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Application of artificial intelligence 
to decode the relationships 
between smell, olfactory receptors 
and small molecules
Rayane Achebouche1, Anne Tromelin2, Karine Audouze3 & Olivier Taboureau1*

Deciphering the relationship between molecules, olfactory receptors (ORs) and corresponding odors 
remains a challenging task. It requires a comprehensive identification of ORs responding to a given 
odorant. With the recent advances in artificial intelligence and the growing research in decoding 
the human olfactory perception from chemical features of odorant molecules, the applications of 
advanced machine learning have been revived. In this study, Convolutional Neural Network (CNN) 
and Graphical Convolutional Network (GCN) models have been developed on odorant molecules-
odors and odorant molecules-olfactory receptors using a large set of 5955 molecules, 160 odors and 
106 olfactory receptors. The performance of such models is promising with a Precision/Recall Area 
Under Curve of 0.66 for the odorant-odor and 0.91 for the odorant-olfactory receptor GCN models 
respectively. Furthermore, based on the correspondence of odors and ORs associated for a set of 389 
compounds, an odor-olfactory receptor pairwise score was computed for each odor-OR combination 
allowing to suggest a combinatorial relationship between olfactory receptors and odors. Overall, this 
analysis demonstrate that artificial intelligence may pave the way in the identification of the smell 
perception and the full repertoire of receptors for a given odorant molecule.

Smell is a sense that allows the perception and discrimination of a large number of volatile environmental 
chemicals in the air by using the nose. It has been observed that smell is involved in the social behavior of many 
species but also in the location of food, ability to detect dangerous situations like fire, identification of predators, 
toxic compounds, mate choice and mother-infant recognition1. For humans, olfaction influences our well-being 
(looking for pleasantness) and play a major role in eating behavior with the perception of food quality and for 
social communication with the use of fragrance2. The smell impairment has a strong impact on the quality of life 
and it has been recently highlighted with COVID-19 causing the loss of smell of many individuals3.

The sense of smell is commonly associated with large and diverse families of odorant receptors that detect 
odor stimuli in the nose and transform them into patterns of neuronal activity that are recognized in the brain4–7.

In humans, it is estimated that millions and perhaps billion of odorant molecules are recognized by around 
400 different human olfactory receptors (hORs)8–11. Odorants, commonly present in food, fragrance and cosmetic 
products, stimulate G-protein-coupled olfactory receptors (ORs) located in the olfactory sensory neurons of 
the nasal epithelium12,13. It has been reported than the olfactory system uses a combinatorial olfactory receptors 
code to encode an odor14–16. One odorant can interact with several different ORs and one OR can be activated by 
a large panel of molecules. Although recent optimizations in functional expression of ORs for the screening of 
odorant compound libraries have been made, investigating all combinations is still expensive, time consuming 
and remains therefore a tremendous challenge17.

It is important to notice that the semantic is a source of complexity for the verbal description of odors18,19. 
Indeed, the description of the odor of a molecule involves several odor attributes, or odor notes, which are “odor 
objects” i.e., the odors perceived in our environment20–22. Yet, these odors result from the perception of numerous 
odorant molecules, which increase the difficulty to have reliable odors descriptions.

Despite some experimental studies have identified odorant-OR interactions in some organisms (mainly 
in mammals and insects)23–26, the link between activation of ORs and odor perception remains limited9,27–31. 
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Considering that the perception depends on chemistry, several studies have attempted to connect odorant phys-
icochemical properties to the olfactory perceptions32–38. Crowd-sourced DREAM Olfaction Prediction Challenge 
was organized in the aim to predict human olfactory perception for 19 semantic descriptors for odors as well as 
intensity and pleasantness based on chemical features and machine learning models39. Such analysis can then be 
used to identify new structural motifs for ligands during large virtual screening campaigns40,41. Recently, artificial 
intelligence technology using deep neural networks (DNN)42, graph neural networks (GNN)43 or convolutional 
neural networks (CNN)44,45 have been performed to underlie the relationship between the structure of chemicals 
and odors. They reported that such machine learning approaches outperformed classical methods applied to 
chemical-odor relationships.

Based on these observations, we decided to go one step further and to analyze the relationships of chem-
ical-odors and chemical-olfactory receptors based on the chemical structure of odorant using deep learning 
approaches such as graph neural networks (GNN), and convolutional neural networks (CNN). The relation-
ship between chemicals—olfactory receptors and odor perception is of high interest in the determination of (i) 
chemical properties—odor relationships, (ii) chemical properties—olfactory receptors relationships and (iii) 
olfactory receptors—odor relationships. Furthermore, the global chemicals-olfactory receptors-odors relation-
ship has been investigated using a confidence score proposing a combination of receptors that can play a role 
in the perception of odors.

Materials and methods
Datasets.  This study is based on the integration of two different data sets (i) data for chemical-odor relation-
ships and (ii) data for chemical-olfactory receptor relationships.

