monotonically increasing functions of y and ||.|| is the norm operator. It is important to mention that both f () and g() are not necessarily continuous.

In the literature, few works address the principle of minimization in porous media. Matheron [START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF] (in french) proved this principle for the linear Darcy law and the heterogeneous permeability field (see also [START_REF] Nøetinger | An explicit formula for computing the sensitivity of the effective conductivity of heterogeneous composite materials to local inclusion transport properties and geometry[END_REF]). Regarding the nonlinear Darcy equation, a variational principle has been proposed by Knupp and Lage [START_REF] Knupp | Generalization of the Forchheimer-extended Darcy flow model to the tensor premeability case via a variational principle[END_REF] for the pressure field, solution of an anisotropic Darcy-Forchheimer equation in a homogeneous permeability field. The pressure field of the nonlinear Darcy solution thus corresponds to the zero derivative of a certain functional. The main limitations of this approach are that, on the one hand, it assumes that the function is differentiable, which is not always the case. And on the other hand, if it shows that the solution is a local extremum, it does not necessarily the uniqueness of the solution.

This paper represents an extension of this work. We will show that the pressure field but also the velocity field obey a minimization principle for any monotonic nonlinear Darcy law, including the presence of permeability heterogeneities. It is important to note that the present principle, following the approach of [START_REF] Duvaut | Inequalities in mechanics and physics[END_REF] for Stokes flow, does not involve the derivative of the functional. This has two consequences. First, the function does not have to be differentiable. The f or g function can therefore be discontinuous as in the case of yield stress fluids [START_REF] Bird | Dynamics of polymeric liquids[END_REF] or discontinuous shear thickening [START_REF] Barnes | Shear-thickening ("dilatancy") in suspensions of nonaggregating solid particles dispersed in Newtonian liquids[END_REF][START_REF] Brown | Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming[END_REF] for example. Second, the principle of the minimum is not only local, which allows to prove the uniqueness of the solution depending on the different boundary conditions.

II. MINIMUM PRINCIPLE FOR THE VELOCITY FIELD

II.1. Pressure imposed boundary condition

We consider here a parallelepipedic domain V where the pressure is homogeneously imposed on the two opposite sides P in and P out . For simplicity, we will assume a periodic boundary condition on the lateral sides. In this case, the minimum principle states that the field ì u, solution of the nonlinear Darcy equation eqs. (4a) with an imposed pressure difference ∆P, is also the minimum among all admissible velocity fields ì of a functional Φ[ì ; ∆P]:

ì u = arg min ì ∈Ω Φ[ì ; ∆P] (5) 
with

Φ[ì ; ∆P] = ∫ G(ì r; ||ì ||) dr 3 -∆PQ[ì ], (6) 
where the admissible velocities are fields satisfying the divergence free and the periodic lateral boundary condition. G(ì r; ||ì ||) is defined as:

G(ì r; ||ì ||) = ∫ ||ì || 0 g(ì r; y)dy. (7) 
The functional

Q[ì ] = ∫ outlet ì . ì
dS is the total flow rate associated to the field ì (d ì S is directed towards the exterior of the domain).

Demonstration First, we define Ω the set of admissible velocity fields satisfying the divergence free conditions and the periodic lateral boundary condition. Multiplying eq. (4a) by any ì ∈ Ω, and integrating over the domain, yields to:

∀ì ∈ Ω , ∫ V ì ∇P.ì dr 3 = - ∫ V g(ì r; || ì u||) ì u.ì || ì u|| dr 3 (8) 
Using the divergence free of ì and the divergence theorem, it follows:

∀ì ∈ Ω , - ∫ V g(ì r; || ì u||) ì u.ì || ì u|| dr 3 = (P out -P in ) ∫ outlet ì . ì dS = -Q[ì ]∆P, (9) 
where

Q[ì ] = ∫ outlet ì . ì dS = - ∫ inlet ì . ì
dS and ∆P = P in -P out . Now, it will be demonstrated that the field ì u, solution of the Darcy's equation eqs. (4a), is also the minimum among all ì ∈ Ω of Φ[ì ; ∆P]. It is equivalent to prove that:

∀ì ∈ Ω , Φ[ì + ì u; ∆P] -Φ[ì u; ∆P] ≥ 0. (10) 
Combining eq. ( 6) and ( 9) leads to:

