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Abstract: Mueller matrix ellipsometry (MME) is a powerful metrology tool for nanomanufacturing.
The application of MME necessitates electromagnetic computations for inverse problems of metrol-
ogy determination in both the conventional optimization process and the recent neutral network
approach. In this study, we present an efficient, rigorous coupled-wave analysis (RCWA) simulation
of multilayer nanostructures to quantify reflected waves, enabling the fast simulation of the corre-
sponding Mueller matrix. Wave propagations in the component layers are characterized by local
scattering matrices (s-matrices), which are efficiently computed and integrated into the global s-
matrix of the structures to describe the optical responses. The performance of our work is demon-
strated through three-dimensional (3D) multilayer nanohole structures in the practical case of in-
dustrial Muller matrix measurements of optical diffusers. Another case of plasmonic biosensing is
also used to validate our work in simulating full optical responses. The results show significant
numerical improvements for the examples, demonstrating the gain in using the RCWA method to
address the metrological studies of multilayer nanodevices.

Keywords: Mueller matrix ellipsometry; RCWA; 3D multilayer nanostructures; scattering matrix

1. Introduction

Mueller matrix ellipsometry is a powerful measurement for both academic and in-
dustrial applications. By measuring all polarizing states of the sample, this non-destruc-
tive measurement is very sensitive to optical responses and has been extensively used for
characterizing metrological structures [1-6]. The nature of MME is an indirect experi-
mental measurement that necessitates the inverse problem to extract the expected infor-
mation (grating dimensions, layer thicknesses, optical indices) from the Mueller matrix
[7]. The inverse problem is conventionally implemented by the optimization approach,
which involves a long iterative process of fitting simulated and measured Mueller matri-
ces [8]. On the contrary, in the recent neural network (NN) approach, well-trained NN
models have been reported to achieve high performances in the prediction of metrological
geometries [9-11]. However, when considering NNs for metrology purposes, a large syn-
thetic dataset must be generated to train the NN model due to the lack of available exper-
imental data. In both optimization and NN approaches, a fast and accurate simulation of
nanostructures is critical in order to reduce the computational cost of facilitating the in-
verse problems of metrology characterization.

Among the numerical methods for periodic nanostructures, RCWA has been widely
applied because of its simplicity and accuracy [12-15]. Since it is well-formulated, RCWA
method has been extensively studied for speeding up the modeling of the optical proper-
ties of subwavelength-grating structures and improving the efficiency of inverse problem-
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solving for accurate dimensional determination. The representative studies include the
diffractive interface theory to bypass the eigen decomposition of ultrathin metasurfaces
[16], the perturbation theory to reduce eigen problems of non-lamellar layers [17-19], and
normal vectors to improve simulation convergence [20,21]. It is worth noting that these
studies were formulated and developed from theoretical structures composed of a repre-
sentative grating layer. The theoretical structures enable the simulation of multilayer

nanodevices because the RCWA method treats component layers independently (Figure
D
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Figure 1. Schematic of Mueller matrix ellipsometry and RCWA simulation of multilayers. By meas-
uring all polarizing states of reflected waves, the metrological information of the multilayers is con-
tained in the Mueller matrix (MM). In the RCWA method, local layers are independently simulated
and combined for the global s-matrix to quantify reflectance to compute MM in a wide range of
measured wavelengths.

However, this feature may limit the RCWA method when it comes to multilayer
nanostructures. In practical applications of biosensing [22], optical diffusers [23], solar
cells [24], and photodetectors [25], nanostructures are composed of top gratings and bot-
tom homogeneous layers for tuning the efficiency of the optical devices. Simulating such
multilayers involves computing s-matrices of gratings and homogeneous layers, then
combining these multiple s-matrices into a global one [26,27] to quantify the expected op-
tical responses. Although the computation of a homogeneous layer is simple, without
solving the eigen decomposition, the handling stack of homogeneous layers could be a
numerical issue in 3D structures as these layers involve expensive matrix algebra in order
to connect to the grating layers. In this study, we present the efficient RCWA simulation
of 3D multilayers with a stack of bottom homogeneous layers. We introduce vector-based
computation to quickly simulate and integrate s-matrices of homogeneous layers into the
global s-matrix. In the RCWA simulation, we also apply a recursive algorithm with bot-
tom-up construction [27] to reduce the components of the global s-matrix. It is noted that
the bottom-up construction is presented in decades to enhance the RCWA method by in-
volving only a quarter of the global s-matrix to quantify reflected waves. However, the
application of this algorithm is nontrivial. The explanation is provided through the
demonstration of modeling the Mueller matrix of the 3D multilayer nanohole structure.
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2. RCWA Simulation