Chemical‑Odor.  We extracted chemical-odors from two separate sources: The Good Scents Company (TGSC) 
Database46 (as of January 2021), and Leffingwell Database47. Both databases contained information linking the 
compound and its chemical structure to the odor description as several odor notes. From the TGSC database, 
we got 27,779 chemicals of which 5659 are related to one or several odor notes. From the Leffingwell database, 
we got 6054 compounds that are related to one or several odors notes. We merged the outcomes from both 
databases, eliminating duplicated information. Compounds occurring with the same structure (based on Inchi 
Key encoding48) but with different names (synonyms) were removed. Odor notes from Leffingwell database was 
matched with TGSC as reference. To limit the complexity of the models and avoid mis-classification due to poor 
representation of an odor note, odor notes with less than 20 chemicals were not considered in this analysis. After 
all these steps, we obtained a dataset made up of 5955 compounds and 160 odors. Each compound is related 
from 1 to at the maximum 10 odor notes using the order proposed by TGSC.

Compound‑olfactory receptor.  Compounds tested experimentally on olfactory receptors were gathered from 
different data sources. It included information from OdorDB49, ODORactor50, OlfactionDB51 and from the lit-
erature. To the purpose of the study we considered, first, human receptors in the construction of learning mod-
els. We collected 74 human olfactory receptors for 365 compounds. In a second step, human receptors that are 
orthologs to rodent olfactory receptors, and on which bioactivity has been measured, were also included in the 
learning model development. With the aggregation of this data, we reached a dataset of 445 different compounds 
tested on 106 different olfactory receptors.

The datasets generated and analysed during the current study are available in the Table S1 in supplementary.

Methods.  Global overview of the odorant molecules.  To visualize the distribution of the molecules accord-
ing to their odors and their activity on olfactory receptors, the structure of each molecule was encoded into 1024 
ECFP (Extended Connectivity Fingerprint) fingerprints52. Then, the matrix of fingerprint was projected into a 
2D map using a reduction technique, UMAP (the Uniform Manifold Approximation and Projection), that was 
applied recently with smell compounds53. Such projection allows to look over the distribution of the molecules 
in a 2D space and to map corresponding odors and olfactory receptors associated to each molecule.

Machine learning models.  Different machine learning models have been generated in order to assess their 
performance in the prediction of compound-odor and compound-olfactory receptor relationships. Since one 
compound can be related to one or more odors, it raised a multi-label classification problem. Consequently, we 
developed 3 types of models adapted for multiclass: (i) a Random Forest model, based on RDKit descriptors54 
and ECFP (Extended Connectivity Fingerprint) fingerprint, (ii) a Convolutional Neural Network (CNN) based 
on ECFP and (iii) a Graph-based Neural Network (GNN). Random Forest were built using scikit-learn python 
package55, GNN with DeepChem56 and CNN with Tensorflow57. The evaluation metric used was the Area Under 
ROC Curve (AUROC) and the Precision/Recall Area Under Curve (PRC-AUC). For CNN and GNN, an internal 
validation of the models was carried out using a fivefold Cross Validation for each of them.

Random forest (RF) models.  For the RF models, in a first strategy, the molecule’s structure was encoded in 154 
2D descriptors (using RDKit) and the odor notes labels binarized in 0 or 1. Then, a RF model was built using 500 
mtrees and 15 ntry. We optimized the hyperparameters in order to minimize the Out Of Bag Score (OOB Score) 
and maximize the AUROC score (Table 1).

In a second strategy, the chemical structure was encoded into ECFP fingerprints. This type of fingerprint 
was chosen because it is a method of vectorial representation of molecules quite similar to the one used for the 
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Graph-based Model (described below). Thus, a 1024-bit ECFP fingerprint was generated for each molecule and 
then a RF model was performed using the same parameters.

A similar RF protocol was also applied with olfactory receptors using the same parameters.

Convolutional neural network (CNN) model.  A convolutional neural network (CNN) model was developed 
based on ECFP fingerprints encoding. At the difference of RF, CNN is a method based on neuron convolutions. 
In our CNN model, the architecture of the network is organized as follows: the concatenation of the message is 
done by 2 layers of dimensions [32, 32] with a rectifier linear unit activation function ‘RELU’, a batch normali-
zation that standardize input data in order to reduce the number of epochs for training network, and finally a 
maxpooling parameter that reduce spatial size by some operations, preventing overfitting and reducing com-
putational cost. The fully connected neural net consists in layers of a size 128 dots (Dense layer). The readout is 
done using a softmax function with 160 tasks for odors (and 106 tasks for olfactory receptors) and a Categori-
cal Cross Entropy loss function. The model has been trained on 300 epochs and a 5 folds cross validation was 
performed (60 epochs for each fold). More information about the CNN implementation can be obtained here58.