∀ì ∈ Ω , Φ[ì + ì u; ∆P] -Φ[ì u; ∆P] = ∫ V {G(ì r; ||ì + ì u||) -G(ì r; || ì u||)} dr 3 -∆PQ[ì ] (11a) = ∫ V G(ì r; ||ì + ì u||) -G(ì r; || ì u||) - g(|| ì u||) || ì u|| ì u.ì dr 3 (11b) 
Since g(ì r; y) is an increasing function of y, G(ì r; y) is convex, and thus:

G(ì r; ||ì + ì u||) -G(ì r; || ì u||) ≥ g(ì r; || ì u||)(|| ì u + ì || -|| ì u||). (12) 
It follows the required property:

∀ì ∈ Ω , Φ[ì + ì u; ∆P] -Φ[ì u; ∆P] ≥ ∫ V g(ì r; || ì u||) || ì u|| || ì u + ì |||| ì u|| -|| ì u|| 2 -ì u.ì dr 3 ≥ 0, ( 13 
)
where the Cauchy-Schwartz inequality has been used: (ì u + ì ). ì u ≤ || ì u + ì ||||u||. We can make several remarks: Remark 1 It is instructive to put the solution ì u in eq. ( 9). Leading to:

Q[ì u]∆P = ∫ V g(ì r; || ì u||)|| ì u||dr 3 > 0. ( 14 
)
This expression represents an energy balance. Since pressure is a potential energy per unit volume, the term on the left is the difference between the input and output flux of this energy. And the right hand term is the total viscous energy dissipation rate in the domain (see Appendix B). It also shows the expected results that the mean flow rate is always opposed to the mean gradient of pressure.

Remark 2: reversibility Φ[ì r; ∆P] has the following symmetry property:

Φ[ì ; -∆P] = Φ[-ì ; ∆P]. (15) 
It follows that changing the sign of the pressure difference only changes the direction of the velocity field, not its amplitude distribution. Fluid elements will then follow the same stream lines in the opposite direction. Remark 3: reciprocal theorem It is worth noting that, in eq. ( 9), ì can be any diverging free field. An interesting application of this equation, can be the use of a particular solution (e.g the Newtonian solution) in order to obtain the flow rate-pressure drop relation as in Day & Stone [START_REF] Day | Lubrication analysis and boundary integral simulations of a viscous micropump[END_REF] and Boyko & Stone [START_REF] Boyko | Reciprocal theorem for calculating the flow rate-pressure drop relation for complex fluids in narrow geometries[END_REF].

Remark 4: non-uniform imposed pressure For convenience, it has been assumed that the pressure is imposed uniformly at the edges of the inlet and outlet, as this is what is most natural from an experimental perspective. For more complex pressure distributions, it is then necessary to replace -∆PQ[ì ] by ∫ ∂V P ì . ì dS in eq. ( 6), where ∂V represents the boundary surface.

II.2. Examples

Although there is a very large variety of different rheological models, we can explicitly write the functional for the most common ones.

Newtonian (Darcy): In the case of a Newtonian fluid in heterogeneous porous media, the flow satisfies Darcy's law:

∇P = - µ κ(ì r) ì u. (16) 
In this case, g(ì r; || ì u||) = µ κ(ì r) || ì u|| yields to:

Φ[ì ; ∆P] = ∫ V µ 2κ(ì r) ||ì v|| 2 dr 3 -∆PQ[ì v]. (17) 
Where we find the result proposed by Matheron [START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF] with the last additional term imposing the boundary pressure. This expression is interesting because it shows the expected result that, to minimize dissipation, it is more favorable to have a higher velocity where the permeability is high. However, it is important to note that the admissible field ì must satisfy the divergence free condition. This constraint can cause low permeability regions to have high velocity (and vice versa).