The RCWA method is well-established, and its numerical implementations have
been released [14,28-30]. However, the studies usually applied a framework investigated
for gratings for a global structure that may decrease numerical efficiency. In this section,
we present our RCWA simulation as an efficient solution for multilayers. The distinct fea-
ture of our approach is the vector-based formation, which is capable of the fast computing
of homogeneous layers in multilayer nanostructures.

2.1. Local s-Matrices
2.1.1. Grating Layer

The RCWA method involves the semi-discretization of Maxwell ’s equations in Fou-
rier space to compute the s-matrix of a grating layer. For example, the electric field of a
layer is expressed as:

—e—k;Qe=0 (1)

022
where ko is the free-space wave number, and e presents the electric field of the layer in
Fourier space. Matrix Q in Equation (1) is defined by:

Q= lelsl]_le[[s]] + K32/ - [[S:H Kx[[s]]_lells:H - KxKy (2)
Ky[[s]]_le[[s]] - Kxl(y Ky[[s]]_le[[s]] + K)Z( - [[8]]
Here, [£] is used to describe the permittivity distribution in Fourier space on the x-
y plane. Ky, Ky are diagonal matrices characterizing the wave vector components. (The
derivations of Equations (1) and (2) are presented in Appendix A.) In this study, matrix
Q in Equation (2) is used to secure the general characteristics of the diffraction. One can
quantify the diffraction of s- and p-polarization light by the submatrices 2,4, ©,, and the
cross-conversion of these polarization modes in the submatrices €;,, ©,,. In the studies
of the RCWA method [31,32] for 2D structures, the incident plane perpendicular to the y-
direction zeroed wave component in the y-direction (Ky= 0) was applied, consequently
resulting in vanished Q,, ©Q,;.There is no cross-conversion between the two polarization
modes. Thus, the diffraction of s- or p-polarization light can be characterized inde-
pendently. Either Q,; = K,[e] 'K,[e] — [e] or Q,, = KZ—[€] was separately pre-
sented in the formulation of the RCWA method for each polarization.
The s-matrix of the grating layer is composed of square submatrices. The submatrices
determining reflected and transmitted waves are defined as ([26]):

S;; = (A — XBA~1XB)~1(XBA~1XA — B) (3a)

S21 = (A — XBA™!XB)!(XA — XBA™!B) (3b)

where X, A, B are related to eigenvalues A and eigen matrix W of matrix Q. The formulas
of these matrices are presented in Appendix B. Equations (3a) and (3b) involve matrix
computation with a matrix size of 4NZ. Herein, Nhis the harmonic number in Fourier ex-
pansions, and Ny = (2m, + 1)(2my + 1), where mx, my are diffraction orders in the x- and
y-directions, respectively.

2.1.2. Homogeneous Layer

For homogeneous layers, a simple computation of the s-matrix without solving the
eigen problem is implemented with the advantage of the simple form of permittivity dis-
tribution [€] in Fourier space. [€] geometrically depends on critical dimensions in the
x-y plane. In the simple case of the homogeneous layer, [€] is a diagonal matrix and re-
lated to dielectric property ¢ by:

[e] =1I¢ 4)
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with I being the unit matrix. Inserting Equation (4) into Equation (2), we obtain a simpli-
fied form of matrix Q:

K2+ K2 —Ie 0

0 K2 +K2—Ie ©)

In Equation (5), the submatrices ©,; = Q,, = KZ + K — Ie are diagonal matrices
that entail the form of a diagonal matrix for €, eliminating the eigen problem as eigen-
values are elements of the diagonal matrix and eigenvectors have a form of the unit ma-
trix.