Graph‑based neural network (GNN) model.  We decided to develop a graph-based Neural Network (GNN) 
model because it is close to the architecture of the model based on molecular graphs. By considering chemical 
bonds as edges and atoms as nodes, molecules can be represented as graphs. This type of representation can then 
be used to develop graph-based model. In our study we considered the implementation of a Graph Convolu-
tional Network (GCN)59. GCN consists of message passing layers, followed by a reduce-sum operation to obtain 
at the end, a fully connected layer. In a first step, each molecule is featured into a set of fixed-length vectors where 
each vector is calculated for each atom. Once the molecule has been featured, a series of operations consisting of 
concatenating the message takes place. This is the convolutional part of the model. Then, each molecular graph 
is reduced to a vector that will yield a fully connected neural network for final prediction. The architecture of the 
network is as follows: the concatenation of the message is done by 2 layers of dimensions [64, 64] with rectifier 
linear unit activation function ‘RELU’, a batch normalization that standardize input data in order to reduce the 
number of epochs for training network, a dropout that omit some units to prevent from overfitting and finally 
a maxpooling that reduce spatial size, prevent overfitting and reduces computational cost. The fully connected 
neural net consists of a layer of a size 128 (Dense layer) with RELU activation and batch normalization. The 
readout is done using a softmax function with 160 tasks for odors (and 106 tasks for olfactory receptors) and a 
Softmax Cross Entropy loss function.

The model has been trained on 300 epochs and a 5 folds cross validation was performed (60 epochs for each 
fold).

In addition to this model, a second GCN was created by grouping the odors by categories in order to predict 
the corresponding categories rather than each odor note individually. Thus, the parameters used for this model 
are the same as the GCN presented above. The odor notes have been grouped according to the correspondences 
shown in the Table 2.

Odor‑receptor model.  From the two datasets, 383 compounds targeting olfactory receptors and also related to 
odor notes were identified. It means that for each molecule, odor notes and olfactory receptors correspondence 
can be highlighted. Given the imbalance in the two data sets and the imbalance in the binary classes (much more 
negative than positive outcomes), an odor-olfactory receptor pairwise (OORP) score was computed between the 
odor and receptor information based of the common active compounds using the equation below:

With COiORy being the number of compounds common between an odor (Oi) and an olfactory receptor (ORy), 
CtotOi being the total number of compounds associated to the odor notes (Oi), and CtotORy the total number of 
compounds associated to the olfactory receptor (ORy).

The odor notes-olfactory receptor pairwise score is between 0 and 1. The closer to 1 is the score, the more 
significant is the relation between an olfactory receptor and an odor note.

Results
Global analysis of the data collected.  The data collected on chemicals, olfactory receptors and odor 
notes are very heterogeneous, with many molecules for some odor notes/receptors and very few for others. 
Fruity is the odor associated with the highest number of molecules (> 1750) (Fig. 1A). More than 1000 molecules 
are sweet, green and floral. At the difference, less than 200 molecules are associated with mushroom, jasmin or 
banana. We have to notice that a molecule is usually associated with several odor notes. On average, a molecule 
has 3, 4 odors which is in agreement with previous studies37,38. Some odor notes could be closely related to 
each other and an odor note could be a more specific term to a general category of odor note. Like for example 
banana, melon, pear or apple are specific odor notes but also belong to a more general fruity odor.

OORPOiORyP =
(

COiORy/CtotOi + COiORy/CtotORy
)

/2

Table 1.   Parameters considered in the compound-odor Random Forest models.

n_estimators criterion max_depth min_samples_split min_samples_leaf max_features

500 ‘gini’ 75 2 1 15



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18817  | https://doi.org/10.1038/s41598-022-23176-y

www.nature.com/scientificreports/

Similarly, looking on the relation between compounds and olfactory receptors, it is observed that OR1D2, 
OR1G1, OR2W1, OR1A1, OR52D1, OR6A2 and olfr124 (ortholog to OR2B4 in human) are receptors with more 
than 50 molecules interacting to them (Fig. 1B). On average a molecule interacts with 3,46 olfactory receptors.

Using a UMAP visualization technique, the relation between chemical structure, odor notes and olfactory 
receptors can be depicted in an interactive 2D map. It is a way to represent the distribution of molecules in a 
2D space. For example, comparing compounds having fruity, spicy, woody and green odor notes (Fig. 2), some 
compounds are more grouped in some area of the map and others compounds are more spread all over the 
chemical space. It means that there are some specific structural features for some compounds associated to a 
specific odor note compared to others odor notes for which it is more general.

Table 2.   Grouping of odor notes in categories having a similar perceptual space.