Power-law rheology: Another very common rheology is the power-law, where τ ∝ γ n , with n the flow index. In this case, the heterogeneous Darcy's law [START_REF] Christopher | Power-law flow through a packed tube[END_REF][START_REF] Shah | Aspects of flow of power-law fluids in porous media[END_REF] can be written:

-ì ∇P = c(ì r)|| ì u|| n-1 ì u. (18) 
This leads to:

ì u = arg min ì ∈Ω ∫ V c(ì r) n + 1 ||ì || n+1 dr 3 -∆PQ[ì ] . (19) 
From this relation, one can recover a scaling analysis for the solution. Indeed for any positive , multiplying by n+1 do not change the argument of the minimum. It gives then:

ì u(∆P) = arg min ì ∈Ω ∫ V c(ì r) n + 1 || ì || n+1 dr 3 -n ∆PQ[ ì ] = 1 ì u( n ∆P) (20) 
It follows that the field ì u(ì r)

Q is a constant field, independent of the applied pressure difference. Combining this with the symmetry discussed earlier, it follows:

Q(∆P) ∝ ||∆P|| 1/n-1 ∆P. (21) 
Herschel-Bulkley: Yield stress fluids are often described by the Herschel-Bulkley rheology, τ = τ 0 + K γ n , where τ 0 is the yield stress. At Darcy's scale, the velocity field can be described by (see [START_REF] Kostenko | Numerical study of Bingham flow in macroscopic two dimensional heterogeneous porous media[END_REF][START_REF] Entov | On some two-dimensional problems of the theory of filtration with a limiting gradient[END_REF][START_REF] Bauer | Experimental and numerical determination of Darcy's law for yield stress fluids in porous media[END_REF]):

-∇P = c(ì r)|| ì u|| n-1 ì u + g c (ì r) ì u || ì u|| ( 22 
)
where g c (ì r) is the local critical pressure gradient below which there is no flow, c(ì r) is a prefactor that depend on the consistency and the local geometry, and n the flow index. It then follows that g(ì r; || ì u||) = c(ì r)|| ì u|| n + g c (ì r). Thus:

Φ[ì ; ∆P] = ∫ V c(ì r) n + 1 ||ì || n+1 + g c (ì r)||ì || dr 3 -∆PQ[ì ]. (23) 
It is important to note that this function is not differentiable where ||ì v|| = 0. Forchheimer: Forchheimer's law corresponds to the generalization of Newtonian Darcy's law including the influence of inertia. A relation of the form is generally proposed [START_REF] Forchheimer | Wasserbewegung durch boden[END_REF]:

|| ì ∇P|| = A|| ì u|| 3 + B|| ì u|| 2 + C|| ì u||. ( 24 
)
Although Forchheimer's law applies to Newtonian fluids, it is thus equivalent to a non-Newtonian fluid (shear thickening). In heterogeneous porous media the constants should depend on the local properties, thus g(ì r;

|| ì u||) = A(ì r)|| ì u|| 3 + B(ì r)|| ì u|| 2 + C(ì r)|| ì u||. It follows: Φ[ì ; ∆P] = ∫ V A(ì r) 1 4 ||ì || 4 + B(ì r) 1 3 ||ì || 3 + 1 2 C(ì r)||ì || 2 dr 3 -∆PQ[ì ]. (25) 

II.3. Velocity imposed boundary condition

A similar result can be demonstrated in the case where the normal velocity is prescribed at the boundary. Defining Ω V the ensemble of velocity satisfying the conservation of mass and sharing the same normal flow rate on the boundary ∂V, one has:

ì u = arg min ì ∈Ω V Φ[ì ] with Φ[ì ] = ∫ V G(ì r; ||ì ||)dr 3 . ( 26 
)
Demonstration: For any ì ∈ Ω V ,

Φ[ì ] -Φ[ì u] ≥ ∫ V g(ì r; ì u)(||ì || -|| ì u||)dr 3 (27a) ≥ ∫ V g(ì r; ì u) || ì u|| ì u.(ì -ì u) dr 3 (27b) ≥ - ∫ V ì ∇P.(ì -ì u)dr 3 (27c) ≥ ∮ ∂V P (ì -ì u).d ì S (27d) = 0, (27e) 
because ì u and ì are sharing the same normal velocity at the boundary.