2.1.3. Vector-Based Formation

Equations (3a) and (3b) are also used to determine the s-matrix of homogeneous lay-
ers and may result in expensive matrix algebra. For 3D subwavelength gratings, the har-
monic number Nris very large for accurate RCWA simulation [33], increasing the numer-
ical burden for the computing of the stack of homogeneous layers, though it does not re-
quire eigen decomposition. To alleviate the issue, our approach introduces vector-based
formation to circumvent the large matrix computation of homogeneous layers. On the
right-hand side of Equations (3a) and (3b), X is a diagonal matrix and A, B are square
matrices [32]. However, matrices A and B own a special form composed of four sub-diag-
onal matrices (Figure 2), which is applied to enhance the RCWA simulation of homoge-
neous layers. Our approach compactly presents such matrices by the vector of four diag-
onal elements. Then, the computation of these matrices with the size of 4N} can be im-
plemented fast by only relating to the diagonal elements with a size of 4N;, (the details
are presented in Appendix C).

|

Figure 2. Example of the matrix form in the computation of local s-matrices in the RCWA method.
On the left is a completed matrix form involved in grating layers. On the right is the special form
composed of four sub-diagonal matrices, which is applied to enhance the RCWA simulation of ho-
mogeneous layers.

2.2. Global s-Matrix

The global s-matrix is used to quantify the optical responses of the nanostructure.
The global s-matrix can be established by connecting multiple s-matrices of component
layers. In the numerical implementation, the global s-matrix is computed with the recur-
sive algorithm. The conventional top-down construction, from the top (superstrate) to the
substrate, defines the global s-matrix S%[26] as:

SGi = §Gi-1®S! (6)

where ® is the Redheffer Star Product; the superscript i indicates the i-th component layer
(i= 1,N with N the number of layers in the nanostructure). S’ expresses the s-matrix of
layer I, and S characterizes the global s-matrix computed at iteration i or the i-th par-
tially collective structure. With this notation, SN (or SG in the reduced form) is the final
global s-matrix of the nanostructure. Initially, S% is the s-matrix of the superstrate that
surrounds the sample. All the elements of SC are obtained in the following expressions:
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S5 = SEi + ST - st 85 ] sisg 7)

sfi = st [1-si,s5i] st 70)

51 = st [1 - S5ty s 7e)

i3 = Sk + Skl - s sh]sgsk 74)

It is noted that practical applications only require a particular interest in the Sfll and
S;‘ elements of the global s-matrix, as these elements are respectively used for character-
izing reflectance and transmittance (Figure 3). Equation (7a) shows that computing Slcll
requires the four exact values of the full matrix $%-1. In other words, the construction in
Equation (6) necessitates the full global s-matrix for modeling reflectance.

In order to reduce the submatrices of the global s-matrix, the computation can start
from the bottom to the top. With the rearrangement of the Redheffer Star Product, the
bottom-up construction of the global s-matrix is expressed as ([27]):

SGi — SN_i®SGi—1 (8)

In this construction, the initial $S0 is the s-matrix of the substrate. The submatrices
of interest S;¢ and S5! are defined as:

G; . . Gi— _q1 Gi_ . 9
S0 = N1 4 §N-i[) — §0i-1gN-i] T gCi-ig- (%a)
G G _i Gy -1 .
S,1 = szi[l - SZNZ 151{] Syl ' (9b)

Only two equations are needed instead of the four required for the top-down con-
struction. Equation (9a) shows that Sf{ is uniquely related by itself and layer s-matrices
in numerical computation. The advantage of bottom-up construction is illustrated in Fig-
ure 3. Only half of the global s-matrix is required to simulate full optical responses, and
only a quarter of the global s-matrix is involved in determining the reflectance, enabling
the fast simulation of the corresponding Mueller matrix.

I SGi — SN—i®sGi_1

Full matrix Reflectance s
G <G .
S22, 551 Transmittance %, S5,
: . G G
Full matrix Reflectance, transmittance ST, 871

Figure 3. Recursive algorithm of constructing the global s-matrix, with the computational network
representing the involvement of elements. The color nodes are the main interest, as they are used
for characterizing optical responses. The bottom space represents the advantages of bottom-up ver-
sus top-down construction.
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Generally, Slcl’ and SZGi in Equations (9a) and (9b) involve large matrix algebra with
the matrix size of 4N{Z. However, by starting from the substrate, Sf{ and Sg{ also pos-
sess a special form composed of four sub-diagonal matrices. Thus, vector-based compu-
tation also facilitates integrating homogeneous layers into the structures in numerical
work.