Natural "green", "herbal", "earthy", "natural", "leafy", "oakmoss", "weedy", "grassy", "hay", "ozone", "malty"

Woody "cedar", "woody", "camphoreous", "pine", "fir needle", "sandalwood", "terpenic"

Fruity "fruity", "pineapple", "apple", "currant", "peach", "berry", "grapefruit", "grape", "apricot", "banana", "cherry", "melon", "pear", 
"plum", "raspberry", "ripe", "strawberry", "coconut", "citrus", "lemon", "orange", "bergamot", "mandarin", "nutty", "hazelnut"

Spicy "peperry", "spicy", "mustard"

Fresh "fresh", "minty", "cooling", "mentholic"

Dairy "milky", "dairy", "cheesy", "creamy", "buttery"

Floral
"floral", "rose’7’orangeflower", "chamomile", "lavender", "geranium", "hawthorn", "jasmin", "jasmine", "hyancinth", "lilac", 
"lily", "lily of the valley", "magnolia", "muguet", "narcissus", "orchid", "savory", "violet", "vetiver", "ylang", ’mimosa’, "patchouli", 
"hyacinth", "tea", "cinnamyl", "orris", "tropical"

Alcohol "alcoholic", "cognac", "brandy", "winey"

Spice "cum in", "cinnamon", "rum my", "clove", "licorice", "tonka", "anisic"

Fat "oily", "fatty", "waxy"

Sweet "sweet", "caramellic", "honey", "vanilla", "almond", "cocoa", "chocolate", "popcorn"

Vegetable "peppery", "radish", "cucumber", "cabbage", "tomato", "celery", "potato", "vegetable", "corn", "mushroom"

Marine "marine", "fishy"

Meaty "meaty", "beefy", "roasted", "smoky"

Animal "animal", "musk", "tallow", "amber"

Clean "clean", "bready", "soapy"

Sharp "pungent", "sharp", "alliaceous", "garlic", "onion", "leathery", "bitter", "sour"

Cooked "cooked", "toasted"

Odorless « odorless »

Unpleasant "musty", "sulfurous", "ammoniacal", "fermented"

Balsamic « balsamic »

Large "ethereal", "aromatic", "phenolic", "coumarinic", "aldehydic", "ketonic", "lactonic"

Other burnt", "coffee", "cortex", "dry", "dusty", " medicinal", "metallic", "gassy ", "juicy", "solvent", "sweaty", "tobacco", "warm", 
"plastic", " powdery"

Figure 1.   (A) Occurrence of compounds related to odors. (B) Occurrence of compounds related to olfactory 
receptors.
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A similar observation can be concluded for some olfactory receptors, notably the OR1D2, OR5D16 for which 
some bioactive compounds on theses receptors are grouped in some area of the map while others ORs (OR1A1, 
OR2B4) are more spread over the chemical space (Fig. 3).

To look over the frequency of chemical groups related to odors and receptors, radar plots have been developed 
with 62 molecular substructure and group of atoms. Based on these plots, an ensemble of structural features that 
occur more frequently with some odors but also with some olfactory receptors can be observed (Figs. S1 & S2 
in supplementary). For example, a majority of compounds associated to the odor note ‘acidic’ possess a COO 
group. However, compounds associated to ‘citrus’ odor note are represented by a sparser ensemble of group of 
atoms (OH, aldehyde, ester, methoxy, NH…). Interestingly, the ‘cheese’ odor note is also highly associated to 
the presence of a COO group in a compound. Globally, specific odor notes that are associated to a fruit (apple, 
apricot, banana), a vegetable (celery, cucumber) or a flower (rose, muguet, narcissus) are related to few groups 
of atoms while general class of odors i.e., fruity, floral, sweet, phenolic encompass larger groups of compounds 
with a higher diversity in physicochemical properties (Fig. 4).

With olfactory receptors, some specific structural features are also more frequently observed with some ORs 
while other Ors are less specific and can be impacted by different groups of molecules. For example, a majority 
of molecules associated to OR52E1 possess a carboxylic group, OR4D6 ligands have a ketone, OR1D3 ligands 
have a benzene, a bicyclic and an aldehyde group. Similar to odors, it is observed that Ors with a large set of 

Figure 2.   UMAP representation of compounds distribution in a 2D map projection. (A) Compounds 
with green odor note, (B) Compounds with woody odor note, (C) Compounds with spicy odor note, (D) 
Compounds with fruity odor note. The UMAP representations were developed with the python package bokeh 
(v.2.4.3): https://​docs.​bokeh.​org/e 60.

https://docs.bokeh.org/e
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compounds (i.e., OR1G1, OR2W1, OR1A1, OR52D1, OR6A2) are also associated to compounds with diverse 
groups of atoms (Fig. 5). So, it could be assumed that some Ors are more selective to some ligands with specific 
features than others Ors that are more general62.