III. MINIMUM PRINCIPLE FOR THE PRESSURE FIELD

Finally, it is also interesting that a similar results exists for the pressure field with a prescribed value at the boundary. Indeed, calling Θ P the ensemble of field with a given distribution at the boundary, the pressure field P solution of eq. (4a) minimizes the functional Ψ[H] : P = arg min H ∈Θ P Ψ[H], with

Ψ[H] = ∫ V F(ì r; || ì ∇H||) dr 3 and F(ì r; y) = ∫ y 0 f (ì r; y) dy (28) 
Demonstration The demonstration is very similar to the previous ones. Using the convexity of the function F(ì r; y), one has for any H ∈ Θ P :

Ψ[H] -Ψ[P] = ∫ V F(ì r; || ì ∇H||) -F(ì r; || ì ∇P||) dr 3 (29a) ≥ ∫ V f (ì r; || ì ∇P||)(|| ì ∇H|| -|| ì ∇P||) dr 3 (29b) ≥ ∫ V f (ì r; || ì ∇P||) || ì ∇P|| (|| ì ∇H|||| ì ∇P|| -|| ì ∇P|| 2 ) dr 3 (29c) ≥ ∫ V f (ì r; || ì ∇P||) || ì ∇P|| ì ∇P.( ì ∇H -ì ∇P) dr 3 (29d) ≥ - ∫ V ì u.( ì ∇H -ì ∇P) dr 3 (29e) ≥ - ∮ ∂V (H -P)ì u.d ì S = 0, (29f) 
because H and P have the same value at the boundary.

Remark It is interesting to note that any minimum of a differentiable functional in the form of

Ψ[h] = ∫ V D(ì r; || ì ∇h||) dr 3
, where D(ì r; y) is a convex function of y, allows to define a non-linear Darcy's law. Indeed, using Euler-Lagrange formula, we have:

∂D ∂h - i ∂ ∂ x i ∂D ∂h i = 0, (30) 
where we use the notation h i = ∂h ∂x i . Since ∂D ∂h = 0, the vector field:

q i = - ∂D ∂h i = - d(ì r; || ì ∇h||) || ì ∇h|| ∂h ∂ x i , i = 1 . . . 3, (31) 
with d(ì r; y) = ∂ y D(ì r; y) then satisfies the conservation of mass ì ∇. ì q = 0. This thus defines a system of equations in the form of eq. (4a). We retrieve here the approach of Knupp and Lage [START_REF] Knupp | Generalization of the Forchheimer-extended Darcy flow model to the tensor premeability case via a variational principle[END_REF] for the Forchheimer equation. The only main difference here is that the function d(ì r; || ì ∇h||) may vary in space.

IV. CONCLUSION

In conclusion, we were able to establish a minimization principle for nonlinear heterogeneous Darcy flows. This principle can be applied either to the velocity field or to the pressure field. If the function to be minimized differs slightly according to the boundary conditions constraint, all are based on the integral of the flow-pressure relationship. This shows that the important quantity is not so much the instant energy dissipation rate given by ì u. ì ∇P = g(|| ì u||)|| ì u|| (see Appendix B) but rather the cumulative dissipation for the velocity to rise from zero to a given value

∫ || ì u || 0 g(y)dy.
For Newtonian, the two functions are proportional, so the minimization principle represents also a minimization of viscous dissipation.

This principle can also be generalized where the flow is also driven by a body force as discussed in Appendix A. With a little retrospect, it does not seem too surprising that a minimization principle exists at the Darcy scale. Indeed, if such a principle exists at a microscopic scale, it seems then quite natural that a similar one is applicable for locally averaged quantities. There is however an significant difference between the microscopic and macroscopic aspects. At the macroscopic scale, the constitutive law and thus the energy function can be heterogeneous in space. For instance, if some regions are linear while others are non-linear, this minimization principle is still applicable.

It is worth recalling the different assumptions made in the present work. First of all, this approach is a priori limited to non-thixotropic and inelastic fluids because the local rheology has been assumed constant in time and not dependent on the history of the fluid element.

Second, the monotonicity of the flow-pressure curve, g(ì r; y) (resp. f (ì r; y), has been assumed, implying the convexity of the function G(ì r; y) (resp. F(ì r; y)). This assumption is indeed necessary to prove the uniqueness of the solution.

For example, for a non-monotonic g() function, imposing a pressure difference could lead to different velocity fields. However, if the function Φ[] is differentiable, a variational approach could still be used. Each solution of the nonlinear Darcy's law would then correspond to a local extremum of Φ[ì r; ∆P].