3. Numerical Demonstration
3.1. Case 1: Mueller Matrix Ellipsometry

We validate and discuss the performance of our work with the industrial case: MME
of the 3D multilayer nanohole structure. The structure is composed of five layers: the first
two nanohole patterns of SisNs, SiO:2 are stacked on three following homogeneous layers:
SisN4, SiO2, and SisNs, respectively. In our case, these nanoholes are metrology dies on
STMicroelectronics wafers [34] in order to control the process for imaging devices (diffu-
sive patterns). Experimental MME was measured at an angle of incidence of 65° and azi-
muth of 45° and provided by STMicroelectronics, Crolles, France. The cross dimension of
the hole was measured at 120 nm using an inline CD-SEM (ATLAS system from Onto
Innovation)

We use our laboratory measurement for the refractive indices of Si, SiOz (shown in
Figure 4) and the Tauc-Lorentz single oscillator dispersion model [35] for the dielectric
function of SisNs, the parameters of which are given in Table 1:

— Ns;j — DNsi02
_ ks ksio2
5 20
15

10

Optical Indices
w

05

-

0 00

000 025 050 075 100 125 150 175 200 00 25 50 75 100 125 150 175 200
Wavelength (pm) Wavelength (um)

Figure 4. Optical indices of Si and SiO2 used in the numerical demonstration.

Table 1. Tauc-Lorentz parameters used to describe the dielectric function of SisNa.

Parameters Symbol Value (eV)
Oscillator amplitude AL 104.27
Peak energy E}y 8.22
Broadening term CrL 3.38
Optical band gap ES, 425

Real part of the dielectric

. e er 1.64
function at infinite energy T

RCWA is implemented by our in-house code for the numerical demonstration of the
nanohole structure (Figure 5a). The source code is publicly accessible [36]. Matrix Q in
Equation (5) is used for computing the local s-matrices of the three bottom homogeneous
layers. For SisN4/SiO2 nanohole layers, solving the eigen problem of matrix Q@ in Equation
(2) is required for these layer s-matrices. Three RCWA algorithms are implemented for
the comparison. Conventional RCWA needs a full global s-matrix to model the reflected
waves (Equations (7a)—-(7d)). RCWA with bottom-up construction only involves a quarter
of the global s-matrix (Equation (9a)). Our work applies both bottom-up construction and
vector-based formation for the fast solution of modeling the multilayers. The Mueller ma-
trix is calculated from the global s-matrix with zeroth-order reflected light (Appendix D).
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<

Px

(b) (c)

Figure 5. (a) Schematic of the unit cell of the SisN4/SiO2 nanohole structure in Case 1. (b) Scanning
electron microscopy (SEM) cross-section image in the x-y plane of the unit cell of the SisN4/SiO2
nanohole. (c) Schematic of the unit cell of the Al nanohole pattern in Case 2. The dimension in the
two schematics is not to scale.

3.2. Case 2: Full Optical Responses

Another multilayer nanohole pattern is considered to test our approach. The struc-
ture consists of an Al nanohole pattern on three homogeneous layers of SiOz, Si, and Ge,
respectively (Figure 5c). Such a structure is widely applied in biosensing as its plasmonic
resonance is sensitive to the refractive index change induced by targeted biological mole-
cules [22]. In numerical implementation, the optical responses are simulated in deionized
water at normal incidence, with the incident plane perpendicular to the y-direction. The
documented refractive indices of Al [37], Ge [38], and deionized water [39] were selected
in the computation. Similar to the demonstration in Case 1, we employ Equations (2) and
(5) for the s-matrices of the homogenous layers and nanohole pattern, respectively. To
obtain full optical responses, S%,SS; from Equations (9a) and (9b) are used to calculate
the reflectance (R) and the transmittance (T). The absorbance (A) is determined by: A =1
—R~T. The vector-based formation is applied to the computation related to homogeneous
layers.

It is noted that similar multilayers were also studied in [30] to demonstrate the ad-
vantage of the RCWA method over the finite-difference time domain (FDTD) in designing
plasmonic applications. Their numerical results are used as a reference for the validation
of our work.