Results on ligand‑odor notes model.  Once, the global analysis of these data was realized, machine 
learning models were developed to predict in one hand the odor notes and in the other hand the olfactory recep-
tors, associated to a molecule. About the ligand-odor note models, 3 types of models were built i.e., Random For-
est, Convolutional Neural Network (CNN) and Graph Convolutional Network (GCN). Based on the AUROC 
and the PRC-AUC estimation, the GCN showed the best performance of prediction, with an AUROC = 0.96 and 
a PRC-AUC = 0.49 (Table 3). Random Forest models have inferior performance with both Morgan Fingerprints 
and RDKit descriptors. CNN model based on Morgan fingerprints was the worst with an AUC = 0.53 and a PRC-
AUC = 0.04. So, models based on neural network and graph-type information seems to have better performance. 
To evaluate the robustness of the models, A fivefold cross validation was performed. Although the AUROC is 
still high, the PRC-AUC went down to 0.24 respectively. The unbalanced data set might explain this reduction 
of PRC-AUC performance.

In more details, the performance for each odor note, odor notes with high PRC-AUC such as ‘malty’ (0.99), 
‘odorless’ (0.89), ‘maple’ (0.85), ‘sandalwood’ (0.84), ‘alcoholic’ (0.83), ‘musk’ (0.83), ‘ambergris’ (0.81) and odors 

Figure 3.   UMAP representation of compounds distribution in a 2D map projection. (A) Compounds active 
on OR1D2, (B) Compounds active on OR5D16, (C) Compounds active on OR1A1, (D) Compounds active 
on OR2D4. The UMAP representations were developed with the python package bokeh (v.2.4.3): https://​docs.​
bokeh.​org/e 60.

https://docs.bokeh.org/e
https://docs.bokeh.org/e
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with low performance i.e., ‘tea’ (0.13), ripe (0.18), ‘chocolate’ (0.21), ‘metallic’ (0.21), ‘aromatic’ (0.22) can be 
identified (supplementary Table S2).

The prediction of odor notes associated for each molecule by the GCN model can also be depicted in a heat-
map (supplementary Fig. S3). A representation for a subset of compounds is depicted in Fig. 6.

Based on this heatmap, we can observe that many compounds are predicted to ‘sweet’ and the ‘fruity’ odors 
with a mixed of good and bad prediction. Floral, fresh and herbal odors notes are also general classes of odors 
with many mis-classified compounds (pink color). For some compounds, the classification is excellent with no 
misclassification. This is the case for example, for 3-phenyl propyl alcohol which is correctly predicted to the odor 
note balsamic and sweet; butyl acetate which is related to banana, ethereal, fruity and solvent; (E)-isoeugenyl 
acetate which is correctly predicted to spicy and clove and (Z)-7-decenal which is predicted to citrus, aldehydic 
and cucumber among others. However, many compounds have a combination of good and bad predictions. At 
the opposite, some compounds are wrongly predicted and do not capture the odor note on which it has been 
associated with. This is the case for “benzyl acetone” which is not predicted by the model to be associated to 
balsamic and floral but for which the model is predicted the odor of almond and sweet. The model is not able to 
annotate the animal odor note for skatole compound, neither the fruity, fatty, cheesy, herbal coconut odor note 
for the 2-nonanone compound.

As some odors might be relatively close in perception (for example citrus vs lemon, cheese vs cheesy), a 
second GCN model was developed by grouping the 160 odors in 23 categories. The results in Table 4 depicts a 
good AUROC performance (0.92). Interestingly, the PRC-AUC performance is higher with a score of 0.67 (0.40 
in cross validation). Therefore, the GCN model seems more robust and suitable with a reduced number of odors.

Results on ligands‑receptors model.  Similarly, to the previous models developed on compound-odor 
relationships, RF, CNN and GCN models were developed on ligand-receptor information. At the difference of 
the compound-odors relationships models, the ligand-receptor dataset is smaller containing 365 odorants with 
known bioactivity on 74 human olfactory receptors. Developing a GCN model on this dataset we obtained 
a AUROC = 0.98 (0.67 in cross validation) and a PRC-AUC = 0.71 (0.22 in cross validation). The large drop 
observed for the PRC-AUC in cross validation indicate that the model is not too stable and might be due to a 
limited size of the data set. Therefore, we decided to enrich our dataset with the integration of chemicals having 
a bioactivity on rodent olfactory receptors orthologs to human receptors, assuming that they share a similar 
mechanism of action. With this step, predictive models were developed based on 445 compounds with known 
bioactivity on 106 olfactory receptors. The performances of the models are presented in Table  5. Again, the 
GCN model have higher AUROC (0.99) and PRC-AUC (0.91) than the other machine learning models. The 
GCN model conserved a good AUROC score in cross validation (0.71) and with a better PRC-AUC score (0.4). 
These results suggest that the model’s performance is dependent on the data inclusion. The scattering of the 
compound—olfactory receptors information might be a cause of the fall of the PRC-AUC when using a subset 
of the compound-OR data set.

Figure 4.   Radar plot based on the frequency of physicochemical properties observed on the set compounds 
associated to an odor note. (A) Acidic, (B) Citrus, (C) Cheese, (D) Apple, (E) Muguet, (F) Floral. The radarplots 
were developed with the python package plotly (v.5.3.1): https://​plotly.​com/ 61.

https://plotly.com/
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Looking on the GCN model performance for each OR (Table S3 in supplementary), we observe that many 
ORs have the maximum AUROC and PRC-AUC score (OR5A2, OR4D6) while others ORs obtained low PRC-
AUC (OR56A1, OR52M1, OR56A4). The fact that some ORs have few compounds associated may facilitate the 
good performance for these odors.