Another important assumption is the isotropy of the local nonlinear Darcy equation, leading to an alignment of the pressure gradient and the velocity. The first step to generalize to anisotropic media would be to determine a generic nonlinear anisotropic Darcy's law. Knupp and Lage [START_REF] Knupp | Generalization of the Forchheimer-extended Darcy flow model to the tensor premeability case via a variational principle[END_REF] assumed a permeability tensor formulation for the Forchheimer equation. In this case, a variational formulation can be used. We note, however, that more generic and complex formulations have been proposed in the literature. For example, Auriault [START_REF] Auriault | Filtration law for power-law fluids in anisotropic porous media[END_REF] proposed a formulation involving three principal axes and four functions of the mean pressure gradient for power-law fluids. Here also, a generic Darcy remains to be formulated for any type of rheology and anisotropy to be able to generalize this work. In addition, one of the main difficulties for heterogeneous permeability fields is that the principal axes could potentially also vary in space.

In the fluid region, neglecting inertia, the flow satisfies the Cauchy equation at steady state:

ì ∇ • Π -ì ∇p = 0, (B1)
where p is the microscopic pressure and Π is the deviatoric stress tensor. The strain rate tensor is defined as:

∆ i j = 1 2 ∂v i ∂ x j + ∂v j ∂ x i , (B2) 
with ì v the microscopic velocity. Applying the scalar product with ì v in eq. (B1) and averaging over V gives:

1 V ∫ V F ( ì ∇ • Π).ì v -( ì ∇p).ì v dr 3 = 0. (B3)
Here, V F stands for the volume of fluid inside V.

The two terms are analyzed separately. The first term reads:

∫ V F ( ì ∇ • Π).ì vdr 3 = ∫ V F i j (∂ i Π i j )v j dr 3 = ∫ V F i j ∂ i (Π i j v j ) -Π i j ∂ i v j dr 3 (B4) = - ∫ V F i j Π i j ∆ i j dr 3 + ∫ ∂V F i j (Π i j v j )dS i (B5)
The second term in this equation is a surface integral on the fluid boundary. There are two types of boundaries. At the boundary between solid and fluid, the velocity is zero due to the no-slip condition. And at the boundary of the domain, the deviatoric stress is zero. For these two reasons, the surface integral is zero. It results:

1 V ∫ V F ( ì ∇ • Π).ì vdr 3 = - 1 V ∫ V F i j Π i j ∆ i j dr 3 . (B6)
The first term of eq. (B3) thus represents the average viscous dissipation within the porous medium.

The second term in this equation writes:

∫ V F ( ì ∇p).ì vdr 3 = ∫ V F ì ∇.(pì v)dr 3 = ∫ ∂V F p ì v. ì dS (B7)
This integral is zero at the solid/fluid boundary. Since the pressure is uniform on each side of the domain, it gives:

∫ V F
( ì ∇p).ì vdr 3 = i (q out i p out i q in i p in i ), (B8) with q in/out i represents the velocity flux at the two boundary in the direction i. In the homogenization procedure, these flows are assumed to be equal at first order. This allows to define the mean velocity component u i = q i /S i and the mesoscopic pressure gradient ì ∇P = 

  eqs. (B3), (B6) and (B9) thus shows that at the Darcy's scale, the termì u. ì ∇P = -g(ì r; || ì u||)||u|| =f (ì r; || ì ∇P||)|| ì ∇P|| = -1 V ∫ V F i j Π i j ∆ i j dr 3 ,(B10)represents the averaged microscopic energy dissipation rate.

ACKNOWLEDGMENTS

I would like to thank Dominique Salin, Jean-Pierre Hulin, Alex Hansen and Alberto Rosso for very fruitful discussions.

Appendix A: Flow driven by a body force Another possible condition to drive the flow is the presence of a body force ì G (homogeneous or not). We assume also an imposed pressure difference ∆P between the outlet and inlet as in sec. II.1. In this case Darcy's law can be written as:

and the minimum principle then reads:

Indeed, from eq. (A1), we have for any ì ∈ Ω:

It then follows:

Appendix B: Energy dissipation rate for non-linear Darcy's law

In this section, we recall the relationship between Darcy's law and the viscous energy dissipation rate at the microscopic level. We consider a parrallepipedic volume V = L 1 L 2 L 3 containing both solid and fluid regions. A uniform pressure is imposed on each side p in/out i of each direction i = 1, 2 . . . 3, and we also assume the absence of any other stress at the boundary. A no-slip condition is assumed at the fluid/solid boundary.