4. Results and Discussions
4.1. Mueller Matrix Ellipsometry

The simulation time of the three algorithms is normalized by the total simulation
time of our work and is provided in Table 2. The enhancement is presented in percentages
defined by the ratio of the algorithms. For simplicity, we only calculate the ratio needed
for the discussion. Compared to bottom-up and conventional RCWA, this work acceler-
ates the computation by 1.51 and 1.91 times, respectively. The bottom-up algorithm opti-
mizes the RCWA method by only computing reflected waves, resulting in a significant
reduction of 70% in computing the global s-matrix. However, it is worth remembering
that solving layer s-matrices is still the key issue in the RCWA method, highly affecting
numerical computations. Consequently, the bottom-up algorithm only saves 21% of the
total computation time compared to the conventional RCWA. It can be the reason that the
bottom-up algorithm is nontrivial for the application of multilayers in metrological stud-
ies.
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Although computing homogeneous layers can be fast without solving the eigen prob-
lem, it is also time-consuming to handle large matrices in order to connect these layers to
grating layers. In conventional and bottom-up RCWA, the normalized time of three ho-
mogeneous layers lasts 0.4, which is about 43% of the time needed for two SisN4, SiO:z
nanohole patterns. This ratio dramatically declines to less than 1% in our work. The im-
pressive improvement results from our approach that circumvents large matrices by using
representative vectors for fast computation. It also reduces the 88% computational time of
the global s-matrix. With these improvements, our work saves 48% of the total simulation
time.

The Mueller matrix is calculated from reflected waves. As shown in Figure 6, the
simulated Mueller matrix is in good agreement with the industrial measured one of the
demonstrated structure. This result confirms the accuracy of the RCWA method, which is
favorable for the metrological studies of 3D nanomultilayers.

Table 2. Normalized simulation time of the 3D multilayer nanohole structure.

Bottom-U This W
Simulation Conventional Bottom-Up  This Work ° om' P/ 18 ?rk/
Conventional Conventional
Total time 1.91 1.51 1 79% 52%
Grating layers 0.93 0.93 0.93 - -
Homogeneous layers 0.4 0.4 0.0026 - -
Homoge.neous layers/ 439 439, 0.27% i )
Grating layers
Global s-matrix 0.5 0.15 0.06 30% 12%
1 1 1
RCWA ml2 ml3 ml4
e Measured i . n : 0 0
-1 -1 -1
m21 m22 m23 m24
0 i & l A 0 0 0
-1 -1 -1 -1
1 1 1 1
m31 m32 m
( | cosmmestmmetReqttty (| cssssssasmnSRetme® | ( 0
-1 -1 -1 -1
1 1 1 1
m4l m42 3
0 0 0 0
-1 -1 -1 -1

400 600 800
Wavelength (nm)

Figure 6. Mueller matrix of measured data (green solid circle) and RCWA simulation (red solid line).
The parameters of the structure in the simulation are: Px= Py = 470 nm, CD = 120 nm, h§;3y, =
50 nm, h;o, = 660 nm, h3;3, = 50 nm, hg;y, = 80 nm, hgj;n, = 22 nm, angle of incidence = 65°, az-
imuth angle = 45°.

4.2. Full Optical Responses

Figure 7a presents the full optical responses with observed Fano resonance, e.g., at
1290 nm of the absorbance spectrum of the demonstrated nanomultilayers. Figure 7b
shows the simulation time of the two RCWA algorithms. In all studied diffraction orders,
our work achieves higher numerical efficiency. Accurate performance of the RCWA
method necessitates high diffraction orders, which exponentially increase simulation
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time. For tasks of understanding important optical responses, a diffraction order mx=my
=5 can be favorable for acceptable accuracy. A higher value, e.g., m«=my= 10, should be
considered for more rigorous demand in applications of inverse design in metrological
investigations. In these instances, our work is about 10 times and 2 times faster, respec-
tively

105
Our work
- e Ref[30] °
104
v
0.6 p
£ 103
£
c
0.4 2
©
= 102
£
[¥2]
0.2
10!
0.0
1000 1200 1400 1600 107!

0o 5 10 15 20
Diffration order
(a) (b)
Figure 7. (a) Simulated spectra of the plasmonic nanostructure, using 81 wavelength points from
1000 to 1600 nm, Px= Py = 950 nm, CD = 500 nm, h}, = 100 nm, h%, = 50 nm, h}; = 50 nm,

and h¢, = 1000 nm. (b) RCWA simulation time of both studies as a function of diffraction order in
x- and y-directions.

Wavelength (nm)

However, it must be noted that the comparison is relative as the numerical efficiency
may result from differences in computational frameworks, such as the programming lan-
guages, simulation targets, and computer resources. For example, ref. [30] employed Julia
in a node of a workstation cluster with 24 cores, while our work uses Python within a
personal laptop equipped with Intel® core i7 CPU to perform numerical computations. In
this section, we demonstrate that the numerical investigation of the multilayers can be
conducted in a reasonable time using bottom-up construction and vector-based computa-
tion. Our algorithm mainly deals with the matrix algebra of only one patterned layer in-
stead of all four layers, which entails high performance in the demonstration.

