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Abstract

We give a simple proof of quantitative stability for the Heisenberg-Pauli-
Weyl inequality in L2 distance, with explicit constants.

Our goal in this note is to give a simple, constructive proof of the quantitative
HPW inequality recently obtained in [8]. We shall obtain the following statement:

Theorem 1. Let u be a W 1,2 function on Rd. Then(∫
|x|2u2dx

)(∫
|∇u|2dx

)
≥ d2

4

(∫
u2dx

)2

+
1

4

(∫
u2dx

)
d(u,G)2 +

1

16
d(u,G)4

where d(u,G) is the L2 distance to the set of Gaussian functions, that is

d(u,G)2 := inf

{∫ (
u− ce−λ|x|2

)2
dx; c ∈ R, λ > 0

}
.

This actually slightly improves on the main result of [8], since we identify
explicit constants, and in particular show that the prefactor in the last term does
not depend on the dimension. The source of this difference is that, unlike [8],
we do not use concentration-compactness, and instead rely on direct estimates
via classical Gaussian functional inequalities. The proof will identify a specific
Gaussian distribution as a competitor, and the distance to the set of Gaussian
measures can be replaced by the L2 distance to the Gaussian density with specific
values of the parameters, that depend on the mass and the second moment. As
discussed in [8], the one-dimensional case goes back to [3].

The exponent 2 for the first reminder term is optimal, as can be checked by
linearizing the inequality around a Gaussian measure. Since the constant 1/4 in
front of the first term is not sharp, the second reminder term in d(u,G)4 cannot
be interpreted as a deficit estimate for an improved inequality. Its inclusion here
does not have any particular motivation, beyond making the comparison with the
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results of [8] easier, since that work also included a quartic reminder term, with
dimension-dependent prefactor.

From the homogeneity of the inequality, as well as the invariance by the trans-
form u(x) −→ λ−du(λx), we can assume without loss of generality that∫

u2dx = 1;

∫
|x|2u2dx = d. (1)

Under this scaling, u2 can be interpreted as the probability density of a distri-
bution with normalized second moment. In which case the HPW inequality can
be interpreted as a lower bound on the Fisher information of the distribution

I(u2) = 4

∫
|∇u|2dx =

∫
|∇ log u2|u2dx.

We keep the factor 4 in the definition of Fisher information to keep notations
coherent with the information theory literature. The HPW inequality can then
be rewritten as

I(u2) ≥ d (2)

for all probability densities satisfying the second moment scaling. So it is the
same as the classical result of information theory that under a second moment
constraint, Gaussian distributions minimize Fisher information. In this form,
improving this inequality is a classical topic in information theory, going back to
Stam’s inequality [9], also known as the isoperimetric inequality for entropies. We
refer to [4] and references therein for more about information-theoretic inequalities
in this context, and their connection with uncertainty principles. Stam’s inequality
is also equivalent to Gross’s Gaussian logarithmic Sobolev inequality [7], for which
stability has been a topic of recent interest, see [2, 6, 5] and references therein.

In the formulation (2), the proof of the HPW inequality is almost immediate.
Since the second moment is normalized, it is natural to introduce the relative
Fisher information to the standard Gaussian distribution, whose density will be
denoted by γ(x) = (2π)−d/2 exp(−|x|2/2). We have

0 ≤ Iγ(u2) :=

∫
|∇ log u2 + x|2u2dx

= I(u2) + 2

∫
(x · ∇ log u2)u2dx+

∫
|x|2u2dx

= I(u2)− d (3)

where we used an integration by parts and the scaling of the second moment to
get the last identity.

Hence, to get a deficit estimate, one should seek to bound from below the rela-
tive Fisher information Iγ(u2) (which is itself already a natural notion of proximity
for probability densities). Note that from the classical Talagrand and logarithmic
Sobolev inequality, it is also bounded from below by the L2 Wasserstein distance
to the Gaussian, and relative entropy.
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To get the lower bound in Theorem 1 from (3), we shall use the Gaussian
Poincaré inequality

∀f : Rd −→ R Varγ(f) ≤
∫
|∇f |2dγ,

where Varγ(f) stands for the variance of the function f under the Gaussian dis-
tribution, that is

Varγ(f) :=

∫
f2dγ −

(∫
fdγ

)2

.

The Gaussian Poincaré inequality is a classical tool in Gaussian analysis, and we
refer to [1, Proposition 4.1.1] for a proof. We have

Iγ(u2) =

∫
|∇ log u2 + x|2u2dx = 4

∫
|∇(uγ−1/2)|2γ(x)dx

≥ 4 Varγ(uγ−1/2) = 4

∫
u2dx− 4

(∫
uγ1/2dx

)2

= 4−
(∫

(u− γ1/2)2dx− 2

)2

= 4

∫
(u− γ1/2)2dx−

(∫
(u− γ1/2)2dx

)2

≥
∫

(u− γ1/2)2dx+
1

4

(∫
(u− γ1/2)2dx

)2

where for the last inequality we used the fact that
∫

(u− γ1/2)2dx ≤ 2 and the
inequality 4x− x2 ≥ x+ x2/4 for x ≤ 2. This concludes the proof of Theorem 1.
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