On the heatmap (Fig. S4 in supplementary), we can observe that some ligands are correctly predicted i.e., cof-
fee difuran predicted active on OR1A1, butyrophenone on OR6A2, 4 phenyl-1 butanol on OR1G1, (E)-cinnamyl 
nitrile on OR1D2 and 4-tert-butyl cyclohexanone active on the human ortholog OR5D16 (olfr73 in mouse). A 
large set of compounds are wrongly predicted on OR5A1, OR52D1, OR56A2. In fact, these receptors are anno-
tated to molecules with diverse physicochemical features, generating some difficulty to the models to discrimi-
nate between true positives and false positives. An example of the heatmap representation is depicted in Fig. 7.

Figure 5.   Radar plot based on the frequency of physicochemical properties observed on the set compounds 
associated to an olfactory receptor. (A) OR52E1, (B) OR4D6, (C) OR1D3, (D) OR1G1. The radarplots were 
developed with the python package plotly (v.5.3.1): https://​plotly.​com/ 61.

Table 3.   Performance of the 4 models applied on the compound-odor note dataset. The results in bold are the 
performance on the full dataset. The value in brackets depicts the results of the fivefold cross validation model.

Compound—Odor note

AUROC PRC-AUC​

GCN 0.964 [0.82] 0.497 [0.24]

RF-Morgan Fp 0.631 0.222

RF-RDKit Features 0.644 0.241

CNN-Morgan Fp 0.532 0.042

https://plotly.com/
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Results on receptors‑odor notes relationship..  As 357 compounds targeting human olfactory recep-
tors and related to odor notes were identified in our data sets, an odor-olfactory receptor pairwise score between 
each odor and each receptor i.e., the possible relation between odor notes and receptors, was computed (sup-
plementary Table S4) and represented within a heatmap (Fig. 8). Globally, based on 151 odor notes and 104 
ORs, such heatmap allows to suggest relation between olfactory receptors and odor notes due to the number of 
shared compounds. Some ORs seem more related to some odor notes than others. For example, the corn odor 
note is uniquely associate to OR1G1. The patchouli odor note is associated to OR5D16 and the cumin odor note 
is associated to OR1D2. The savory odor note is more associated with the OR1A1 receptor (OORP = 0.51) while 
waxy and woody odor notes are strongly associated with the OR2AT4 receptor (OORP = 0.51 and OORP = 0.52 
respectively). Interestingly such matrix gives a score for each OR on each odor note. It means that a set of ORs 
can be suggested to a set of odor notes. For example, OR1G1 and OR1D2 are associate to more than 70 odor 
notes reflecting no high specificity of these ORs to odors. At the difference, OR10A6 is linked to balsamic, floral 
and hyacinth. OR1E3 is linked to almond, hawthorn, pungent and sweet and OR8D1 is strongly associated to 
burnt, carmellic, coffee, maple, sugar and sweet. From the literature, some of these potential associations have 
been confirmed. Triller et al. 2008 mentioned that OR1D2 is highly related to muguet65. Veithen et al. show that 

Figure 6.   Heatmap representation of the performance with the GCN model for a subset of the compound-odor 
note associations. The odor notes are represented on the X-axis and the compounds on the Y axis. A compound 
associated to an odor note and correctly classified by the GCN model is colored with a dark green cell. A 
compound not associated to an odor note and correctly predicted has a light green color. A compound linked to 
an odor note and wrongly predicted by the model is represented with a pink color and a compound not linked 
to an odor note and predicted to be associated to this odor note is shown with a red color. The heatmap was 
developed with the python package seaborn (v.0.11.2): https://​seabo​rn.​pydata.​org/ 63,64.

Table 4.   Performance of the GCN model applied on the compound-odor dataset grouped on 23 categories. 
The results in bold are the performance on the full dataset. The value in brackets depicts the results of the 
fivefold cross validation model.

Compound—Odor GROUP

AUROC PRC-AUC​

GCN 0.92 [0.80] 0.67 [0.40]

Table 5.   Performance of the 4 models applied on the compound-olfactory receptors dataset. The results in 
bold are the performance on the full dataset. The value in brackets depicts the results of the fivefold cross 
validation model.