Lastly, it should be pointed out that the impressive improvement in the two demon-
strated cases of Muller matrix modeling and full optical responses is obtained without
intervening with the eigen problem of the grating layers. Thus, our approach is easily
implemented in the RCWA method. Owing to the compelling enhancement, simplicity,
and accuracy, our work is useful to the community as similar structures with a large num-
ber of homogeneous underlayers are widely used in optical applications.

5. Conclusions

Practical applications of multilayer nanostructures with manipulated wave propaga-
tions require efficient numerical simulations for targeted optical responses. By introduc-
ing the vector-based formation of fast computing and integrating homogeneous layers
into nanostructures, we present the simple but efficient RCWA simulation of multilayers
with bottom homogeneous layers. An impressive performance is obtained in the demon-
stration of the 3D nanomultilayers in both the industrial MME measurement of optical
diffusers and the full optical response of plasmonic structures. Thus, our work is expected
to serve as a numerical simulation approach in future work for the metrological studies
of engineered diffraction applications.
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Appendix A

Appendix A.1. Semi-Discretization of Maxwell’s Equations in Fourier Space
0
PP koPh (Ala)
b=k (Alb)
9z oQe

In Equations (Ala) and (Alb), e and h are the electric field and the magnetic field in
Fourier space, respectively. ko is the free-space wave number. Matrices P and Q present
the cross-sectional distributions of material permittivity of the layer. P, Q are defined in
the following equations:

= KX[[s]]_lKY I- Kx[[s]]_le

B [Ky[[s]]_le -1 —Ky[[s]]‘ll(X ] (A2a)
KXK [[g]] — KXKX

Q= [KyKy _y[[s]] _Kny ] (A2b)

Here, [[£] is used to describe the permittivity distribution in Fourier space on the x-y
plane. Ky, Ky are diagonal matrices characterizing the wave vector components. Their con-
structions are presented in the next subsections.

The semi-discretization of Maxwell’s equations in Equations (Ala) and (A1b) and the
expression of matrix P, Q in Equations (A2a) and (A2b) are the common forms used in
many numerical frameworks developed for the RCWA method [26,30]. From Equation
(Ala), the second-order derivation of e is obtained:

2
S e=kPh (A3)

Inserting Equation (Ala) into Equation (A3), the semi-discretization of the electric

field in Fourier space is obtained:

62

ﬁe = k%PQe (A4)
Using PQ = Q in Equation (A4), Equation (1) is derived, and the definition of matrix

Q in Equation (2) is simply the multiplication product of P and Q in Equations (A2a) and

(A2b).
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Appendix A.2. Wave Vector Component Kx, Kyand Permittivity Distribution [€]in
Fourier Space

Wave Vector Component K, Ky

The RCWA method is based on the Fourier expansion of the electric field, the mag-
netic field, and layer permittivity, e.g., the expansion of permittivity in the x-y plane is
written as:

my Ny

emn) = > D e(p,q)exp [i(kex + kyy)] (A5)
p=—myx q=—ny
where mx, my are diffraction orders in the x- and y-directions. The harmonic number in
Fourier expansion is calculated as: Nn= (2mx+ 1)(2my + 1). In Equation (A5), kx, ky are the
components of the wave vector:

21
ky(m) = Kyipne + L—m ,with m = [—m,, my] (A6a)
X
21 .
ky(n) = Ky inc + L—yn ,withn = [-ny, n] (A6Db)

Here, Kxinc, kyinc are vector components in the x-y plane of wave incident. Ly, and Ly

are the periodic lengths of gratings. Vectors ky, k, are constructed for the combination of
all m and n:

l’Ex(u +v(2my + 1)) = ky(u — my) (A7a)

Ey(u +v(2m, + 1)) = ky(v - ny), withu = 0,2m, v =0,2n, (A7b)

For matrix multiplication, a normalized diagonal matrix by the free-space wave-
number kois used:

Ky = diag (ke/ko), Ky = diag (ky/ko) (A8)

Permittivity Distribution [£] in Fourier Space
Once all g(m,n) is obtained from Equation (A5), the matrix [€] with the size of NZ
is formulated:

Ie] ((me + v +u,(2n, + 1)1+ k) = ¢e(ny +u—km, +v-1)

(A9)
withu, k = =m,m, , V,l=m
Appendix B. Matrices Used for Calculating Layer s-Matrix
X = eMk0 (A10)
A=WlW, + V-1V, (A11)
B =W-lW, — V-1V, (A12)

where L, ko are layer thickness and free-space wave number, respectively. Matrix V is
defined as: V.= QWA~'/2, Matrices Wo and Vo are similar terms for free-space propaga-
tion.
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Appendix C. Fast Matrix Computation for Homogeneous Layers
For a complex square matrix composed of 4 sub-diagonal matrices A € C*"*2": A =
Ay
Az
through the diagonal operator: A; = D(d!). Matrix A is rewritten as:
_ [P Ddgh
JREICOREICrY

2], where A; € C**™ can be constructed by diagonal elements d* (i =1,4)

(A13)

From Equation (A4), matrix A can be represented more compactly by a vector:

= (df', dgt, dg', dh) (A14)

Appendix C.1. Matrix Inverse
The inverse matrix of A in the form of a vector:
(df' _d‘éq' _d‘f);ql d‘fl)

o‘l_l
ditdy? — dg'dy’

(A15)

In the form of a completed matrix:

() (o)
| \affaF—afaf a7d7 — dfaf

ds a4
l_D _ 3 Df——r J
ara7 - azaz) D\afaf - afad

We have:

dcﬂ
D \—m———— =D
(d‘{qdf—d‘fd‘f> (d‘”d‘” d‘”d‘ﬂ) D(df") D(dgh)

-0 (ot - J[@(df) ()
dffdf — dfdd d"“d"‘ d"“d"“

dfids — dftad dftaf — dfaf
<@@7@@> (E@T@E)
<—d§df4—dfd§> (-dfdf-+dfdf)
4747 — dfaf dd7 — dfaf

A 1A =1

A1A =

A1A =

Thus, Equation (A15) can be used to present the inverse matrix of A.

Appendix C.2. Matrix Multiplication

B . . .
Given a square matrix B = [B BZ] where Bi € C"*"are diagonal matrices with

the diagonal elements DB (i=1,4), the multiplication of the two matrices is:

B, B,

AB = [ HBS 34]
B — [D(d"*) D(d‘”)] [D(d) D(d3 )]
D) DAH|[DE) D(P)

B = [D(d‘{‘d? +dfd®) D(dAd? + dgldf)]

D(df'd? + dffd®) D(dg'd®? + dfd?)
Or in the vector form:

AB = (df'd? + dg'd%, di*d? + dg'd}, dg'd? + df'd?, df'd7 + df'dP) (A16)
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Appendix D. Mueller Matrix Ellipsometry

The 16 elements of the Mueller matrix are calculated by the following equations [7]:

mis = 5 (ol + Il e+ e ) (A17)
miz = 5 (ol = Il el = [r*) (A17b)
myz = R(rpprsp + Ipstss) (A17¢)
Myg = R(rpprdp + psls) (A17d)
mor= g (Fopl” = Il lrgsl*+1rs ) (170
maz =5 (1ol + sl 1) (A170
Mz = R(rpprsp = Tpstss) (A17g)
Maq = I(rpprdp = Ipsls) (A17h)
mg; = R(rpprps + rsplis) (A17i)
mg; = R(rpplps = splss) (A17))
33 = R(rpprss + rsprps) (A17k)
Mg, = 1(rppres = Feplps) (A171)
Mgy = —1(rppps + Ieprss) (A17m)
Mz = —1(rpprps = rspris) (A17n)
Mz = —1(rpprps = rspris) (A170)
Mgy = R(rpplés = Ieplps) (Al7p)

where rpp indicates the reflection coefficients of p-polarized light, rs indicates the reflec-
tion coefficients of s-polarized light. rps and rsp present the conversion of p- and s-polarized
light. a*, R(a), and I(a) define the conjugate and the real and imaginary parts of a com-

plex number a, respectively.

In practical applications, the Mueller matrix (MM) is normalized by the first element:

1 my,/myq
my;/my; My, /myy
mz;/my;  Mmzy/myy
my/My;  Myy/myy

MM =

my3/my,
my3/myq
m33/myy
mys/my,

my,/myq
My, /My

Al8
M3, /My ( )
My, /My
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