Compound—Receptor (human + orthologs)

AUROC PRC-AUC​

GCN 0.99 [0.71] 0.91 [0.40]

RF-Morgan Fp 0.612 0.212

RF-RDKit Features 0.586 0.167

CNN-ECFP4 0.536 -

https://seaborn.pydata.org/
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OR1D2 might be also related to floral, fruity, citrus66. In our study, in addition to these odor notes, high relation 
with lactonic, rose and peach are also observed. A patent suggested that the olfactory receptors R52L1, OR52E8, 
OR52B2, OR5112, OR52E1, OR52A5, OR56A5 are involved in the perception of human sweat67. In addition, it 
is claimed that chemicals with a carboxylic acids group could be the relation between these ORs and the sweat 
odor. In our analysis, the olfactory receptors OR117P and OR52B2 contribute in majority with the sweaty odor 
note.

Comparison of models’ performance.  To assess the performance of these models, we compared the 
results of our chemical-odor models to the DREAM Olfaction Prediction Challenge39, and our chemical-odor 
and OR-odor models to the recent ones reported by Kowalewski et al40.

About the chemical-odor model, we used the same 69 test chemicals from the DREAM Olfaction Predic-
tion Challenge39 to evaluate our model performance. For the odor prediction, we obtained an average balanced 
accuracy (BA) of 0.71 using as positive the compounds up to the top 10% perception for an odor39 (supple-
mentary Table S5). Compared to the recent AUC of 0.78 obtained by Kowalewski et al. our model has a little 
lower performance. Looking at the 19 perceptions from DREAM, our models have a relatively good BA (> 0.7) 
for ‘bakery’, ‘fish’, ‘garlic’, ‘acid’, ‘sweaty’, ‘amonia/urine’ ‘wood’ and ‘grass’. For the other perceptions, the BA is 
weaker. It can be explained by the fact that matching the 160 odors used in our study to the 19 perceptual odors 
considered in Keller et al. publication39 might increase the number of false positive rate. For example, the odors 
“cold”, “decayed” and “warm” are not specifically annotated in our odors collection and grouping some of the 
odors in our dataset might bring some noise in this comparison exercise.

About the ligand-OR model, Kowalewski et al. used the same external set of 69 chemicals to predict associated 
olfactory receptors to them. Having only the chemical-ORs prediction from their study (and not the experimental 
value) we could only compared their prediction to our model’s result for 23 olfactory receptors (supplementary 
Table S6). Interestingly, half of their prediction was retrieved in our models. In general, there models predicted 
around 3 times more chemical-OR relationship compared to our model (354 versus 120 chemical-OR predic-
tions) for this set of olfactory receptors.

Finally, about the OR-odor, in the Kowalewski et al. publication, 34 human ORs-perception were predicted. 
Interestingly, compared to our results, we can observe similar OR-odor note relationships like for example 
OR52D1 with ‘animal’, ‘sweaty’, ‘rose’ and ‘violet’, OR2B11 with ‘coffee’ and OR2W1 with ‘spicy’, ‘clove’, ‘caramel’ 
and ‘cheesy’ among others. At the difference for others ORs, we obtained different relationships. For example, our 
study suggests that OR1A2 contribute in priority with the odors ‘aldehydic’, fatty’, ‘grassy’, ‘hay’, ‘ozone’ whereas 
in their studied, important relationships between OR1A2 and ‘warm’ and ‘sweet’ were reported. We suggest also 
that OR1D2, OR1G1, OR52D1 and OR6A2 could contribute to the odor note ‘fishy’ whereas there heatmap 
showed a higher contribution of OR2T34 and OR51E1.

Overall, the fact that different data sets of ligand-odor notes and ligand-olfactory receptors are used in both 
studies has probably an impact on the results. Further experiments should help in the precision of these predic-
tive models.

Figure 7.   Heatmap representation of the performance prediction with the GCN model for a subset of the 
compound-olfactory receptors (ORs) associations. The ORs are represented on the X-axis and the compounds 
on the Y axis. A compound associated to an OR and correctly classified by the GCN model is colored with 
a dark green cell. A compound not associated to an OR and correctly predicted has a light green color. A 
compound linked to an OR and wrongly predicted by the model is represented in a pink color and a compound 
not linked to an OR and predicted to be associated to this odor is shown with a red color. The heatmap was 
developed with the python package seaborn (v.0.11.2): https://​seabo​rn.​pydata.​org/ 63,64.

https://seaborn.pydata.org/
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Discussion–conclusion
Using, a large data set of 5955 compounds, 160 odors and 106 olfactory receptors, machine learning models 
based on artificial intelligence i.e., Random Forest, CNN and GCN approaches were developed. Such models 
can then be used to predict the odor note(s) and olfactory receptor(s) associated for a new compound using the 
chemical structure of it. In addition, based the correspondence of odor notes and ORs associated for a set of 389 
compounds, a score was computed for each odor note-OR combination allowing to decipher the combinatorial 
relationship between olfactory receptors and odor notes.

Although the results are promising, there are still some limitations and the models will need to be optimized 
in the aim to increase their performance.

First, the perception of an odor is highly dependent of an individual and odors annotation to a compound 
are suggestive, depending of ethnicity, alimentary behavior, age68–72. Indeed, the definition of some odor notes 
might be fuzzy (cheese vs cheesy). Recently, 540 individuals were asked to rate the intensity and pleasantness of 
9 musk compounds and their ORs were sequenced in the aim to identify genetic variations that could explain 
the genetic susceptibility to odor perception73. Furthermore, it is well admitted that an odor results from the 
perception of a mixture of molecules, which give more complexity in such classification74. Grouping some odors 
rationally, in more general categories, can improve the performance and the robustness of the GCN models.

Secondly, about the ORs, the number of compounds with known activity on ORs is still low. Mori estimated 
that more than 400 000 different compounds are odorous to the human nose75. Still, we collected only a couple 
of hundred of molecules with bioactivity on ORs. Increasing the number of functional ORs experiments for 
large set of compounds would definitively improve the quality of the models. We have noticed that some ORs 
are highly investigated and other less9,76. For example, OR1A177, OR1D278, OR1G179, OR2W180, OR2M381 have 
been reported to be active by more than 100 compounds. At the opposite, there are 72 ORs for which only 
one compound has been tested active. Developing a GCN model with ORs having enough compounds tested 

Figure 8.   Heatmap representation of the odor note-olfactory receptor pairwise score for a set of 383 
compounds targeting olfactory receptors and related to odor notes. The ORs are represented on the X-axis and 
the odor notes on the Y-axis. A red dot represents a high odor note-olfactory receptor pairwise score and a dark 
blue dot, no odor note-olfactory receptor relationship. The heatmap was developed with the python package 
seaborn (v.0.11.2): https://​seabo​rn.​pydata.​org/ 63–65.

https://seaborn.pydata.org/
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(for example > 5) could improve the model performance on ORs. Another possibility would be to increase the 
chemical-OR bioactivities by studying the transcriptional profile modulation of ORs in vivo i.e., in olfactory 
sensory neurons (OSN) in vertebrates. Recent studies have been reported on this direction and identified the 
full repertoire of receptors activated by a given odorant82,83. Although encouraging, the number of compounds 
with transcriptional profile is still limited.

In third, the stereochemistry of a molecule is may be not optimal in our data set. It has been reported that 
stereoisomers of a chemical can be related to different odors84,85. For example, the R-carvone is related to minty 
odor while its enantiomer, the S-carvone, has a caraway odor77. Although enantiomeric compounds have similar 
chemical functions, it has been reported that as few as 5% of enantiomer couples have a similar smell86,87. It is 
possible that the racemic form of some of the compounds, used in this study, has been considered and it might 
cause a mis classification to some odors.

About machine learning approaches, CNN and GCN are the latest and powerful machine learning approaches. 
GCN seems to outperform CNN and RF in our study. Many odorant-odor notes models have been described 
recently. Sharma et al. have reported a model based on 5185 chemical and 542 smell using a Deep Neural Network 
(DNN) algorithm with promising results42. The performance is a little lower with a AUROC = 0.76. However, one 
advantage of DNN is, it automatically identifies optimal features overcoming the problem of feature selection. 
On a more restricted data set (476 chemicals and 21 odor notes), Keller et al. obtained an AUROC of 0.83 based 
on a Random Forest method39 and Sanchez-Lengeling et al. described a GNN model with an AUROC = 0.89 
using 5030 chemicals and 138 smells43. Models based on olfactory receptors are more limited. Kowalewski et al. 
developed a SVM model using 150 odorants and 34 human olfactory receptors with an AUC = 0.8840. Recently, 
a conglomerate of artificial intelligence driven prediction engines for olfactory decoding was reported, including 
odorant-OR interactions predictions based on structure-based approaches88. The models showed good perfor-
mance with an AUC = 0.87 for ORs and an AUC = 0.94 for smell based on DNN methods.

Overall, these results illustrate the potential of artificial intelligence to decipher the relationship of odorant 
molecules with olfactory receptors and smell perception. Associating to several previous studies carried out by 
other research groups18,39–41, our study provides an increase in the knowledge of the links between odor notes, 
molecular structures of odorants and target olfactory receptors of mammals. Especially, thanks to largest data 
as well in number of odorants than in number of olfactory receptors, we show that our model is able to correctly 
connect numerous pairs odorant-OR, and now to predict other new pairs.

However, models based on artificial intelligence can show some limits with odors and receptors that are not 
well represented by chemicals. As recently pointed by Gerkin89, it is necessary to use a large volume of odorant 
molecules with the corresponding odorant description as several as odor notes (or odor attributes). Moreover, 
the molecular properties of the odorants must be described by a large number of molecular descriptors able to 
report all their structural characteristics.

Expanding the knowledge of our sense of smell by combining different sources of data from chemical biology 
(proteome-transcriptome) and human perception with advanced computational approaches will move forward 
the identification of the complete olfactory repertoire associated to the human smell perception.

Data availability
The datasets compiled in this study are available for the scientific community in supplementary Table S1. We 
hope that it will be a good resource for further investigations.
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